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Abstract. 
 We give a necessary and sufficient mean condition for the quotient of two Jensen functionals and define a new class 
	
		
			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 of mean values where 
	
		
			
				𝑓
				,
				𝑔
			

		
	
 are continuously differentiable convex functions satisfying the relation 
	
		
			
				𝑓
				′
				′
				(
				𝑡
				)
				=
				𝑡
				𝑔
				′
				′
				(
				𝑡
				)
			

		
	
,  
	
		
			
				𝑡
				∈
				ℝ
			

			

				+
			

		
	
. Then we asked for a characterization of 
	
		
			
				𝑓
				,
				𝑔
			

		
	
 such that the inequalities 
	
		
			
				𝐻
				(
				𝑎
				,
				𝑏
				)
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
				(
				𝑎
				,
				𝑏
				)
			

		
	
 or 
	
		
			
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	
 hold for each positive 
	
		
			
				𝑎
				,
				𝑏
			

		
	
, where 
	
		
			
				𝐻
				,
				𝐴
				,
				𝐿
				,
				𝐼
			

		
	
 are the harmonic, arithmetic, logarithmic, and identric means, respectively. For a subclass of 
	
		
			

				Λ
			

		
	
 with 
	
		
			
				𝑔
				′
				′
				(
				𝑡
				)
				=
				𝑡
			

			

				𝑠
			

			
				,
				𝑠
				∈
				ℝ
			

		
	
, this problem is thoroughly solved.


1. Introduction
It is said that the mean 
	
		
			

				𝑃
			

		
	
 is intermediate relating to the means 
	
		
			

				𝑀
			

		
	
 and 
	
		
			
				𝑁
				,
				𝑀
				≤
				𝑁
			

		
	
 if the relation 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑀
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑃
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑁
				(
				𝑎
				,
				𝑏
				)
			

		
	

					holds for each two positive numbers 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
.
It is also well known that 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				m
				i
				n
				{
				𝑎
				,
				𝑏
				}
				≤
				𝐻
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐺
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑆
				(
				𝑎
				,
				𝑏
				)
				≤
				m
				a
				x
				{
				𝑎
				,
				𝑏
				}
				,
			

		
	

					where 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				1
				𝐻
				=
				𝐻
				(
				𝑎
				,
				𝑏
				)
				∶
				=
				2
			

			
				
			
			
				𝑎
				+
				1
			

			
				
			
			
				𝑏
				
			

			
				−
				1
			

			
				;
				√
				𝐺
				=
				𝐺
				(
				𝑎
				,
				𝑏
				)
				∶
				=
			

			
				
			
			
				𝑎
				𝑏
				;
				𝐿
				=
				𝐿
				(
				𝑎
				,
				𝑏
				)
				∶
				=
				𝑏
				−
				𝑎
			

			
				
			
			
				;
				
				𝑏
				l
				o
				g
				𝑏
				−
				l
				o
				g
				𝑎
				𝐼
				=
				𝐼
				(
				𝑎
				,
				𝑏
				)
				∶
				=
			

			

				𝑏
			

			
				/
				𝑎
			

			

				𝑎
			

			

				
			

			
				1
				/
				(
				𝑏
				−
				𝑎
				)
			

			
				
			
			
				𝑒
				;
				𝐴
				=
				𝐴
				(
				𝑎
				,
				𝑏
				)
				∶
				=
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				;
				𝑆
				=
				𝑆
				(
				𝑎
				,
				𝑏
				)
				∶
				=
				𝑎
			

			
				𝑎
				/
				(
				𝑎
				+
				𝑏
				)
			

			

				𝑏
			

			
				𝑏
				/
				(
				𝑎
				+
				𝑏
				)
			

		
	

					are the harmonic, geometric, logarithmic, identric, arithmetic, and Gini mean, respectively.
An easy task is to construct intermediate means related to two given means 
	
		
			

				𝑀
			

		
	
 and 
	
		
			

				𝑁
			

		
	
 with 
	
		
			
				𝑀
				≤
				𝑁
			

		
	
. For instance, for an arbitrary mean 
	
		
			

				𝑃
			

		
	
, we have that 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝑀
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑃
				(
				𝑀
				(
				𝑎
				,
				𝑏
				)
				,
				𝑁
				(
				𝑎
				,
				𝑏
				)
				)
				≤
				𝑁
				(
				𝑎
				,
				𝑏
				)
				.
			

		
	

The problem is more difficult if we have to decide whether the given mean is intermediate or not. For example, the relation 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	

					holds for each positive 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
 if and only if 
	
		
			
				0
				≤
				𝑠
				≤
				1
			

		
	
, where the Stolarsky mean 
	
		
			

				𝑆
			

			

				𝑠
			

		
	
 is defined by (cf [1]) 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑆
			

			

				𝑠
			

			
				
				𝑏
				(
				𝑎
				,
				𝑏
				)
				∶
				=
			

			

				𝑠
			

			
				−
				𝑎
			

			

				𝑠
			

			
				
			
			
				
				𝑠
				(
				𝑏
				−
				𝑎
				)
			

			
				1
				/
				(
				𝑠
				−
				1
				)
			

			

				.
			

		
	

Also, 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
				(
				𝑎
				,
				𝑏
				)
			

		
	

					holds if and only if 
	
		
			
				0
				≤
				𝑠
				≤
				1
			

		
	
, where the Hölder mean of order 
	
		
			

				𝑠
			

		
	
 is defined by 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑠
			

			
				
				𝑎
				(
				𝑎
				,
				𝑏
				)
				∶
				=
			

			

				𝑠
			

			
				+
				𝑏
			

			

				𝑠
			

			
				
			
			
				2
				
			

			
				1
				/
				𝑠
			

			

				.
			

		
	

An inverse problem is to find best possible approximation of a given mean 
	
		
			

				𝑃
			

		
	
 by elements of an ordered class of means 
	
		
			

				𝑆
			

		
	
. A good example for this topic is comparison between the logarithmic mean and the class 
	
		
			

				𝐴
			

			

				𝑠
			

		
	
 of Hölder means of order 
	
		
			

				𝑠
			

		
	
. Namely, since 
	
		
			

				𝐴
			

			

				0
			

			
				=
				l
				i
				m
			

			
				𝑠
				→
				0
			

			

				𝐴
			

			

				𝑠
			

			
				=
				𝐺
			

		
	
 and 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

		
	
, it follows from (2) that
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝐴
			

			

				0
			

			
				≤
				𝐿
				≤
				𝐴
			

			

				1
			

			

				.
			

		
	

Since 
	
		
			

				𝐴
			

			

				𝑠
			

		
	
 is monotone increasing in 
	
		
			

				𝑠
			

		
	
, an improving of the above is given by Carlson [2]: 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝐴
			

			

				0
			

			
				≤
				𝐿
				≤
				𝐴
			

			
				1
				/
				2
			

			

				.
			

		
	

Finally, Lin showed in [3] that 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝐴
			

			

				0
			

			
				≤
				𝐿
				≤
				𝐴
			

			
				1
				/
				3
			

		
	

					is the best possible approximation of the logarithmic mean by the means from the class 
	
		
			

				𝐴
			

			

				𝑠
			

		
	
. 
Numerous similar results have been obtained recently. For example, an approximation of Seiffert’s mean by the class 
	
		
			

				𝐴
			

			

				𝑠
			

		
	
 is given in [4, 5].
In this paper we will give best possible approximations for a whole variety of elementary means (2) by the class 
	
		
			

				𝜆
			

			

				𝑠
			

		
	
 defined below (see Theorem 5).
Let 
	
		
			
				𝑓
				,
				𝑔
			

		
	
 be twice continuously differentiable (strictly) convex functions on 
	
		
			

				ℝ
			

			

				+
			

		
	
. By definition (cf [6], page 5),
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
			
			
				
				𝑓
				(
				𝑎
				,
				𝑏
				)
				∶
				=
				𝑓
				(
				𝑎
				)
				+
				𝑓
				(
				𝑏
				)
				−
				2
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				>
				0
				,
				𝑎
				≠
				𝑏
				,
			

			
				
			
			
				𝑓
				(
				𝑎
				,
				𝑏
				)
				=
				0
				,
			

		
	

					if and only if 
	
		
			
				𝑎
				=
				𝑏
			

		
	
.
It turns out that the expression 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				∶
				=
			

			
				
			
			
				𝑓
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				
			
			
				=
				𝑓
				𝑔
				(
				𝑎
				,
				𝑏
				)
				(
				𝑎
				)
				+
				𝑓
				(
				𝑏
				)
				−
				2
				𝑓
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			
				
			
			
				𝑔
				(
				𝑎
				)
				+
				𝑔
				(
				𝑏
				)
				−
				2
				𝑔
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

		
	

					represents a mean of two positive numbers 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
; that is, the relation 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				m
				i
				n
				{
				𝑎
				,
				𝑏
				}
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				m
				a
				x
				{
				𝑎
				,
				𝑏
				}
			

		
	

					holds for each 
	
		
			
				𝑎
				,
				𝑏
				∈
				ℝ
			

			

				+
			

		
	
, if and only if the relation 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑓
			

			
				
				
			

			
				(
				𝑡
				)
				=
				𝑡
				𝑔
			

			
				
				
			

			
				(
				𝑡
				)
			

		
	

					holds for each 
	
		
			
				𝑡
				∈
				ℝ
			

			

				+
			

		
	
.
Let 
	
		
			
				𝑓
				,
				𝑔
				∈
				𝐶
			

			

				∞
			

			
				(
				0
				,
				∞
				)
			

		
	
 and denote by 
	
		
			

				Λ
			

		
	
 the set 
	
		
			
				{
				(
				𝑓
				,
				𝑔
				)
				}
			

		
	
 of convex functions satisfying the relation (15). There is a natural question how to improve the bounds in (14); in this sense we come upon the following intermediate mean problem.
Open Question. Under what additional conditions on 
	
		
			
				𝑓
				,
				𝑔
				∈
				Λ
			

		
	
, the inequalities 
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑎
				,
				𝑏
				)
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
				(
				𝑎
				,
				𝑏
				)
				,
			

		
	

					or, more tightly, 
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
				,
			

		
	

					hold for each 
	
		
			
				𝑎
				,
				𝑏
				∈
				ℝ
			

			

				+
			

		
	
? 
As an illustration, consider the function 
	
		
			

				𝑓
			

			

				𝑠
			

			
				(
				𝑡
				)
			

		
	
 defined to be
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑠
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑡
				(
				𝑡
				)
				=
			

			

				𝑠
			

			
				−
				𝑠
				𝑡
				+
				𝑠
				−
				1
			

			
				
			
			
				𝑠
				(
				𝑠
				−
				1
				)
				,
				𝑠
				(
				𝑠
				−
				1
				)
				≠
				0
				;
				𝑡
				−
				l
				o
				g
				𝑡
				−
				1
				,
				𝑠
				=
				0
				;
				𝑡
				l
				o
				g
				𝑡
				−
				𝑡
				+
				1
				,
				𝑠
				=
				1
				.
			

		
	

Since
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				
				𝑠
			

			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				𝑡
				(
				𝑡
				)
				=
			

			
				𝑠
				−
				1
			

			
				−
				1
			

			
				
			
			
				l
				𝑠
				−
				1
				,
				𝑠
				(
				𝑠
				−
				1
				)
				≠
				0
				;
				1
				−
			

			
				
			
			
				𝑡
				𝑓
				,
				𝑠
				=
				0
				;
				l
				o
				g
				𝑡
				,
				𝑠
				=
				1
				,
			

			
				𝑠
				
				
			

			
				(
				𝑡
				)
				=
				𝑡
			

			
				𝑠
				−
				2
			

			
				,
				𝑠
				∈
				ℝ
				,
				𝑡
				>
				0
				,
			

		
	

					it follows that 
	
		
			

				𝑓
			

			

				𝑠
			

			
				(
				𝑡
				)
			

		
	
 is a twice continuously differentiable convex function for 
	
		
			
				𝑠
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑡
				∈
				ℝ
			

			

				+
			

		
	
.
Moreover, it is evident that 
	
		
			
				(
				𝑓
			

			
				𝑠
				+
				1
			

			
				,
				𝑓
			

			

				𝑠
			

			
				)
				∈
				Λ
			

		
	
. 
We will give in the sequel a complete answer to the above question concerning the means
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
			
			

				𝑓
			

			
				𝑠
				+
				1
			

			
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				
			
			

				𝑓
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				∶
				=
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	

					defined by
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				(
				𝑎
				,
				𝑏
				)
				𝑠
				−
				1
			

			
				
			
			
				𝑎
				𝑠
				+
				1
			

			
				𝑠
				+
				1
			

			
				+
				𝑏
			

			
				𝑠
				+
				1
			

			
				−
				2
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			
				𝑠
				+
				1
			

			
				
			
			

				𝑎
			

			

				𝑠
			

			
				+
				𝑏
			

			

				𝑠
			

			
				−
				2
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			

				𝑠
			

			
				,
				𝑠
				∈
				ℝ
				/
				{
				−
				1
				,
				0
				,
				1
				}
				;
				2
				l
				o
				g
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
				−
				l
				o
				g
				𝑎
				−
				l
				o
				g
				𝑏
			

			
				
			
			
				1
				/
				2
				𝑎
				+
				1
				/
				2
				𝑏
				−
				2
				/
				(
				𝑎
				+
				𝑏
				)
				,
				𝑠
				=
				−
				1
				;
				𝑎
				l
				o
				g
				𝑎
				+
				𝑏
				l
				o
				g
				𝑏
				−
				(
				𝑎
				+
				𝑏
				)
				l
				o
				g
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			
				
			
			
				2
				l
				o
				g
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
				−
				l
				o
				g
				𝑎
				−
				l
				o
				g
				𝑏
				,
				𝑠
				=
				0
				;
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
			
			
				4
				(
				𝑎
				l
				o
				g
				𝑎
				+
				𝑏
				l
				o
				g
				𝑏
				−
				(
				𝑎
				+
				𝑏
				)
				l
				o
				g
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
				)
				,
				𝑠
				=
				1
				.
			

		
	

Those means are obviously symmetric and homogeneous of order one.
As a consequence we obtain some new intermediate mean values; for instance, we show that the inequalities
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			
				−
				1
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐺
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				0
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				1
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	

					hold for arbitrary 
	
		
			
				𝑎
				,
				𝑏
				∈
				ℝ
			

			

				+
			

		
	
.  Note that
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝜆
			

			
				−
				1
			

			
				=
				2
				𝐺
			

			

				2
			

			
				l
				o
				g
				(
				𝐴
				/
				𝐺
				)
			

			
				
			
			
				𝐴
				−
				𝐻
				;
				𝜆
			

			

				0
			

			
				=
				𝐴
				l
				o
				g
				(
				𝑆
				/
				𝐴
				)
			

			
				
			
			
				;
				𝜆
				l
				o
				g
				(
				𝐴
				/
				𝐺
				)
			

			

				1
			

			
				=
				1
			

			
				
			
			
				2
				𝐴
				−
				𝐻
			

			
				
			
			
				.
				l
				o
				g
				(
				𝑆
				/
				𝐴
				)
			

		
	

2. Results
We prove firstly the following
Theorem 1.  Let 
	
		
			
				𝑓
				,
				𝑔
				∈
				𝐶
			

			

				2
			

			
				(
				𝐼
				)
			

		
	
 with 
	
		
			

				𝑔
			

			
				
				
			

			
				>
				0
			

		
	
. The expression 
	
		
			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 represents a mean of arbitrary numbers 
	
		
			
				𝑎
				,
				𝑏
				∈
				𝐼
			

		
	
 if and only if the relation (15) holds for 
	
		
			
				𝑡
				∈
				𝐼
			

		
	
.
Remark 2. In the same way, for arbitrary 
	
		
			
				𝑝
				,
				𝑞
				>
				0
				,
				𝑝
				+
				𝑞
				=
				1
			

		
	
, it can be deduced that the quotient
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑝
				,
				𝑞
				;
				𝑎
				,
				𝑏
				)
				∶
				=
				𝑝
				𝑓
				(
				𝑎
				)
				+
				𝑞
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑝
				𝑎
				+
				𝑞
				𝑏
				)
			

			
				
			
			
				𝑝
				𝑔
				(
				𝑎
				)
				+
				𝑞
				𝑔
				(
				𝑏
				)
				−
				𝑔
				(
				𝑝
				𝑎
				+
				𝑞
				𝑏
				)
			

		
	

						represents a mean value of numbers 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
 if and only if (15) holds.
A generalization of the above assertion is the next.
Theorem 3.  Let 
	
		
			
				𝑓
				,
				𝑔
				∶
				𝐼
				→
				ℝ
			

		
	
 be twice continuously differentiable functions with 
	
		
			

				𝑔
			

			
				
				
			

			
				>
				0
			

		
	
 on 
	
		
			

				𝐼
			

		
	
 and let 
	
		
			
				𝑝
				=
				{
				𝑝
			

			

				𝑖
			

			

				}
			

		
	
, 
	
		
			
				∑
				𝑝
				𝑖
				=
				1
				,
				2
				,
				…
				,
			

			

				𝑖
			

			
				=
				1
			

		
	
 be an arbitrary positive weight sequence. Then the quotient of two Jensen functionals
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				∑
				(
				𝑝
				,
				𝑥
				)
				∶
				=
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			
				𝑓
				
				𝑥
			

			

				𝑖
			

			
				
				
				∑
				−
				𝑓
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			

				
			

			
				
			
			

				∑
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			
				𝑔
				
				𝑥
			

			

				𝑖
			

			
				
				
				∑
				−
				𝑔
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				,
				𝑛
				≥
				2
				,
			

		
	

						represents a mean of an arbitrary set of real numbers 
	
		
			

				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				∈
				𝐼
			

		
	
 if and only if the relation
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑓
			

			
				
				
			

			
				(
				𝑡
				)
				=
				𝑡
				𝑔
			

			
				
				
			

			
				(
				𝑡
				)
			

		
	

						holds for each 
	
		
			
				𝑡
				∈
				𝐼
			

		
	
.
Remark 4. It should be noted that the relation 
	
		
			

				𝑓
			

			
				
				
			

			
				(
				𝑡
				)
				=
				𝑡
				𝑔
			

			
				
				
			

			
				(
				𝑡
				)
			

		
	
 determines 
	
		
			

				𝑓
			

		
	
 in terms of 
	
		
			

				𝑔
			

		
	
 in an easy way. Precisely,
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				)
				=
				𝑡
				𝑔
				(
				𝑡
				)
				−
				2
				𝐺
				(
				𝑡
				)
				+
				𝑐
				𝑡
				+
				𝑑
				,
			

		
	

						where 
	
		
			
				∫
				𝐺
				(
				𝑡
				)
				∶
				=
			

			
				𝑡
				1
			

			
				𝑔
				(
				𝑢
				)
				𝑑
				𝑢
			

		
	
 and 
	
		
			

				𝑐
			

		
	
 and 
	
		
			

				𝑑
			

		
	
 are constants.
Our results concerning the means 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
, 
	
		
			
				𝑠
				∈
				ℝ
			

		
	
 are included in the following.
Theorem 5.  For the class of means 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 defined above, the following assertions hold for each 
	
		
			
				𝑎
				,
				𝑏
				∈
				ℝ
			

			

				+
			

		
	
. (1) The means 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 are monotone increasing in 
	
		
			

				𝑠
			

		
	
;(2) 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐻
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for each 
	
		
			
				𝑠
				≤
				−
				4
			

		
	
;(3) 
	
		
			
				𝐻
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐺
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			
				−
				3
				≤
				𝑠
				≤
				−
				1
			

		
	
;(4) 
	
		
			
				𝐺
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐿
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			
				−
				1
				/
				2
				≤
				𝑠
				≤
				0
			

		
	
;(5)  there is a number 
	
		
			

				𝑠
			

			

				0
			

			
				∈
				(
				1
				/
				1
				2
				,
				1
				/
				1
				1
				)
			

		
	
 such that  
	
		
			
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			

				𝑠
			

			

				0
			

			
				≤
				𝑠
				≤
				1
			

		
	
;(6)  there is a number 
	
		
			

				𝑠
			

			

				1
			

			
				∈
				(
				1
				.
				0
				3
				,
				1
				.
				0
				4
				)
			

		
	
 such that  
	
		
			
				𝐼
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			

				𝑠
			

			

				1
			

			
				≤
				𝑠
				≤
				2
			

		
	
;(7) 
	
		
			
				𝐴
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑆
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for each 
	
		
			
				2
				≤
				𝑠
				≤
				5
			

		
	
;(8)  there is no finite 
	
		
			

				𝑠
			

		
	
 such that the inequality 
	
		
			
				𝑆
				(
				𝑎
				,
				𝑏
				)
				≤
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 holds for each 
	
		
			
				𝑎
				,
				𝑏
				∈
				ℝ
			

			

				+
			

		
	
. The above estimations are best possible.
3. Proofs
3.1. Proof of Theorem 1
We prove firstly the necessity of the condition (15).
Since 
	
		
			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 is a mean value for arbitrary 
	
		
			
				𝑎
				,
				𝑏
				∈
				𝐼
			

		
	
; 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
, we have
								
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				m
				i
				n
				{
				𝑎
				,
				𝑏
				}
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				m
				a
				x
				{
				𝑎
				,
				𝑏
				}
				.
			

		
	

							Hence
								
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑏
				→
				𝑎
			

			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				𝑎
				.
			

		
	

From the other hand, due to l’Hospital’s rule we obtain
								
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑏
				→
				𝑎
			

			

				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				l
				i
				m
			

			
				𝑏
				→
				𝑎
			

			
				
				𝑓
			

			

				
			

			
				(
				𝑏
				)
				−
				𝑓
			

			

				
			

			
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			
				
			
			

				𝑔
			

			

				
			

			
				(
				𝑏
				)
				−
				𝑔
			

			

				
			

			
				
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
				=
				l
				i
				m
			

			
				𝑏
				→
				𝑎
			

			
				
				2
				𝑓
			

			
				
				
			

			
				(
				𝑏
				)
				−
				𝑓
			

			
				
				
			

			
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			
				
			
			
				2
				𝑔
			

			
				
				
			

			
				(
				𝑏
				)
				−
				𝑔
			

			
				
				
			

			
				
				=
				𝑓
				(
				(
				𝑎
				+
				𝑏
				)
				/
				2
				)
			

			
				
				
			

			
				(
				𝑎
				)
			

			
				
			
			

				𝑔
			

			
				
				
			

			
				.
				(
				𝑎
				)
			

		
	

							Comparing (29) and (30) the desired result follows.
Suppose now that (15) holds and let 
	
		
			
				𝑎
				<
				𝑏
			

		
	
. Since 
	
		
			

				𝑔
			

			
				
				
			

			
				(
				𝑡
				)
				>
				0
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
 by the Cauchy mean value theorem there exists 
	
		
			
				𝜉
				∈
				(
				(
				𝑎
				+
				𝑡
				)
				/
				2
				,
				𝑡
				)
			

		
	
 such that 
								
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑓
			

			

				
			

			
				(
				𝑡
				)
				−
				𝑓
			

			

				
			

			
				(
				(
				𝑎
				+
				𝑡
				)
				/
				2
				)
			

			
				
			
			

				𝑔
			

			

				
			

			
				(
				𝑡
				)
				−
				𝑔
			

			

				
			

			
				=
				𝑓
				(
				(
				𝑎
				+
				𝑡
				)
				/
				2
				)
			

			
				
				
			

			
				(
				𝜉
				)
			

			
				
			
			

				𝑔
			

			
				
				
			

			
				(
				𝜉
				)
				=
				𝜉
				.
			

		
	

But, 
								
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑎
				≤
				𝑎
				+
				𝑡
			

			
				
			
			
				2
				<
				𝜉
				<
				𝑡
				≤
				𝑏
				,
			

		
	

							and, since 
	
		
			

				𝑔
			

			

				
			

		
	
 is strictly increasing,  
	
		
			

				𝑔
			

			

				
			

			
				(
				𝑡
				)
				−
				𝑔
			

			

				
			

			
				(
				(
				𝑎
				+
				𝑡
				)
				/
				2
				)
				>
				0
				,
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
.
Therefore, by (31) we get 
								
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝑎
				
				𝑔
			

			

				
			

			
				(
				𝑡
				)
				−
				𝑔
			

			

				
			

			
				
				𝑎
				+
				𝑡
			

			
				
			
			
				2
				
				
				≤
				𝑓
			

			

				
			

			
				(
				𝑡
				)
				−
				𝑓
			

			

				
			

			
				
				𝑎
				+
				𝑡
			

			
				
			
			
				2
				
				
				𝑔
				≤
				𝑏
			

			

				
			

			
				(
				𝑡
				)
				−
				𝑔
			

			

				
			

			
				
				𝑎
				+
				𝑡
			

			
				
			
			
				2
				.
				
				
			

		
	

							Finally, integrating (33) over 
	
		
			
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
 we obtain the assertion from Theorem 1. 
3.2. Proof of Theorem 3
We will give a proof of this assertion by induction on 
	
		
			

				𝑛
			

		
	
.
By Remark 2, it holds for 
	
		
			
				𝑛
				=
				2
			

		
	
.
Next, it is not difficult to check the identity 
								
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			

				1
			

			

				𝑝
			

			

				𝑖
			

			
				𝑓
				
				𝑥
			

			

				𝑖
			

			
				
				
				−
				𝑓
			

			

				𝑛
			

			

				
			

			

				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				=
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			
				𝑓
				
				𝑥
			

			

				𝑖
			

			
				
				
				−
				𝑓
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				+
				
				
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑓
				(
				𝑇
				)
				+
				𝑝
			

			

				𝑛
			

			
				𝑓
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑓
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑇
				+
				𝑝
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				,
				
				
			

		
	

							where 
								
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝑇
				∶
				=
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				;
				𝑝
			

			
				
				𝑖
			

			
				𝑝
				∶
				=
			

			

				𝑖
			

			
				
			
			
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				−
				1
				;
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			
				=
				1
				.
			

		
	

Therefore, by induction hypothesis and Remark 2, we get
								
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			

				1
			

			

				𝑝
			

			

				𝑖
			

			
				𝑓
				
				𝑥
			

			

				𝑖
			

			
				
				
				−
				𝑓
			

			

				𝑛
			

			

				
			

			

				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				
				𝑥
				≤
				m
				a
				x
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				×
				
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			
				𝑔
				
				𝑥
			

			

				𝑖
			

			
				
				
				−
				𝑔
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				
				
				+
				m
				a
				x
				𝑇
				,
				𝑥
			

			

				𝑛
			

			
				
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑔
				(
				𝑇
				)
				+
				𝑝
			

			

				𝑛
			

			
				𝑔
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑔
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑇
				+
				𝑝
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				
				𝑥
				
				
				≤
				m
				a
				x
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				
				×
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			
				𝑔
				
				𝑥
			

			

				𝑖
			

			
				
				
				−
				𝑔
			

			
				𝑛
				−
				1
			

			

				
			

			

				1
			

			

				𝑝
			

			
				
				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				+
				
				
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑔
				(
				𝑇
				)
				+
				𝑝
			

			

				𝑛
			

			
				𝑔
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑔
				
				
				1
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑇
				+
				𝑝
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				
				
				𝑥
				
				
				=
				m
				a
				x
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				
				
			

			

				𝑛
			

			

				
			

			

				1
			

			

				𝑝
			

			

				𝑖
			

			
				𝑔
				
				𝑥
			

			

				𝑖
			

			
				
				
				−
				𝑔
			

			

				𝑛
			

			

				
			

			

				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				.
				
				
			

		
	

The inequality 
								
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				
				𝑥
				m
				i
				n
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				
				≤
				Λ
			

			
				𝑓
				,
				𝑔
			

			
				(
				𝑝
				,
				𝑥
				)
			

		
	

							can be proved analogously.
For the proof of necessity, put 
	
		
			

				𝑥
			

			

				2
			

			
				=
				𝑥
			

			

				3
			

			
				=
				⋯
				=
				𝑥
			

			

				𝑛
			

		
	
 and proceed as in Theorem 1.
Remark 6. It is evident from (15) that if 
	
		
			
				𝐼
				⊆
				ℝ
			

			

				+
			

		
	
 then 
	
		
			

				𝑓
			

		
	
 has to be also convex on 
	
		
			

				𝐼
			

		
	
. Otherwise, it shouldn't be the case. For example, the conditions of Theorem 3 are satisfied with 
	
		
			
				𝑓
				(
				𝑡
				)
				=
				𝑡
			

			

				3
			

			
				/
				3
			

		
	
, 
	
		
			
				𝑔
				(
				𝑡
				)
				=
				𝑡
			

			

				2
			

			
				,
				𝑡
				∈
				ℝ
			

		
	
. Hence, for an arbitrary sequence 
	
		
			
				{
				𝑥
			

			

				𝑖
			

			

				}
			

			
				𝑛
				1
			

		
	
 of real numbers, we obtain
									
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				𝑥
				m
				i
				n
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				
				≤
				∑
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			
				3
				𝑖
			

			
				−
				
				∑
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			

				
			

			

				3
			

			
				
			
			
				3
				
				∑
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			
				2
				𝑖
			

			
				−
				
				∑
			

			
				𝑛
				1
			

			

				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			

				
			

			

				2
			

			
				
				
				𝑥
				≤
				m
				a
				x
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				
				.
			

		
	

Because the above inequality does not depend on 
	
		
			

				𝑛
			

		
	
, a probabilistic interpretation of the above result is contained in the following.
Theorem 7.  For an arbitrary probability law 
	
		
			

				𝐹
			

		
	
 of random variable 
	
		
			

				𝑋
			

		
	
 with support on 
	
		
			
				(
				−
				∞
				,
				+
				∞
				)
			

		
	
, one has
									
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				(
				𝐸
				𝑋
				)
			

			

				3
			

			
				+
				3
				(
				m
				i
				n
				𝑋
				)
				𝜎
			

			
				2
				𝑋
			

			
				≤
				𝐸
				𝑋
			

			

				3
			

			
				≤
				(
				𝐸
				𝑋
				)
			

			

				3
			

			
				+
				3
				(
				m
				a
				x
				𝑋
				)
				𝜎
			

			
				2
				𝑋
			

			

				.
			

		
	

3.3. Proof of Theorem 5, Part 
	
		
			
				(
				1
				)
			

		
	

We will prove a general assertion of this type. Namely, for an arbitrary positive sequence 
	
		
			
				𝐱
				=
				{
				𝑥
			

			

				𝑖
			

			

				}
			

		
	
 and an associated weight sequence 
	
		
			
				𝐩
				=
				{
				𝑝
			

			

				𝑖
			

			

				}
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
			

		
	
, denote
								
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝜒
			

			

				𝑠
			

			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				∑
				𝑝
				(
				𝐩
				,
				𝐱
				)
				∶
				=
			

			

				𝑖
			

			

				𝑥
			

			
				𝑠
				𝑖
			

			
				−
				
				∑
				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			

				
			

			

				𝑠
			

			
				
			
			
				
				∑
				𝑝
				𝑠
				(
				𝑠
				−
				1
				)
				,
				𝑠
				∈
				ℝ
				/
				{
				0
				,
				1
				}
				;
				l
				o
				g
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				−
				∑
				𝑝
			

			

				𝑖
			

			
				l
				o
				g
				𝑥
			

			

				𝑖
			

			
				∑
				𝑝
				,
				𝑠
				=
				0
				;
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				l
				o
				g
				𝑥
			

			

				𝑖
			

			
				−
				
				∑
				𝑝
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				
				∑
				𝑝
				l
				o
				g
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				
				,
				𝑠
				=
				1
				.
			

		
	

For 
	
		
			
				𝑠
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑟
				>
				0
			

		
	
 we have 
								
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝜒
			

			

				𝑠
			

			
				(
				𝐩
				,
				𝐱
				)
				𝜒
			

			
				𝑠
				+
				𝑟
				+
				1
			

			
				(
				𝐩
				,
				𝐱
				)
				≥
				𝜒
			

			
				𝑠
				+
				1
			

			
				(
				𝐩
				,
				𝐱
				)
				𝜒
			

			
				𝑠
				+
				𝑟
			

			
				(
				𝐩
				,
				𝐱
				)
				,
			

		
	

							which is equivalent to
Theorem 8.  The sequence 
	
		
			
				{
				𝜒
			

			
				𝑠
				+
				1
			

			
				(
				𝐩
				,
				𝐱
				)
				/
				𝜒
			

			

				𝑠
			

			
				(
				𝐩
				,
				𝐱
				)
				}
			

		
	
  is monotone increasing in 
	
		
			

				𝑠
			

		
	
, 
	
		
			
				𝑠
				∈
				ℝ
			

		
	
. This assertion follows applying the result from [7, Theorem  2] which states the following.
Lemma 9.  For 
	
		
			
				−
				∞
				<
				𝑎
				<
				𝑏
				<
				𝑐
				<
				+
				∞
			

		
	
, the inequality 
									
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				
				𝜒
			

			

				𝑏
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			
				𝑐
				−
				𝑎
			

			
				≤
				
				𝜒
			

			

				𝑎
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			
				𝑐
				−
				𝑏
			

			
				
				𝜒
			

			

				𝑐
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			
				𝑏
				−
				𝑎
			

		
	

								holds for arbitrary sequences 
	
		
			

				𝐩
			

		
	
, 
	
		
			

				𝐱
			

		
	
.
Putting there 
	
		
			
				𝑎
				=
				𝑠
			

		
	
, 
	
		
			
				𝑏
				=
				𝑠
				+
				1
			

		
	
, 
	
		
			
				𝑐
				=
				𝑠
				+
				𝑟
				+
				1
			

		
	
 and 
	
		
			
				𝑎
				=
				𝑠
			

		
	
, 
	
		
			
				𝑏
				=
				𝑠
				+
				𝑟
			

		
	
, 
	
		
			
				𝑐
				=
				𝑠
				+
				𝑟
				+
				1
			

		
	
, we successively obtain 
								
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				
				𝜒
			

			
				𝑠
				+
				1
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			
				𝑟
				+
				1
			

			
				≤
				
				𝜒
			

			

				𝑠
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			

				𝑟
			

			

				𝜒
			

			
				𝑠
				+
				𝑟
				+
				1
			

			
				
				𝜒
				(
				𝐩
				,
				𝐱
				)
				,
			

			
				𝑠
				+
				𝑟
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			
				𝑟
				+
				1
			

			
				≤
				𝜒
			

			

				𝑠
			

			
				
				𝜒
				(
				𝐩
				,
				𝐱
				)
			

			
				𝑠
				+
				𝑟
				+
				1
			

			
				
				(
				𝐩
				,
				𝐱
				)
			

			

				𝑟
			

			

				.
			

		
	

Since 
	
		
			
				𝑟
				>
				0
			

		
	
, multiplying those inequalities we get the relation (41), that is, the proof of Theorem 8.
The part (1) of Theorem 5 follows for 
	
		
			

				𝑝
			

			

				1
			

			
				=
				𝑝
			

			

				2
			

			
				=
				1
				/
				2
			

		
	
.
A general way to prove the rest of Theorem 5 is to use an easy-checkable identity 
								
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				𝐴
				(
				𝑎
				,
				𝑏
				)
				=
				𝜆
			

			

				𝑠
			

			
				(
				1
				+
				𝑡
				,
				1
				−
				𝑡
				)
				,
			

		
	

							with 
	
		
			
				𝑡
				∶
				=
				(
				𝑏
				−
				𝑎
				)
				/
				(
				𝑏
				+
				𝑎
				)
			

		
	
.
Since 
	
		
			
				0
				<
				𝑎
				<
				𝑏
			

		
	
, we get 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
. Also, 
								
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝐻
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				𝐴
				(
				𝑎
				,
				𝑏
				)
				=
				1
				−
				𝑡
			

			

				2
			

			
				;
				𝐺
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				=
				√
				𝐴
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				1
				−
				𝑡
			

			

				2
			

			
				;
				𝐿
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				=
				𝐴
				(
				𝑎
				,
				𝑏
				)
				2
				𝑡
			

			
				
			
			
				;
				l
				o
				g
				(
				1
				+
				𝑡
				)
				−
				l
				o
				g
				(
				1
				−
				𝑡
				)
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				𝐴
				
				(
				𝑎
				,
				𝑏
				)
				=
				e
				x
				p
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				−
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				
				;
				2
				𝑡
				−
				1
				𝑆
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				𝐴
				
				1
				(
				𝑎
				,
				𝑏
				)
				=
				e
				x
				p
			

			
				
			
			
				2
				
				.
				(
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
				)
			

		
	

Therefore, we have to compare some one-variable inequalities and to check their validness for each 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				)
			

		
	
.
For example, we will prove that the inequality 
								
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐿
				(
				𝑎
				,
				𝑏
				)
			

		
	

							holds for each positive 
	
		
			
				𝑎
				,
				𝑏
			

		
	
 if and only if 
	
		
			
				𝑠
				≤
				0
			

		
	
.
Since 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 is monotone increasing in 
	
		
			

				𝑠
			

		
	
, it is enough to prove that 
								
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				𝜆
			

			

				0
			

			
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				𝐿
				(
				𝑎
				,
				𝑏
				)
				≤
				1
				.
			

		
	

By the above formulae, this is equivalent to the assertion that the inequality 
								
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝜙
				(
				𝑡
				)
				≤
				0
			

		
	

							holds for each 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				)
			

		
	
, with
								
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝜙
				(
				𝑡
				)
				∶
				=
				l
				o
				g
				(
				1
				+
				𝑡
				)
				−
				l
				o
				g
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				2
				𝑡
				×
				(
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
				)
				+
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				l
				o
				g
				(
				1
				−
				𝑡
				)
				.
			

		
	

We will prove that the power series expansion of 
	
		
			
				𝜙
				(
				𝑡
				)
			

		
	
 have non-positive coefficients. Thus the relation (48) will be proved.
Since
								
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				l
				o
				g
				(
				1
				+
				𝑡
				)
				−
				l
				o
				g
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				=
				2
				𝑡
			

			

				∞
			

			

				
			

			

				0
			

			

				𝑡
			

			
				2
				𝑘
			

			
				
			
			
				;
				2
				𝑘
				+
				1
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				l
				o
				g
				(
				1
				−
				𝑡
				)
				=
				−
				𝑡
			

			
				2
				∞
			

			

				
			

			

				0
			

			

				𝑡
			

			
				2
				𝑘
			

			
				
			
			
				;
				𝑘
				+
				1
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
				=
				𝑡
			

			
				2
				∞
			

			

				
			

			

				0
			

			

				𝑡
			

			
				2
				𝑘
			

			
				
			
			
				,
				(
				𝑘
				+
				1
				)
				(
				2
				𝑘
				+
				1
				)
			

		
	

							we get 
								
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝜙
				(
				𝑡
				)
			

			
				
			
			

				𝑡
			

			

				2
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				
				−
				1
			

			
				
			
			
				+
				𝑛
				+
				1
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				1
			

			
				
			
			
				
				𝑡
				(
				2
				𝑛
				−
				2
				𝑘
				+
				1
				)
				(
				𝑘
				+
				1
				)
				(
				2
				𝑘
				+
				1
				)
			

			
				2
				𝑛
			

			

				=
			

			

				∞
			

			

				
			

			

				0
			

			

				𝑐
			

			

				𝑛
			

			

				𝑡
			

			
				2
				𝑛
			

			

				.
			

		
	

Hence, 
								
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				𝑐
			

			

				0
			

			
				=
				𝑐
			

			

				1
			

			
				=
				0
				;
				𝑐
			

			

				2
			

			
				1
				=
				−
			

			
				
			
			
				,
				9
				0
			

		
	

							and, after some calculation, we get 
								
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝑛
			

			
				=
				2
			

			
				
			
			
				
				(
				𝑛
				+
				1
				)
				(
				2
				𝑛
				+
				3
				)
				(
				𝑛
				+
				2
				)
			

			

				𝑛
			

			

				
			

			

				1
			

			

				1
			

			
				
			
			
				2
				𝑘
				+
				1
				−
				(
				𝑛
				+
				1
				)
			

			

				𝑛
			

			

				
			

			

				1
			

			

				1
			

			
				
			
			
				
				,
				2
				𝑘
				𝑛
				>
				1
				.
			

		
	

Now, one can easily prove (by induction, e.g.) that 
								
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝑑
			

			

				𝑛
			

			
				∶
				=
				(
				𝑛
				+
				2
				)
			

			

				𝑛
			

			

				
			

			

				1
			

			

				1
			

			
				
			
			
				2
				𝑘
				+
				1
				−
				(
				𝑛
				+
				1
				)
			

			

				𝑛
			

			

				
			

			

				1
			

			

				1
			

			
				
			
			
				2
				𝑘
			

		
	

							is a negative real number for 
	
		
			
				𝑛
				≥
				2
			

		
	
. Therefore 
	
		
			

				𝑐
			

			

				𝑛
			

			
				≤
				0
			

		
	
, and the proof of the first part is done.  For 
	
		
			
				0
				<
				𝑠
				<
				1
			

		
	
 we have
								
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				=
				
				𝐿
				(
				𝑎
				,
				𝑏
				)
				−
				1
				(
				1
				−
				𝑠
				)
				(
				1
				+
				𝑡
				)
			

			
				𝑠
				+
				1
			

			
				+
				(
				1
				−
				𝑡
				)
			

			
				𝑠
				+
				1
			

			
				
				−
				2
				l
				o
				g
				(
				(
				1
				+
				𝑡
				)
				/
				(
				1
				−
				𝑡
				)
				)
			

			
				
			
			
				2
				𝑡
				(
				1
				+
				𝑠
				)
				(
				2
				−
				(
				1
				+
				𝑡
				)
			

			

				𝑠
			

			
				−
				(
				1
				−
				𝑡
				)
			

			

				𝑠
			

			
				)
				=
				1
				−
				1
			

			
				
			
			
				6
				𝑠
				𝑡
			

			

				2
			

			
				
				𝑡
				+
				𝑂
			

			

				4
			

			
				
				(
				𝑡
				→
				0
				)
				.
			

		
	

Therefore, 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				>
				𝐿
				(
				𝑎
				,
				𝑏
				)
			

		
	
  for 
	
		
			
				𝑠
				>
				0
			

		
	
 and sufficiently small 
	
		
			
				𝑡
				∶
				=
				(
				𝑏
				−
				𝑎
				)
				/
				(
				𝑏
				+
				𝑎
				)
			

		
	
.
Similarly, we will prove that the inequality 
								
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	

							holds for each 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
; 
	
		
			
				0
				<
				𝑎
				<
				𝑏
			

		
	
 if and only if 
	
		
			
				𝑠
				≤
				1
			

		
	
.
As before, it is enough to consider the expression 
								
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				𝑒
			

			
				𝜇
				(
				𝑡
				)
			

			
				𝜈
				(
				𝑡
				)
				∶
				=
				𝜓
				(
				𝑡
				)
				,
			

		
	

							with 
								
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				𝜇
				(
				𝑡
				)
				=
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				−
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				2
				𝑡
				−
				1
				;
				𝜈
				(
				𝑡
				)
				=
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
			

			
				
			
			

				𝑡
			

			

				2
			

			

				.
			

		
	

It is not difficult to check the identity 
								
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				𝜓
			

			

				
			

			
				𝑒
				(
				𝑡
				)
				=
				−
			

			
				𝜇
				(
				𝑡
				)
			

			
				𝜙
				(
				𝑡
				)
			

			
				
			
			

				𝑡
			

			

				3
			

			

				.
			

		
	

Hence by (48), we get 
	
		
			

				𝜓
			

			

				
			

			
				(
				𝑡
				)
				>
				0
			

		
	
, that is, 
	
		
			
				𝜓
				(
				𝑡
				)
			

		
	
 is monotone increasing for 
	
		
			
				𝑡
				∈
				(
				0
				,
				1
				)
			

		
	
.
Therefore 
								
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				,
				𝑏
				)
				≥
				l
				i
				m
			

			
				𝑡
				→
				0
			

			

				+
			

			
				𝜓
				(
				𝑡
				)
				=
				1
				.
			

		
	

By monotonicity it follows that 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			
				𝑠
				≤
				1
			

		
	
.
For 
	
		
			
				𝑠
				>
				1
				,
				(
				𝑏
				−
				𝑎
				)
				/
				(
				𝑏
				+
				𝑎
				)
				=
				𝑡
			

		
	
, we have 
								
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				
				1
				(
				𝑎
				,
				𝑏
				)
				−
				𝐼
				(
				𝑎
				,
				𝑏
				)
				=
			

			
				
			
			
				6
				(
				𝑠
				−
				1
				)
				𝑡
			

			

				2
			

			
				
				𝑡
				+
				𝑂
			

			

				4
			

			
				
				
				
				𝐴
				(
				𝑎
				,
				𝑏
				)
				𝑡
				→
				0
			

			

				+
			

			
				
				.
			

		
	

Hence, 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				>
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			
				𝑠
				>
				1
			

		
	
 and 
	
		
			

				𝑡
			

		
	
 sufficiently small.
From the other hand, 
								
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				1
			

			

				−
			

			
				
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				𝐼
				
				=
				
				2
				(
				𝑎
				,
				𝑏
				)
				−
				1
				𝑒
				(
				𝑠
				−
				1
				)
			

			
				𝑠
				+
				1
			

			
				
				−
				2
			

			
				
			
			
				2
				(
				𝑠
				+
				1
				)
				(
				2
			

			

				𝑠
			

			
				−
				2
				)
				−
				1
				∶
				=
				𝜏
				(
				𝑠
				)
				.
			

		
	

Examining the function 
	
		
			
				𝜏
				(
				𝑠
				)
			

		
	
, we find out that it has the only real zero at 
	
		
			

				𝑠
			

			

				0
			

			
				≈
				1
				.
				0
				3
				7
				6
			

		
	
 and is negative for 
	
		
			
				𝑠
				∈
				(
				1
				,
				𝑠
			

			

				0
			

			

				)
			

		
	
.
Remark 10. Since 
	
		
			
				𝜓
				(
				𝑡
				)
			

		
	
 is monotone increasing, we also get 
									
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				l
				i
				m
			

			
				𝑡
				→
				1
			

			

				−
			

			
				𝜓
				(
				𝑡
				)
				=
				4
				l
				o
				g
				2
			

			
				
			
			
				𝑒
				.
			

		
	

								Hence 
									
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				1
				≤
				𝐼
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			

				𝜆
			

			

				1
			

			
				≤
				(
				𝑎
				,
				𝑏
				)
				4
				l
				o
				g
				2
			

			
				
			
			
				𝑒
				.
			

		
	
A calculation gives 
	
		
			
				4
				l
				o
				g
				2
				/
				𝑒
				≈
				1
				.
				0
				2
				0
				0
			

		
	
.
Note also that 
								
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			

				𝜆
			

			

				2
			

			
				(
				𝑎
				,
				𝑏
				)
				≡
				𝐴
				(
				𝑎
				,
				𝑏
				)
				.
			

		
	

Therefore, applying the assertion from the part 1, we get 
								
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				𝜆
				(
				𝑎
				,
				𝑏
				)
				≤
				𝐴
				(
				𝑎
				,
				𝑏
				)
				,
				𝑠
				≤
				2
				;
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≥
				𝐴
				(
				𝑎
				,
				𝑏
				)
				,
				𝑠
				≥
				2
				.
			

		
	

Finally, we give a detailed proof of the part 7.
We have to prove that 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑆
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for 
	
		
			
				𝑠
				≤
				5
			

		
	
. Since 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 is monotone increasing in 
	
		
			

				𝑠
			

		
	
, it is sufficient to prove that the inequality 
								
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			

				𝜆
			

			

				5
			

			
				(
				𝑎
				,
				𝑏
				)
				≤
				𝑆
				(
				𝑎
				,
				𝑏
				)
			

		
	

							holds for each 
	
		
			
				𝑎
				,
				𝑏
				∈
				ℝ
			

			

				+
			

		
	
.
Therefore, by the transformation given above, we get
								
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				𝜆
				l
				o
				g
			

			

				5
			

			
				
			
			
				𝐴
				
				2
				=
				l
				o
				g
			

			
				
			
			
				3
				(
				1
				+
				𝑡
				)
			

			

				6
			

			
				+
				(
				1
				−
				𝑡
				)
			

			

				6
			

			
				−
				2
			

			
				
			
			
				(
				1
				+
				𝑡
				)
			

			

				5
			

			
				+
				(
				1
				−
				𝑡
				)
			

			

				5
			

			
				
				
				2
				−
				2
				=
				l
				o
				g
			

			
				
			
			
				1
				5
				1
				5
				+
				1
				5
				𝑡
			

			

				2
			

			
				+
				𝑡
			

			

				4
			

			
				
			
			
				2
				+
				𝑡
			

			

				2
			

			
				
				
				≤
				l
				o
				g
				1
				+
				𝑡
			

			

				2
			

			
				+
				𝑡
			

			

				4
			

			
				/
				4
			

			
				
			
			
				1
				+
				𝑡
			

			

				2
			

			
				
				
				𝑡
				/
				2
				=
				l
				o
				g
				1
				+
			

			

				2
			

			
				
			
			
				2
				
				=
				𝑡
			

			

				2
			

			
				
			
			
				2
				−
				𝑡
			

			

				4
			

			
				
			
			
				8
				+
				𝑡
			

			

				6
			

			
				
			
			
				≤
				𝑡
				2
				4
				−
				⋯
			

			

				2
			

			
				
			
			
				2
				+
				𝑡
			

			

				4
			

			
				
			
			
				+
				𝑡
				1
				2
			

			

				6
			

			
				
			
			
				=
				1
				3
				0
				+
				⋯
			

			
				
			
			
				2
				𝑆
				(
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
				)
				=
				l
				o
				g
			

			
				
			
			
				𝐴
				,
			

		
	

							and the proof is done.
Further, we have to show that 
	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
				>
				𝑆
				(
				𝑎
				,
				𝑏
				)
			

		
	
 for some positive 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
 whenever 
	
		
			
				𝑠
				>
				5
			

		
	
.
Indeed, since 
								
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			
				(
				1
				+
				𝑡
				)
			

			

				𝑠
			

			
				+
				(
				1
				−
				𝑡
				)
			

			

				𝑠
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑠
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
				−
				2
				=
			

			

				2
			

			
				+
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑠
				4
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
			

			

				4
			

			
				
				𝑡
				+
				𝑂
			

			

				6
			

			
				
				,
			

		
	

							for 
	
		
			
				𝑠
				>
				5
			

		
	
 and sufficiently small 
	
		
			

				𝑡
			

		
	
, we get
								
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				
			
			
				𝐴
				=
				𝑠
				−
				1
			

			
				
			
			
				
				𝑠
				+
				1
			

			
				2
				𝑠
				+
				1
			

			
				
				𝑡
			

			

				2
			

			
				+
				
			

			
				4
				𝑠
				+
				1
			

			
				
				𝑡
			

			

				4
			

			
				
				𝑡
				+
				𝑂
			

			

				6
			

			

				
			

			
				
			
			

				(
			

			
				𝑠
				2
			

			
				)
				𝑡
			

			

				2
			

			
				+
				(
			

			
				𝑠
				4
			

			
				)
				𝑡
			

			

				4
			

			
				
				𝑡
				+
				𝑂
			

			

				6
			

			
				
				=
				1
				+
				(
				𝑠
				−
				1
				)
				(
				𝑠
				−
				2
				)
				𝑡
			

			

				2
			

			
				
				𝑡
				/
				1
				2
				+
				𝑂
			

			

				4
			

			

				
			

			
				
			
			
				1
				+
				(
				𝑠
				−
				2
				)
				(
				𝑠
				−
				3
				)
				𝑡
			

			

				2
			

			
				
				𝑡
				/
				1
				2
				+
				𝑂
			

			

				4
			

			
				
				
				𝑠
				=
				1
				+
			

			
				
			
			
				6
				−
				1
			

			
				
			
			
				3
				
				𝑡
			

			

				2
			

			
				
				𝑡
				+
				𝑂
			

			

				4
			

			
				
				.
			

		
	

							Similarly,
								
	
 		
 			
				(
				7
				1
				)
			
 		
	

	
		
			

				𝑆
			

			
				
			
			
				𝐴
				
				1
				=
				e
				x
				p
			

			
				
			
			
				2
				
				
				𝑡
				(
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
				)
				=
				e
				x
				p
			

			

				2
			

			
				
			
			
				2
				
				𝑡
				+
				𝑂
			

			

				4
			

			
				
				
				𝑡
				=
				1
				+
			

			

				2
			

			
				
			
			
				2
				
				𝑡
				+
				𝑂
			

			

				4
			

			
				
				.
			

		
	

							Hence,
								
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				𝐴
				
				𝜆
			

			

				𝑠
			

			
				
				=
				1
				−
				𝑆
			

			
				
			
			
				6
				(
				𝑠
				−
				5
				)
				𝑡
			

			

				2
			

			
				
				𝑡
				+
				𝑂
			

			

				4
			

			
				
				,
			

		
	

							and this expression is positive for 
	
		
			
				𝑠
				>
				5
			

		
	
 and 
	
		
			

				𝑡
			

		
	
 sufficiently small, that is, 
	
		
			

				𝑎
			

		
	
 sufficiently close to 
	
		
			

				𝑏
			

		
	
.
As for the part 8, applying the above transformation we obtain
								
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

			
				
			
			
				=
				𝑆
				(
				𝑎
				,
				𝑏
				)
				𝑠
				−
				1
			

			
				
			
			
				𝑠
				+
				1
				(
				1
				+
				𝑡
				)
			

			
				𝑠
				+
				1
			

			
				+
				(
				1
				−
				𝑡
				)
			

			
				𝑠
				+
				1
			

			
				−
				2
			

			
				
			
			
				(
				1
				+
				𝑡
				)
			

			

				𝑠
			

			
				+
				(
				1
				−
				𝑡
				)
			

			

				𝑠
			

			
				
				−
				1
				−
				2
				×
				e
				x
				p
			

			
				
			
			
				2
				
				,
				(
				(
				1
				+
				𝑡
				)
				l
				o
				g
				(
				1
				+
				𝑡
				)
				+
				(
				1
				−
				𝑡
				)
				l
				o
				g
				(
				1
				−
				𝑡
				)
				)
			

		
	

							where 
	
		
			
				0
				<
				𝑎
				<
				𝑏
			

		
	
, 
	
		
			
				𝑡
				=
				(
				𝑏
				−
				𝑎
				)
				/
				(
				𝑏
				+
				𝑎
				)
			

		
	
.
Since for 
	
		
			
				𝑠
				>
				5
			

		
	
,
								
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				1
			

			

				−
			

			

				𝜆
			

			

				𝑠
			

			
				
			
			
				𝑆
				=
				𝑠
				−
				1
			

			
				
			
			
				2
				𝑠
				+
				1
			

			

				𝑠
			

			
				−
				1
			

			
				
			
			

				2
			

			

				𝑠
			

			
				,
				−
				2
			

		
	

							and the last expression is less than one, it follows that the inequality 
	
		
			
				𝑆
				(
				𝑎
				,
				𝑏
				)
				<
				𝜆
			

			

				𝑠
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 cannot hold whenever 
	
		
			
				𝑏
				/
				𝑎
			

		
	
 is sufficiently large.
The rest of the proof is straightforward.
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