Research Article

Approximation of Signals (Functions) by Trigonometric Polynomials in L_p-Norm

M. L. Mittal and Mradul Veer Singh

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

Correspondence should be addressed to Mradul Veer Singh; mradul.singh@gmail.com

Received 13 January 2014; Revised 13 March 2014; Accepted 13 March 2014; Published 9 April 2014

Copyright © 2014 M. L. Mittal and M. V. Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mittal and Rhoades (1999, 2000) and Mittal et al. (2011) have initiated a study of error estimates $E_n(f)$ through trigonometric-Fourier approximation (tfa) for the situations in which the summability matrix T does not have monotone rows. In this paper, the first author continues the work in the direction for T to be a N_p-matrix. We extend two theorems on summability matrix N_p of Deger et al. (2012) where they have extended two theorems of Chandra (2002) using C_{λ}-method obtained by deleting a set of rows from Cesàro matrix C_1. Our theorems also generalize two theorems of Leindler (2005) to N_p-matrix which in turn generalize the result of Chandra (2002) and Quade (1937).

"In memory of Professor K. V. Mital, 1918 – 2010."

1. Introduction

Let f be a 2π periodic signal (function) and let $f \in L_p := L_p[0, 2\pi], p \geq 1$. Let

$$s_n(f) := s_n(f; x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

$$= \sum_{k=0}^{n} u_k(f; x)$$

(1)

denote the partial sums, called trigonometric polynomials of degree (or order) n, of the first $(n + 1)$ terms of the Fourier series of f at a point x.

The integral modulus of continuity of f is defined by

$$\omega_p(\delta; f) := \sup_{0 < |h| \leq \delta} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(x + h) - f(x)|^p dx \right\}^{1/p}.$$

(2)

If, for $\alpha > 0$,

$$\omega_p(\delta; f) = O(\delta^{\alpha}),$$

(3)

then $f \in \text{Lip}(\alpha, p) (p \geq 1)$. Throughout $\| \cdot \|_p$ will denote the L_p-norm, defined by

$$\|f\|_p := \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^p dx \right\}^{1/p}, \quad f \in L_p (p \geq 1).$$

(4)

A positive sequence $c := \{c_n\}$ is called almost monotone decreasing (increasing) if there exists a constant $K := K(c)$, depending on the sequence c only, such that, for all $n \geq m$,

$$c_n \leq Kc_m (Kc_n \geq c_m).$$

(5)

Such sequences will be denoted by $c \in \text{AMDS}$ and $c \in \text{AMIS}$, respectively. A sequence which is either AMDS or AMIS is called almost monotone sequence and will be denoted by $c \in \text{AMS}$. Let F be an infinite subset of N and F as the range of strictly increasing sequence of positive integers; say $F = \{\lambda(n)\}_{n=1}^{\infty}$. The Cesàro submethod C_{λ} is defined as

$$(C_{\lambda}x)_n = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x_k, \quad (n = 1, 2, 3, \ldots),$$

(6)
where \(\{x_k\} \) is a sequence of real or complex numbers. Therefore, the \(C_\lambda \)-method yields a subsequence of the Cesàro method \(C_1 \), and hence it is regular for any \(\lambda \). \(C_\lambda \) is obtained by deleting a set of rows from Cesàro matrix. The basic properties of \(C_\lambda \)-method can be found in [1, 2]. In the present paper, we will consider approximation of \(f \in L_p \) by trigonometric polynomials \(N_n^\lambda(f; x) \) and \(R_n^\lambda(f; x) \) of degree (or order) \(n \), where

\[
N_n^\lambda(f; x) = \frac{1}{\lambda(n)} \sum_{m=0}^{\lambda(n)} P_{\lambda(n)-m} s_m(f; x),
\]

\[
R_n^\lambda(f; x) = \frac{1}{\lambda(n)} \sum_{m=0}^{\lambda(n)} p_m s_m(f; x),
\]

\[
s_n(f; x) = \frac{1}{n} \sum_{t=0}^{\pi n} (f + t) D_n(t) dt,
\]

\[
D_n(t) = \frac{(\sin(n+1/2)t)}{2 (n/2)},
\]

\[
p_{\lambda(n)} = p_0 + p_1 + \cdots + p_{\lambda(n)} \neq 0 \quad (n \geq 0),
\]

and by convention \(p_{-1} = 0 = p_{-2} \).

The case \(p_n = 1 \) for all \(n \geq 0 \) of either \(N_n^\lambda(f; x) \) or \(R_n^\lambda(f; x) \) yields

\[
\sigma_n^\lambda(f; x) = \frac{1}{\lambda(n) + 1} \sum_{m=0}^{\lambda(n)} s_m(f; x).
\]

We also use

\[
\Delta_n a_n = a_n - a_{n-1}, \quad \Delta_m g(n, m) = g(n, m) - g(n, m + 1).
\]

Mittal and Rhoades [3, 4] have initiated the study of error estimates \(E_n(f) \) through trigonometric-Fourier approximation (tfa) for the situations in which the summability matrix \(T \) does not have monotone rows. In this paper, the first author continues the work in the direction for \(T \) to be a \(N_p \)-matrix. Recently, Chandra [5] has proved three theorems on the trigonometric approximation using \(N_p \)-matrix. Some of them give sharper estimates than the results proved by Quade [6], Mohapatra and Russell [7], and himself earlier [8]. These results of Chandra [5] are improved in different directions by different investigators such as Leindler [9] who dropped the monotonicity on generating sequence \(\{p_n\} \) and Mittal et al. [10, 11] who used more general matrix while very recently Deger et al. [12] used more general \(C_\lambda \)-method in view of Armitage and Maddox [1].

2. Known Results

Leindler [9] proved the following.

Theorem 1 (see [9]). If \(f \in \text{Lip}(\alpha, p) \) and \(\{p_n\} \) be positive. If one of the conditions

(i) \(p > 1, \alpha > 1, \) and \(\{p_n\} \in \text{AMIS}, \)

(ii) \(p > 1, \alpha > 1, \) and \(\{p_n\} \in \text{AMDS}, \)

\[(n + 1) p_n = O(P_n) \quad \text{holds,} \tag{10}\]

(iii) \(p > 1, \alpha = 1, \) and \(\sum_{k=1}^{n-1} k |\Delta p_k| = O(P_n), \)

(iv) \(p > 1, \alpha = 1, \) and \(\sum_{k=0}^{n-1} |\Delta p_k| = O(P_{n/\alpha}(n)), \) and (10) holds,

(v) \(p = 1, \alpha < 1, \) and \(\sum_{k=0}^{n-1} |\Delta p_k| = O(P_{n/\alpha}(n)) \)

maintains, then

\[
\|f - N_n(f)\|_p = O\left(\left(\lambda(n)\right)^{-\alpha}\right). \tag{11}\]

Theorem 2 (see [9]). Let \(f \in \text{Lip}(\alpha, 1) \), \(0 < \alpha < 1 \). If the positive \(\{p_n\} \) satisfies conditions (10) and \(\sum_{k=0}^{n-1} |\Delta p_k| = O(P_{n/\alpha}) \) hold, then

\[
\|f - R_n(f)\|_1 = O\left(\left(\lambda(n)\right)^{-\alpha}\right). \tag{12}\]

Deger et al. [12] proved.

Theorem 3 (see [12]). Let \(f \in \text{Lip}(\alpha, p) \) and let \(\{p_n\} \) be positive such that

\[(\lambda(n) + 1) p_{\lambda(n)} = O(P_{\lambda(n)}). \tag{13}\]

If either (i) \(p > 1, \alpha > 1, \) and \(\{p_n\} \) is monotonic or

(ii) \(p = 1, \alpha < 1, \) and \(\{p_n\} \) is nondecreasing, then

\[
\|f - N_n^\lambda(f)\|_p = O\left(\left(\lambda(n)\right)^{-\alpha}\right). \tag{14}\]

Theorem 4 (see [12]). Let \(f \in \text{Lip}(\alpha, 1) \), \(0 < \alpha < 1 \). If the positive \(\{p_n\} \) satisfies condition (13) and is nondecreasing, then

\[
\|f - R_n^\lambda(f)\|_1 = O\left(\left(\lambda(n)\right)^{-\alpha}\right). \tag{15}\]

3. Main Results

In this paper we generalize Theorems 3 and 4 of Deger et al. [12], by dropping monotonicity on the elements of the matrix rows which in turn generalize Theorems 1 and 2, respectively, of Leindler [9] to a more general \(C_\lambda \)-method. We prove the following.

Theorem 5. If \(f \in \text{Lip}(\alpha, p) \) and \(\{p_n\} \) is positive and if one of the following conditions

(i) \(p > 1, \alpha < 1, \) and \(\{p_n\} \in \text{AMDS}, \)

(ii) \(p > 1, \alpha < 1, \) and \(\{p_n\} \in \text{AMIS}, \) and (13) holds,

(iii) \(p > 1, \alpha = 1, \) and \(\sum_{k=1}^{\lambda(n)-1} k |\Delta p_k| = O(P_{\lambda(n)}), \)

(iv) \(p > 1, \alpha = 1, \) and \(\sum_{k=0}^{\lambda(n)-1} |\Delta p_k| = O(P_{\lambda(n)}), \) and (13) holds,

(v) \(p = 1, \alpha < 1, \) and \(\sum_{k=0}^{\lambda(n)-1} |\Delta p_k| = O(P_{\lambda(n)}), \)

maintains, then

\[
\|f - N_n^\lambda(f)\|_p = O\left(\left(\lambda(n)\right)^{-\alpha}\right). \tag{16}\]
Theorem 6. Let $f \in \text{Lip}(\alpha, 1)$, $0 < \alpha < 1$. If the positive \{p_n\} satisfies (13) and the condition $\sum_{k=0}^{\lambda(n)-1} |\Delta p_k| = O(P_{\lambda(n)} / \lambda(n))$ holds, then

$$\|f - R^p_n(f)\|_p = O((\lambda(n))^{-\alpha}). \quad (19)$$

Remarks. (1) If $\lambda(n) = n$, then our Theorems 5 and 6 reduce to Theorems 1 and 2, respectively.

(2) Deger et al. [12] have used monotone sequences \{p_n\} in Theorems 3 and 4, while our Theorems 5 and 6 claim less if the sequence \{p_n\} is nonincreasing; that is,

$$\sum_{k=1}^{\lambda(n)-1} k |\Delta p_k| = \sum_{k=0}^{\lambda(n)-1} k (p_{k+1} - p_k) = P_{\lambda(n)} - P_0 = O(P_{\lambda(n)}), \quad (18)$$

while if sequence \{p_n\} is nondecreasing and condition (13) holds, then the condition in (iv) of Theorem 5 is also satisfied; that is,

$$\sum_{k=0}^{\lambda(n)-1} |\Delta p_k| = \sum_{k=0}^{\lambda(n)-1} (p_{k+1} - p_k) = P_{\lambda(n)} - P_0 \leq P_{\lambda(n)} \quad (19)$$

Thus our theorems generalize the two theorems of Deger et al. [12] under weaker assumptions and give sharper estimates because all the estimates of Deger et al. [12] are in terms of n, while our estimates are in terms of $\lambda(n)$ and $(\lambda(n))^{-\alpha} \leq n^{-\alpha}$ for $0 < \alpha \leq 1$.

4. Lemmas

We will use the following lemmas in the proof of our theorems.

Lemma 1 (see [6]). If $f \in \text{Lip}(\alpha, p)$, for $0 < \alpha \leq 1$ and $p > 1$, then

$$\|f - s_n(f)\|_p = O(n^{-\alpha}). \quad (20)$$

Lemma 2 (see [6]). If $f \in \text{Lip}(1, p)$, for $p > 1$, then

$$\|\sigma_n(f) - s_n(f)\|_p = O(n^{-1}). \quad (21)$$

Lemma 3 (see [6]). If $f \in \text{Lip}(\alpha, 1)$, $0 < \alpha < 1$, then

$$\|f - \sigma_n(f)\|_1 = O(n^{-\alpha}). \quad (22)$$

Lemma 4. Let \{p_n\} \in AMDS or let \{p_n\} \in AMIS and satisfy (13). Then, for $0 < \alpha < 1$,

$$\sum_{m=1}^{\lambda(n)} m^{-\alpha} P_{\lambda(n) - m} = O((\lambda(n))^{-\alpha} P_{\lambda(n)}). \quad (23)$$

holds.

Proof. Let r denote the integral part of $(\lambda(n)/2)$. Then, if \{p_n\} \in AMDS,

$$\sum_{m=1}^{\lambda(n)} m^{-\alpha} P_{\lambda(n) - m} = \sum_{m=1}^{r} m^{-\alpha} P_{\lambda(n) - m} + \sum_{m=r+1}^{\lambda(n)} m^{-\alpha} P_{\lambda(n) - m} \leq K P_{\lambda(n) - r} \sum_{m=1}^{r} m^{-\alpha} + (r + 1)^{-\alpha} \sum_{m=r+1}^{\lambda(n)} P_{\lambda(n) - m} \leq K P_{\lambda(n) - r} \sum_{m=1}^{r} m^{-\alpha} + (r + 1)^{-\alpha} \sum_{m=0}^{\lambda(n)} P_{\lambda(n) - m} = K P_{\lambda(n) - r} (\lambda(n))^{-\alpha} P_{\lambda(n)} + O((\lambda(n))^{-\alpha} P_{\lambda(n)}) = O((\lambda(n))^{-\alpha} P_{\lambda(n)}). \quad (24)$$

Thus our theorems generalize the two theorems of Deger et al. [12] under weaker assumptions and give sharper estimates because all the estimates of Deger et al. [12] are in terms of n, while our estimates are in terms of $\lambda(n)$ and $(\lambda(n))^{-\alpha} \leq n^{-\alpha}$ for $0 < \alpha \leq 1$.

5. Proof of the Main Results

Proof of Theorem 5. We prove cases (i) and (ii) together. Since

$$N_n^f(f;x) = f(x) - f(x) = 1 \frac{\lambda(n)}{P_{\lambda(n)} m=0} [\lambda(n)]_n [s_m(f;x) - f(x)], \quad (26)$$

thus in view of Lemmas 1 and 4 and condition (13), we have

$$\|f - N_n^f(f)\|_p \leq \frac{\lambda(n)}{P_{\lambda(n)} m=0} \|s_m(f)\|_p$$

$$= \frac{\lambda(n)}{P_{\lambda(n)} m=0} \|s_m(f)\|_p + \frac{P_{\lambda(n)}}{P_{\lambda(n)}} \|f - s_m(f)\|_p$$

$$= \frac{\lambda(n)}{P_{\lambda(n)} m=0} \|s_m(f)\|_p + \frac{P_{\lambda(n)}}{P_{\lambda(n)}} \|s_m(f) - f\|_p$$

$$= \frac{\lambda(n)}{P_{\lambda(n)} m=0} O(m^{-\alpha}) + O\left(\frac{P_{\lambda(n)}}{P_{\lambda(n)}}\right)$$

$$= O((\lambda(n))^{-\alpha}). \quad (27)$$
Next we consider case (iv).

Let \(p > 1 \) and \(\alpha = 1 \). By Abel’s transformation, we get

\[
N_n^\lambda (f; x) = \frac{1}{P_{\lambda(n)} m} \sum_{m=0}^{\lambda(n)} (P_{\lambda(n)} - P_{\lambda(n)-m}) u_m (f; x),
\]

and thus

\[
\dot{s}_n^\lambda (f; x) - N_n^\lambda (f; x) = \frac{1}{P_{\lambda(n)} m} \sum_{m=1}^{\lambda(n)} \Delta_m \left(P_{\lambda(n)} - P_{\lambda(n)-m} \right) u_m (f; x).
\]

Hence again by Abel’s transformation, we get

\[
\dot{s}_n^\lambda (f; x) - N_n^\lambda (f; x) = \frac{1}{P_{\lambda(n)} m} \sum_{m=1}^{\lambda(n)} \Delta_m \left(P_{\lambda(n)} - P_{\lambda(n)-m} \right) u_m (f; x).
\]

Thus

\[
\| \dot{s}_n^\lambda (f) - N_n^\lambda (f) \|_p \leq \frac{1}{P_{\lambda(n)} m} \sum_{m=1}^{\lambda(n)} \| \Delta_m \left(P_{\lambda(n)} - P_{\lambda(n)-m} \right) u_m (f; x) \|_p.
\]

Since

\[
s_n (f; x) - \sigma_n (f; x) = \frac{1}{n + 1} \sum_{k=1}^{n} k u_k (f; x),
\]

thus by Lemma 2

\[
\| \sum_{k=1}^{n} k u_k \|_p = (n + 1) \| \sigma_n (f; x) - s_n (f; x) \|_p = O (1).
\]

In view of (31) and (33), we obtain

\[
\| \dot{s}_n^\lambda (f) - N_n^\lambda (f) \|_p = O \left(\frac{1}{P_{\lambda(n)} m} \sum_{m=1}^{\lambda(n)} \| \Delta_m \left(P_{\lambda(n)} - P_{\lambda(n)-m} \right) u_m (f; x) \|_p \right) + O \left((\lambda (n))^1 \right).
\]
\[\sum_{k=\lambda(n)-j}^{\lambda(n)} p_k - (j+1)P_{\lambda(n)-j} \leq \sum_{k=1}^{j} k\left| P_{\lambda(n)-k+1} - P_{\lambda(n)-k} \right| + (j+1)\left| P_{\lambda(n)-j} - P_{\lambda(n)-(j+1)} \right| \]

\[= \sum_{k=1}^{j} k\left| P_{\lambda(n)-k+1} - P_{\lambda(n)-k} \right|. \]

(39)

thus (37) is proved for \(m = j + 1 \); that is, (37) is true for any \(1 \leq m \leq \lambda(n) \). Using (36) and (37) and interchanging the order of summation, we get

\[\sum_{m=1}^{\lambda(n)} \Delta_m \left(\frac{P_{\lambda(n)} - P_{\lambda(n)-m}}{m} \right) \leq \sum_{m=1}^{\lambda(n)} \frac{1}{m(m+1)} \sum_{k=1}^{m} k \left| P_{\lambda(n)-k+1} - P_{\lambda(n)-k} \right| \]

\[\leq \sum_{m=1}^{\lambda(n)} \frac{1}{m(m+1)} \sum_{k=1}^{\lambda(n)-m} \left| \Delta_k \right| \]

\[\leq \sum_{k=0}^{\lambda(n)-1} \left| \Delta_k \right|. \]

(40)

In view of (36) and (37)

\[\sum_{m=1}^{\lambda(n)} \Delta_m \left(\frac{P_{\lambda(n)} - P_{\lambda(n)-m}}{m} \right) \leq \sum_{m=1}^{\lambda(n)} \frac{1}{m(m+1)} \sum_{k=1}^{m} k \left| \Delta_k P_{\lambda(n)-k} \right| \]

\[\leq \sum_{r=1}^{\lambda(n)-1} \frac{1}{m(m+1)} \sum_{k=1}^{m} \left| \Delta_k P_{\lambda(n)-k} \right| \]

\[= \frac{\lambda(n)}{\lambda(n)} \sum_{k=0}^{\lambda(n)-1} \left| \Delta_k \right|. \]

(44)

Denoting again by \(r \) the integral part of \(\lambda(n)/2 \), then, by Abel’s transformation, we have

\[B_1 = \sum_{m=r+1}^{\lambda(n)} \frac{1}{m(m+1)} \sum_{k=1}^{m} \left| \Delta_k P_{\lambda(n)-k} \right| \]

\[\leq \sum_{k=1}^{\lambda(n)-1} \frac{1}{m(m+1)} \sum_{k=1}^{m} \left| \Delta_k P_{\lambda(n)-k} \right| \]

\[= \frac{\lambda(n)}{\lambda(n)} \sum_{k=0}^{\lambda(n)-1} \left| \Delta_k \right| \]

\[= \frac{\lambda(n)}{\lambda(n)} \sum_{k=0}^{\lambda(n)-1} \left| \Delta_k \right|. \]

(46)

Furthermore, using again our assumption, we get

\[B_{21} \leq \sum_{m=r+1}^{\lambda(n)} \frac{1}{m(m+1)} \sum_{k=1}^{m} \left| \Delta_k \right| = O \left(\frac{P_{\lambda(n)}}{\lambda(n)} \right), \]

\[B_{22} \leq \sum_{m=r+1}^{\lambda(n)} \frac{1}{m(m+1)} \sum_{k=1}^{m} \left| \Delta_k \right| = O \left(\frac{P_{\lambda(n)}}{\lambda(n)} \right). \]

(47)

Summing up our partial results, we verified (43). Thus (34) and Lemma 1 again yield

\[\left\| f - N_{\alpha}^n(f) \right\|_p = O \left((\lambda(n))^{-1} \right). \]

(48)
Now, we prove case (v), by using (26), $p_{-1} = 0$, and Abel’s transformation
\[
N^A_n(f; x) - f(x) = \frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)} [s_m(f; x) - f(x)]
= \frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)} \left(\Delta_m p_{\lambda(n)-m} \right) \sum_{k=0}^{m} [s_k(f; x) - f(x)]
= \frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)} (m + 1) (\Delta_m p_{\lambda(n)-m})
\times [\sigma_m(f; x) - f(x)].
\]

Hence in view of Lemma 3
\[
\|N^A_n(f) - f\|_1 \leq \frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)} (m + 1) |\Delta_m p_{\lambda(n)-m}| \|f - \sigma_m(f)\|_1
= O \left(\frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)} (m + 1)^{1-\alpha} |\Delta_m p_{\lambda(n)-m}| \right)
= O \left(\frac{\lambda(n)^{1-\alpha}}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)-1} |\Delta p_m| \right)
= O \left(\frac{\lambda(n)^{1-\alpha}}{p_{\lambda(n)}} \cdot O \left(\frac{P_{\lambda(n)}}{\lambda(n)} \right) \right)
= O \left((\lambda(n))^{-\alpha} \right).
\]

Herewith case (v) is also verified and thus the proof of Theorem 5 is complete.

Proof of Theorem 6. Since $R^A_n(f; x) = (1/p_{\lambda(n)}) \sum_{m=0}^{\lambda(n)} P_m s_m(f; x)$, so, in view of the assumptions of Theorem 6, we get
\[
\|f - R^A_n(f)\|_1 = \frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)} \left[\frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)-1} |\Delta p_m| \cdot \|f - \sigma_m(f)\|_1 \right]
\leq \frac{1}{p_{\lambda(n)}} \sum_{m=0}^{\lambda(n)-1} (m + 1) |\Delta p_m| \cdot \|f - \sigma_m(f)\|_1
+ (\lambda(n) + 1) p_{\lambda(n)} \|f - \sigma^A_n(f)\|_1
= O \left((\lambda(n))^{1-\alpha} P_{\lambda(n)}^{-1} \sum_{m=0}^{\lambda(n)-1} |\Delta p_m| \right)
+ O \left((\lambda(n))^{1-\alpha} \right)
= O \left((\lambda(n))^{-\alpha} \right).
\]

This proves Theorem 6.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors are thankful to the learned referee Dr. A. I. Zayed for his valuable comments and suggestions to improve the presentation of the paper.

References

