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A new estimate for the degree of approximation of a function ̃
𝑓 ∈ 𝐻

𝜔
class by (𝑁

𝑝
⋅ 𝐸
1

) means of its Fourier series has been
determined. Here, we extend the results of Singh and Mahajan (2008) which in turn generalize the result of Lal and Yadav (2001).
Some corollaries have also been deduced from our main theorem.

1. Introduction

The degree of approximation of a function 𝑓 belonging
to various classes using different summability method has
been determined by several investigators like Khan [1, 2],
V. N. Mishra and L. N. Mishra [3], Mishra et al. [4–6], and
Mishra [7, 8]. Summability techniques were also applied on
some engineering problems; for example, Chen and Jeng [9]
implemented the Cesàro sum of order (𝐶, 1) and (𝐶, 2), in
order to accelerate the convergence rate to deal with the
Gibbs phenomenon, for the dynamic response of a finite
elastic body subjected to boundary traction. Chen and Hong
[10] used Cesàro sum regularization technique for hyper
singularity of dual integral equation. Summability of Fourier
series is useful for engineering analysis, for example, [11].
Recently, Mursaleen and Mohiuddine [12] discussed conver-
gence methods for double sequences and their applications
in various fields. In sequel, Alexits [13] studied the degree
of approximation of the functions in 𝐻

𝛼
class by the Cesàro

means of their Fourier series in the sup-norm. Chandra ([14,
15]), Mohapatra and Chandra ([16, 17]), and Szal [18] have
studied the approximation of functions in Hölder metric.
Mishra et al. [6] used the technique of approximation of

functions in measuring the errors in the input signals and
the processed output signals. In 2008, Singh and Mahajan
[19] studied error bound of periodic signals in the Hölder
metric and generalized the result of Lal and Yadav [20] under
much more general assumptions. Analysis of signals or time
functions is of great importance, because it conveys infor-
mation or attributes of some phenomenon. The engineers
and scientists use properties of Fourier approximation for
designing digital filters. Especially, Psarakis andMoustakides
[21] presented a new 𝐿

2
basedmethod for designing the finite

impulse response (FIR) digital filters and got corresponding
optimum approximations having improved performance.We
also discuss an example when the Fourier series of the signal
has Gibbs phenomenon.

For a 2𝜋-periodic signal 𝑓 ∈ 𝐿
𝑝

:= 𝐿
𝑝

[0, 2𝜋], 𝑝 ≥ 1,
periodic integrable in the sense of Lebesgue.Then the Fourier
series of 𝑓(𝑥) is given by

𝑓 (𝑥) ∼

𝑎
0

2

+

∞

∑

𝑛=1

(𝑎
𝑛
cos 𝑛𝑥 + 𝑏

𝑛
sin 𝑛𝑥)

≡

∞

∑

𝑛=0

𝐴
𝑛
(𝑥) ,

(1)

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2014, Article ID 837408, 9 pages
http://dx.doi.org/10.1155/2014/837408



2 International Journal of Mathematics and Mathematical Sciences

with (𝑛 + 1)th partial sum 𝑠
𝑛
(𝑓; 𝑥) called trigonometric

polynomial of degree (or order) 𝑛 and given by

𝑠
𝑛
(𝑓; 𝑥) :=

𝑎
0

2

+

𝑛

∑

𝑘 =1

(𝑎
𝑘
cos 𝑘𝑥 + 𝑏

𝑘
sin 𝑘𝑥) ,

𝑛 ∈ N with 𝑠
0
(𝑓; 𝑥) =

𝑎
0

2

.

(2)

The conjugate series of Fourier series (1) is given by
∞

∑

𝑛=1

(𝑏
𝑛
cos 𝑛𝑥 − 𝑎

𝑛
sin 𝑛𝑥) ≡

∞

∑

𝑛=1

𝐵
𝑛
(𝑥) , (3)

with 𝑛th partial sum 𝑠
𝑛
(𝑓; 𝑥).

Let 𝜔(𝑡) and 𝜔∗(𝑡) denote two given moduli of continuity
such that

(𝜔 (𝑡))
𝛽/𝛼

= 𝑂 (𝜔
∗

(𝑡)) as 𝑡 → 0+,

for 0 ≤ 𝛽 < 𝛼 ≤ 1.
(4)

Let 𝐶
2𝜋

denote the Banach space of all 2𝜋-periodic contin-
uous functions defined on [−𝜋, 𝜋] under the sup-norm. The
space 𝐿

𝑝
[0, 2𝜋] where 𝑝 = ∞ includes the space 𝐶

2𝜋
. For

some positive constant 𝐾, the function space 𝐻
𝜔
is defined

by

𝐻
𝜔
= {𝑓 ∈ 𝐶

2𝜋
:




𝑓 (𝑥) − 𝑓 (𝑦)





≤ 𝐾𝜔 (





𝑥 − 𝑦





)} , (5)

with norm ‖ ⋅ ‖
𝜔
∗ defined by





𝑓



𝜔
∗ =





𝑓



𝑐
+ sup
𝑥,𝑦

[Δ
𝜔
∗

𝑓 (𝑥, 𝑦)] , (6)

where 𝜔(𝑡) and 𝜔∗(𝑡) are increasing functions of 𝑡,




𝑓



𝑐
= sup
0≤𝑥≤2𝜋





𝑓 (𝑥)





, (7)

Δ
𝜔
∗

𝑓 (𝑥, 𝑦) =





𝑓 (𝑥) − 𝑓 (𝑦)






𝜔
∗
(




𝑥 − 𝑦





)

, 𝑥 ̸= 𝑦, (8)

with the understanding that Δ0𝑓(𝑥, 𝑦) = 0. If there exist
positive constants 𝐵 and 𝐾 such that 𝜔(|𝑥 − 𝑦|) ≤ 𝐵|𝑥 − 𝑦|

𝛼

and 𝜔∗(|𝑥 − 𝑦|) ≤ 𝐾 |𝑥 − 𝑦|
𝛽

, 0 ≤ 𝛽 < 𝛼 ≤ 1, then the space

𝐻
𝛼
= {𝑓 ∈ 𝐶

2𝜋
:




𝑓 (𝑥) − 𝑓 (𝑦)





≤ 𝐾





𝑥 − 𝑦






𝛼

, 0 < 𝛼 ≤ 1}

(9)

is Banach space [22] and themetric induced by the norm ‖ ⋅ ‖
𝛼

on 𝐻
𝛼
is said to be Hölder metric. Clearly 𝐻

𝛼
is a Banach

space which decreases as 𝛼 increases; that is,

𝐻
𝛼
⊆ 𝐻
𝛽
⊆ 𝐶
2𝜋
, for 0 ≤ 𝛽 < 𝛼 ≤ 1. (10)

Let ∑∞
𝑛=0

𝑎
𝑛
be a given infinite series with the sequence of

𝑛th partial sums {𝑠
𝑛
}. Let {𝑝

𝑛
} be a nonnegative sequence of

constants, real or complex, and let us write

𝑃
𝑛
=

𝑛

∑

𝑘=0

𝑝
𝑘
̸= 0 ∀𝑛 ≥ 0,

𝑝
−1
= 0 = 𝑃

−1
, 𝑃
𝑛
→ ∞ as 𝑛 → ∞.

(11)

The sequence to sequence transformation

𝑡
𝑁

𝑛
(𝑓; 𝑥) =

1

𝑃
𝑛

𝑛

∑

𝑘=0

𝑝
𝑛−𝑘

𝑠
𝑘
(𝑓; 𝑥) (12)

defines the sequence {𝑡𝑁
𝑛
} of Nörlund means of the sequence

{𝑠
𝑛
}, generated by the sequence of coefficients {𝑝

𝑛
}.The series

∑
∞

𝑛=0
𝑎
𝑛
is said to be summable𝑁

𝑝
to the sum 𝑠 if lim

𝑛→∞
𝑡
𝑁

𝑛

exists and is equal to 𝑠.
In the special case in which

𝑝
𝑛
= (

𝑛 + 𝛼 − 1

𝛼 − 1
) =

Γ (𝑛 + 𝛼)

Γ (𝑛 + 1) Γ (𝛼)

; (𝛼 > 0) , (13)

then Nörlund summability𝑁
𝑝
reduces to the familiar (𝐶, 𝛼)

summability.
An infinite series∑∞

𝑛=0
𝑎
𝑛
is said to be (𝐶, 1) summable to

𝑠 if

(𝐶, 1) =

1

(𝑛 + 1)

𝑛

∑

𝑘=0

𝑠
𝑘
→ 𝑠 as 𝑛 → ∞. (14)

The 𝐸1 transform is defined as the 𝑛th partial sum of 𝐸1

summability and we denote it by 𝐸1
𝑛
.

If

𝐸
1

𝑛
(𝑓) = 𝐸

1

𝑛
(𝑓; 𝑥) =

1

2
𝑛

𝑛

∑

𝑘=0

(

𝑛

𝑘
) 𝑠
𝑘
→ 𝑠, as 𝑛 → ∞,

(15)

then the infinite series ∑∞
𝑛=0

𝑎
𝑛
is said to be (𝐸, 1) summable

to 𝑠.
The (𝐶, 1) transform of the (𝐸, 1) transform 𝐸

1

𝑛
defines

the (𝐶, 1)(𝐸, 1) transform of the partial sums 𝑠
𝑛
of the

series ∑∞
𝑛=0

𝑎
𝑛
; that is, the product summability (𝐶, 1)(𝐸, 1)

is obtained by superimposing (𝐶, 1) summability on (𝐸, 1)

summability. Thus, if

(𝐶𝐸)
1

𝑛
=

1

(𝑛 + 1)

𝑛

∑

𝑘=0

𝐸
1

𝑘

=

1

(𝑛 + 1)

𝑛

∑

𝑘=0

1

2
𝑘

𝑘

∑

𝑟=0

(

𝑘

𝑟
) 𝑠
𝑟
→ 𝑠, as 𝑛 → ∞,

(16)

where 𝐸1
𝑛
denotes the (𝐸, 1) transform of 𝑠

𝑛
, then the series

∑
∞

𝑛=0
𝑎
𝑛
with the partial sums 𝑠

𝑛
is said to be summable

(𝐶, 1)(𝐸, 1) to the definite number 𝑠 and we can write

(𝐶𝐸)
1

𝑛
→ 𝑠 [(𝐶, 1) (𝐸, 1)] , as 𝑛 → ∞. (17)

The 𝑁
𝑝
transform of the 𝐸1 transform defines (𝑁

𝑝
⋅ 𝐸
1

)

product transform and denote it by �̃�𝑁𝐸
𝑛
(𝑓). If

�̃�
𝑁𝐸

𝑛
(𝑓) = �̃�

𝑁𝐸

𝑛
(𝑓; 𝑥)

=

1

𝑃
𝑛

𝑛

∑

𝑘=0

𝑝
𝑛−𝑘

𝐸
1

𝑘
(𝑓) → 𝑠, as 𝑛 → ∞,

(18)
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then the infinite series∑∞
𝑛=0

𝑎
𝑛
is said to be (𝑁

𝑝
⋅𝐸
1

) summable
to 𝑠.

We note that 𝐸1
𝑛
, (𝐶𝐸)

1

𝑛
, and �̃�

𝑁𝐸

𝑛
are also trigonometric

polynomials of degree (or order) 𝑛.
The relation between Cesàro mean and Fejér mean is

given by

𝜎
𝑛
(𝑥) =

1

2𝜋

∫

2𝜋

0

[𝑓 (𝑥 + 𝑡) + 𝑓 (𝑥 − 𝑡)] 𝐹
𝑛
(𝑡) 𝑑𝑡, (19)

where the Fejér mean is

𝐹
0
(𝑡) = 1,

𝐹
𝑛
(𝑡) =

{
{

{
{

{

1

𝑛 + 1

(

sin (𝑛 + 1) (𝑡/2)
sin (𝑡/2)

)

2

, 𝑡 ∉ 2𝜋𝑍, 𝑛 ≥ 1

(𝑛 + 1) , 𝑡 ∈ 2𝜋𝑍,

(20)

and Cesàro mean is

𝜎
𝑛
=

𝑠
0
(𝑥) + 𝑠

1
(𝑥) + ⋅ ⋅ ⋅ + 𝑠

𝑛−1
(𝑥)

𝑛

=

1

𝑛

𝑛−1

∑

𝑘=0

𝑠
𝑘
(𝑥) . (21)

Some important particular cases are as follows:

(1) (𝐻, 1/(𝑛 + 1)) ⋅ (𝐸
1
) means, when 𝑎

𝑛,𝑘
= 1/(𝑛 − 𝑘 +

1) log 𝑛.

(2) (𝑁, 𝑝
𝑛
, 𝑞
𝑛
) ⋅ 𝐸
1
means, 𝑎

𝑛,𝑘
= 𝑝
𝑛−𝑘

𝑞
𝑘
/𝑅
𝑛
, where 𝑅

𝑛
=

∑
𝑛

𝑘=0
𝑝
𝑘
𝑞
𝑛−𝑘

̸= 0.

Remark 1. If we take 𝜔(|𝑥 − 𝑦|) = |𝑥 − 𝑦|
𝛼, then𝐻

𝜔
reduces

to𝐻
𝛼
class.

The conjugate function ̃
𝑓(𝑥) is defined for almost every 𝑥

by

̃
𝑓 (𝑥) = −

1

2𝜋

∫

𝜋

0

𝜓 (𝑡) cot 𝑡
2

𝑑𝑡

= lim
ℎ→0

(−

1

2𝜋

∫

𝜋

ℎ

𝜓 (𝑡) cot 𝑡
2

𝑑𝑡) ;

(22)

see [23, page 131].
We write throughout the paper

𝜓
𝑥
(𝑡) = 𝜓 (𝑡) = 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥 − 𝑡) ,

𝜙
𝑥
(𝑡) = 𝑓 (𝑥 + 𝑡) − 2𝑓 (𝑥) + 𝑓 (𝑥 − 𝑡) ,

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡) =

1

𝑃
𝑛

𝑛

∑

𝑘=0

𝑝
𝑛−𝑘

cos𝑘 (𝑡/2) cos (𝑘 + 1) (𝑡/2)
sin 𝑡/2

.

(23)

We note that the series, conjugate to a Fourier series, is not
necessarily a Fourier series [23, 24]. Hence, a separate study
of conjugate series is desirable and attracted the attention of
researchers.

2. Known Results

In 2001, Lal and Yadav [20] established the following theorem
to estimate the error between the input signal 𝑓(𝑥) and
the signal obtained after passing through the (𝐶, 1)(𝐸, 1)-
transform.

Theorem 2 (see [20]). If a function 𝑓 : 𝑅 → 𝑅 is 2𝜋-periodic
function and belongs to class Lip𝛼, 0 < 𝛼 ≤ 1, then degree
of approximation by (𝐶, 1)(𝐸, 1) means of its Fourier series is
given by








𝑡
𝐶
1

⋅𝐸
1

𝑛
(𝑓) − 𝑓 (𝑥)






∞

=

{

{

{

𝑂(𝑛
−𝛼

) , 0 < 𝛼 < 1

𝑂(

log 𝑛
𝑛

) , 𝛼 = 1.

(24)

Recently, Singh and Mahajan [19] generalized the above result
under more general assumptions. They proved the following.

Theorem 3 (see [19]). Let 𝜔(𝑡) defined in (5) be such that

∫

𝜋

𝑡

𝜔 (𝑢)

𝑢
2
𝑑𝑢 = 𝑂 (𝐻 (𝑡)) , 𝐻 (𝑡) ≥ 0,

∫

𝑡

0

𝐻(𝑢) 𝑑𝑢 = 𝑂 (𝑡𝐻 (𝑡)) , as 𝑡 → 0
+

;

(25)

then, for 0 < 𝛽 ≤ 𝛼 ≤ 1 and 𝑓 ∈ 𝐻
𝜔
, we have








𝑡
𝐶
1

⋅𝐸
1

𝑛
(𝑓) − 𝑓 (𝑥)






𝜔
∗

= 𝑂(((𝑛 + 1)
−1

𝐻(

𝜋

𝑛 + 1

))

1− 𝛽/𝛼

) .

(26)

Theorem4 (see [19]). Consider𝜔(𝑡) defined in (5) and for 0 <
𝛽 ≤ 𝛼 ≤ 1 and 𝑓 ∈ 𝐻

𝜔
, we have








𝑡
𝐶
1

⋅𝐸
1

𝑛
(𝑓) − 𝑓 (𝑥)






𝜔
∗

= 𝑂((𝜔(

𝜋

𝑛

+ 1))

1− 𝛽/𝛼

+((𝑛 + 1)
−1

𝑛+1

∑

𝑘=1

𝜔(

1

𝑘 + 1

))

1− 𝛽/𝛼

) .

(27)

3. Main Theorem

In this paper, we prove a theorem on the degree of approx-
imation of a function ̃

𝑓(𝑥), conjugate to a 2𝜋-periodic
function 𝑓 belonging to ̃

𝑓 ∈ 𝐻
𝜔

class by (𝑁
𝑝
⋅ 𝐸
1

)

means of conjugate series of its Fourier series. This work
generalizes the results of Singh andMahajan [19] on (𝑁

𝑝
⋅ 𝐸
1

)

summability of conjugate Fourier series. We will measure the
error between the input signal ̃𝑓(𝑥) and the processed output
signal �̃�𝑁𝐸

𝑛
(𝑓; 𝑥) = (1/𝑃

𝑛
) ∑
𝑛

𝑘=0
𝑝
𝑛−𝑘

𝐸
1

𝑘
(𝑓), by establishing the

following theorems.

Theorem 5. The functions 𝜔 satisfy the following conditions:

∫

𝜋

𝑡

𝜔 (𝑢)

𝑢
2
𝑑𝑢 = 𝑂 (𝐻 (𝑡)) , 𝐻 (𝑡) ≥ 0, (28)

∫

𝑡

0

𝐻(𝑢) 𝑑𝑢 = 𝑂 (𝑡𝐻 (𝑡)) , as 𝑡 → 0
+

, (29)
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where 𝜔(𝑡) and 𝜔∗(𝑡) are increasing functions of 𝑡. Let 𝑁
𝑝
be

the Nörlund summability matrix generated by the nonnegative
{𝑝
𝑛
} such that

(𝑛 + 1) 𝑝
𝑛
= 𝑂 (𝑃

𝑛
) , ∀𝑛 ≥ 0. (30)

Then, for ̃𝑓 ∈ 𝐻
𝜔
, 0 < 𝛽 ≤ 𝛼 ≤ 1, we have






�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)





𝜔
∗

= 𝑂{

𝜔(




𝑥 − 𝑦





)
𝛽/𝛼

𝜔
∗
(




𝑥 − 𝑦





)

(log (𝑛 + 1))𝛽/𝛼

× [(𝑛 + 1)
−1

𝐻(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

} ,

(31)

and if 𝜔(𝑡) satisfies (28), then for ̃
𝑓 ∈ 𝐻

𝜔
, 0 < 𝛽 ≤ 𝛼 ≤ 1, we

have





�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)





𝜔
∗

= 𝑂

{

{

{

𝜔(




𝑥 − 𝑦





)
𝛽/𝛼

𝜔
∗
(




𝑥 − 𝑦





)

( log (𝑛 + 1) [𝜔 ( 𝜋

𝑛 + 1

)]

1−𝛽/𝛼

+[(

1

𝑛 + 1

)

𝑛

∑

𝑘=0

𝜔(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

)

}

}

}

.

(32)

Remark 6. The product transform (𝑁
𝑝
⋅ 𝐸
1

) plays an impor-
tant role in signal theory as a double digital filter and theory
of Machines in Mechanical Engineering [4, 5].

4. Lemmas

In order to prove our main Theorem 5, we require the
following lemmas.

Lemma 7. If 𝜓
𝑥
(𝑡) = 𝜓(𝑡) = 𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡), then for

̃
𝑓 ∈ 𝐻

𝜔
, we have






𝜓
𝑥
(𝑡) − 𝜓

𝑦
(𝑡)






≤ 2𝑀𝜔 (





𝑥 − 𝑦





) , (33)






𝜓
𝑥
(𝑡) − 𝜓

𝑦
(𝑡)






≤ 2𝑀𝜔 (|𝑡|) . (34)

It is easy to verify the following.

Lemma 8. Let {𝑝
𝑛
} be a nonnegative and nonincreasing

sequence satisfies (30); then for 0 < 𝑡 ≤ 𝜋/(𝑛 + 1), we have

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡) = 𝑂(

1

𝑡

) . (35)

Proof. Consider

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡) =

1

𝑃
𝑛

𝑛

∑

𝑘=0

𝑝
𝑛−𝑘

cos𝑘 (𝑡/2) cos (𝑘 + 1) (𝑡/2)
sin 𝑡/2

.

(36)

Using condition (30), sin 𝑛𝑡 ≤ 𝑛𝑡, sin(𝑡/2) ≥ (𝑡/𝜋), for 0 <

𝑡 ≤ 𝜋 and |cos𝑘(𝑡/2)| ≤ 1, we have

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡)

≤

𝑝
𝑛

𝑃
𝑛

𝑛

∑

𝑘=0

cos𝑘 (𝑡/2) cos (𝑘 + 1) (𝑡/2)
sin 𝑡/2

= 𝑂(

1

𝑡 (𝑛 + 1)

)[

𝑛

∑

𝑘=0

cos𝑘 ( 𝑡
2

) cos (𝑘 + 1) ( 𝑡
2

)]

= (

1

𝑡 (𝑛 + 1)

)

𝑛

∑

𝑘=0

Re {cos𝑘 ( 𝑡
2

) 𝑒
𝑖(𝑘+1)𝑡/2

}

= (

1

𝑡 (𝑛 + 1)

)Re{𝑒𝑖𝑡/2 (1 − cos𝑛+1 (𝑡/2) 𝑒 𝑖(𝑛+1)𝑡/2

1 − cos (𝑡/2) 𝑒𝑖𝑡/2
)}

= (

1

𝑡
2
(𝑛 + 1)

)Re {𝑖 − 𝑖 cos (𝑛 + 1) (𝑡/2) cos𝑛+1 (𝑡/2)

+ sin (𝑛 + 1) (𝑡/2) cos𝑛+1 (𝑡/2)}

= 𝑂(

1

𝑡
2
(𝑛 + 1)

) sin (𝑛 + 1) (𝑡/2) cos𝑛+1 (𝑡/2) .

= 𝑂(

1

𝑡
2
(𝑛 + 1)

(𝑛 + 1) 𝑡)

= 𝑂(

1

𝑡

) .

(37)

Lemma 9. Let {𝑝
𝑛
} be a nonnegative and nonincreasing

sequence satisfies (30); then for 𝜋/(𝑛 + 1) ≤ 𝑡 ≤ 𝜋, we get

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡) = 𝑂(

1

𝑡
2
(𝑛 + 1)

) . (38)

Proof. Consider

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡) =

1

𝑃
𝑛

𝑛

∑

𝑘=0

𝑝
𝑛−𝑘

cos𝑘 (𝑡/2) cos (𝑘 + 1) (𝑡/2)
sin 𝑡/2

. (39)

Using condition (30), sin (𝑡/2) ≥ (𝑡/𝜋), for 0 < 𝑡 ≤ 𝜋,| sin 𝑡| ≤
1 for all 𝑡 and |cos𝑘(𝑡/2)| ≤ 1, we have

(𝑁
𝑝
⋅ 𝐸
1

)
𝑛

(𝑡)

≤

𝑝
𝑛

𝑃
𝑛

𝑛

∑

𝑘=0

cos𝑘 (𝑡/2) cos (𝑘 + 1) (𝑡/2)
sin 𝑡/2

.

= (

1

𝑡 (𝑛 + 1)

)

𝑛

∑

𝑘=0

Re {cos𝑘 ( 𝑡
2

) 𝑒
𝑖(𝑘+1)𝑡/2

}

= (

1

𝑡 (𝑛 + 1)

)Re{𝑒𝑖𝑡/2 (1 − cos𝑛+1 (𝑡/2) 𝑒𝑖(𝑛+1)𝑡/2

1 − cos (𝑡/2) 𝑒𝑖𝑡/2
)}
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= 𝑂(

1

𝑡
2
(𝑛 + 1)

) sin (𝑛 + 1) (𝑡/2) cos𝑛+1 (𝑡/2) .

= 𝑂(

1

𝑡
2
(𝑛 + 1)

) .

(40)

Lemma 10 (see [19]). If𝜔(𝑡) satisfies conditions (28) and (29),
then

∫

𝑢

0

𝑡
−1

𝜔 (𝑡) 𝑑𝑡 = 𝑂 (𝑢𝐻 (𝑢)) , as 𝑢 → 0
+

. (41)

5. Proof of Theorem 5

The integral representationof 𝑠
𝑛
(𝑓; 𝑥) is given by

𝑠
𝑛
(𝑓; 𝑥) =

∞

∑

𝑛=1

(𝑏
𝑛
cos 𝑛𝑥 − 𝑎

𝑛
sin 𝑛𝑥)

= −

1

𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡) (

cot (𝑡/2) cos (𝑛 + 1/2) 𝑡
2 sin (𝑡/2)

) 𝑑𝑡

(42)

and, therefore,

𝑠
𝑛
(𝑓; 𝑥) −

̃
𝑓 (𝑥) =

1

2𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

cos (𝑛 + 1/2) 𝑡
sin 𝑡/2

𝑑𝑡. (43)

Denoting 𝐸1 means of 𝑠
𝑛
(𝑓; 𝑥) by 𝐸1

𝑛
(𝑥), we have

1

2
𝑛

𝑛

∑

𝑘=0

(

𝑛

𝑘
) {𝑠
𝑛
(𝑓; 𝑥) −

̃
𝑓 (𝑥)}

=

1

2
(𝑛+1)

𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

sin 𝑡/2

𝑛

∑

𝑘=0

(

𝑛

𝑘
) cos (𝑘 + 1/2) 𝑡 𝑑𝑡,

𝐸
1

𝑛
(𝑥) −

̃
𝑓 (𝑥)

=

1

2
(𝑛+1)

𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

sin 𝑡/2

𝑛

∑

𝑘=0

(

𝑛

𝑘
) cos (𝑘 + 1/2) 𝑡 𝑑𝑡

=

1

2
(𝑛+1)

𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

sin 𝑡/2
Re{

𝑛

∑

𝑘=0

(

𝑛

𝑘
) 𝑒
𝑖(𝑘+1/2)𝑡

}𝑑𝑡

=

1

2
(𝑛+1)

𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

sin 𝑡/2
Re {𝑒𝑖𝑡/2(1 + 𝑒𝑖𝑡)

𝑛

} 𝑑𝑡

=

1

2
(𝑛+1)

𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

sin 𝑡/2
Re {2𝑛cos𝑛 ( 𝑡

2

) 𝑒
𝑖(𝑛+1)𝑡/2

} 𝑑𝑡

=

1

2𝜋

∫

𝜋

0

𝜓
𝑥
(𝑡)

cos𝑛 (𝑡/2) cos (𝑛 + 1) (𝑡/2)
sin 𝑡/2

𝑑𝑡.

(44)

Now, using condition (30), then 𝑁
𝑝
transform of 𝐸1 trans-

form is given by






�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)







=

1

2𝜋

∫

𝜋

0





𝜓
𝑥
(𝑡)





𝑡

×












𝑛

∑

𝑘=0

𝑝
𝑛−𝑘

𝑃
𝑛

cos𝑘 ( 𝑡
2

) cos (𝑘 + 1) ( 𝑡
2

)












𝑑𝑡

= 𝑂(

1

𝑛 + 1

)∫

𝜋

0





𝜓
𝑥
(𝑡)





𝑡

×












𝑛

∑

𝑘=0

cos𝑘 ( 𝑡
2

) cos (𝑘 + 1) ( 𝑡
2

)












𝑑𝑡.

(45)

Set

𝐸
𝑛
(𝑥) =






�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)







= 𝑂(

1

𝑛 + 1

)

× ∫

𝜋

0





𝜓
𝑥
(𝑡)





𝑡












𝑛

∑

𝑘=0

cos𝑘 ( 𝑡
2

) cos (𝑘 + 1) ( 𝑡
2

)












𝑑𝑡,

𝐸
𝑛
(𝑥, 𝑦)

=




𝐸
𝑛
(𝑥) − 𝐸

𝑛
(𝑦)






= 𝑂(

1

𝑛 + 1

)∫

𝜋

0






𝜓
𝑥
(𝑡) − 𝜓

𝑦
(𝑡)







𝑡

×












𝑛

∑

𝑘=0

cos𝑘 ( 𝑡
2

) cos (𝑘 + 1) ( 𝑡
2

)












𝑑𝑡

= 𝑂(

1

𝑛 + 1

) [∫

𝜋/(𝑛+1)

0

+∫

𝜋

𝜋/(𝑛+1)

]

= 𝐼
1
+ 𝐼
2
, (say) .

(46)

Now, using (34) and Lemma 10, assume that𝜔(𝑡) satisfies (28)
and (29); we get

𝐼
1
= 𝑂 (1) ∫

𝜋/(𝑛+1)

0

𝑡
−1

𝜔 (𝑡) 𝑑𝑡

= 𝑂((𝑛 + 1)
−1

𝐻(

𝜋

𝑛 + 1

)) .

(47)

Now, using (34) and Lemma 10, assume that𝜔(𝑡) satisfies (28)
and (29); we get

𝐼
2
= 𝑂(

1

𝑛 + 1

)∫

𝜋

𝜋/(𝑛+1)

𝑡
−2

𝜔 (𝑡) 𝑑𝑡

= 𝑂((𝑛 + 1)
−1

𝐻(

𝜋

𝑛 + 1

)) .

(48)
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Now, using (33), Lemma 8, we get

𝐼
1
= 𝑂(

1

𝑛 + 1

) ∫

𝜋/(𝑛+1)

0






𝜓
𝑥
(𝑡) − 𝜓

𝑦
(𝑡)







𝑡

𝑑𝑡

= 𝑂(

1

𝑛 + 1

) ∫

𝜋/(𝑛+1)

0

𝜔 (




𝑥 − 𝑦





)

𝑡

𝑑𝑡

= 𝑂 (𝜔 (




𝑥 − 𝑦





)) {∫

𝜋/(𝑛+1)

0

1

𝑡

𝑑𝑡} ,

where 0 < 𝑡 ≤ 𝜋

(𝑛 + 1)

= 𝑂 (log (𝑛 + 1) 𝜔 (

𝑥 − 𝑦





)) .

(49)

Now, using (33), Lemma 9, we get

𝐼
2
= 𝑂(

1

𝑛 + 1

)∫

𝜋

𝜋/(𝑛+1)

𝑡
−2

𝜔 (




𝑥 − 𝑦





) 𝑑𝑡

= 𝑂(

1

𝑛 + 1

𝜔 (




𝑥 − 𝑦





))∫

𝜋

𝜋/(𝑛+1)

𝑡
−2

𝑑𝑡

= 𝑂 (𝜔 (




𝑥 − 𝑦





)) .

(50)

Using the fact that we may write 𝐼
𝑘
= 𝐼
1−𝛽/𝛼

𝑘
𝐼
𝛽/𝛼

𝑘
, 𝑘 = 1, 2,

and combining (47) and (49), we get

𝐼
1
= 𝑂([(𝑛 + 1)

−1

𝐻(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

× [log (𝑛 + 1) 𝜔 (

𝑥 − 𝑦





)]
𝛽/𝛼

) .

(51)

Combining (48) and (50), we get

𝐼
2
= 𝑂([(𝑛 + 1)

−1

𝐻(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

[𝜔 (




𝑥 − 𝑦





)]
𝛽/𝛼

) .

(52)

Therefore, from (8), (51), and (52), we have

sup
𝑥,𝑦








Δ
𝜔
∗

𝐸 (𝑥, 𝑦)








= sup
𝑥,𝑦





𝐸
𝑛
(𝑥) − 𝐸

𝑛
(𝑦)






𝜔
∗
(




𝑥 − 𝑦





)

= 𝑂{

𝜔(




𝑥 − 𝑦





)
𝛽/𝛼

𝜔
∗
(




𝑥 − 𝑦





)

(log (𝑛 + 1))𝛽/𝛼

× [(𝑛 + 1)
−1

𝐻(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

} .

(53)

Since




𝐸
𝑛
(𝑥)




𝑐
= sup
0≤𝑥≤2𝜋








�̃�
𝑇⋅𝐸
1

𝑛
(𝑓) −

̃
𝑓 (𝑥)








, (54)

it follows from (47) and (48) that





𝐸
𝑛
(𝑥)




𝑐
= 𝑂((𝑛 + 1)

−1

𝐻(

𝜋

𝑛 + 1

)) . (55)

Combining (53) and (55), we get






�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)





𝜔
∗

= 𝑂{

𝜔(




𝑥 − 𝑦





)
𝛽/𝛼

𝜔
∗
(




𝑥 − 𝑦





)

(log (𝑛 + 1))𝛽/𝛼

×[(𝑛 + 1)
−1

𝐻(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

} .

(56)

To prove (32), if 𝜔(𝑡) satisfies only (28), then, using (34) and
second mean value theorem for integrals, we have

𝐼
1
= 𝑂 (𝜔 (𝜋/ (𝑛 + 1))) {∫

𝜋/(𝑛+1)

0

1

𝑡

𝑑𝑡} ,

where 0 < 𝑡 ≤ 𝜋

(𝑛 + 1)

= 𝑂(log (𝑛 + 1) 𝜔 ( 𝜋

𝑛 + 1

)) .

(57)

Combining (49) and (57), we get

𝐼
1
= 𝑂([log (𝑛 + 1) 𝜔 ( 𝜋

𝑛 + 1

)]

1−𝛽/𝛼

× [log (𝑛 + 1) 𝜔 (

𝑥 − 𝑦





)]
𝛽/𝛼

) .

(58)

Again, if 𝜔(𝑡) satisfies only (28), then using (34) and second
mean value theorem for integrals, we have

𝐼
2
= 𝑂(

1

𝑛 + 1

)∫

𝜋

𝜋/(𝑛+1)

𝜔 (𝑡)

𝑡
2
𝑑𝑡

= 𝑂(

1

𝑛 + 1

)∫

𝑛+1

1

𝜔(

𝜋

𝑡

) 𝑑𝑡

= 𝑂(

1

𝑛 + 1

)

𝑛

∑

𝑘=0

𝜔(

𝜋

𝑛 + 1

) .

(59)

Combining (50) and (59), we get

𝐼
2
= 𝑂([(

1

𝑛 + 1

)

𝑛

∑

𝑘=0

𝜔(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

[𝜔 (




𝑥 − 𝑦





)]
𝛽/𝛼

) .

(60)
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Therefore,

sup
𝑥,𝑦








Δ
𝜔
∗

𝐸 (𝑥, 𝑦)








= 𝑂

{

{

{

𝜔(




𝑥 − 𝑦





)
𝛽/𝛼

𝜔
∗
(




𝑥 − 𝑦





)

× ( log (𝑛 + 1) [𝜔 ( 𝜋

𝑛 + 1

)]

1−𝛽/𝛼

+[(

1

𝑛 + 1

)

𝑛

∑

𝑘=0

𝜔(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

)

}

}

}

,

(61)





𝐸
𝑛
(𝑥)




𝑐
= 𝑂(log (𝑛 + 1) 𝜔 ( 𝜋

𝑛 + 1

))

+ 𝑂((

1

𝑛 + 1

)

𝑛

∑

𝑘=0

𝜔(

𝜋

𝑛 + 1

)) .

(62)

Combining (61) and (62), we get





�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)





𝜔
∗

= 𝑂

{

{

{

𝜔(




𝑥 − 𝑦





)
𝛽/𝛼

𝜔
∗
(




𝑥 − 𝑦





)

× (log (𝑛 + 1) [𝜔 ( 𝜋

𝑛 + 1

)]

1−𝛽/𝛼

+[(

1

𝑛 + 1

)

𝑛

∑

𝑘=0

𝜔(

𝜋

𝑛 + 1

)]

1−𝛽/𝛼

)

}

}

}

.

(63)

This completes the proof of Theorem 5.

6. Applications

The theory of approximation is a very extensive field and
the study of theory of trigonometric approximation is of
greatmathematical interest and of great practical importance.
As mentioned in [21], the 𝐿

𝑝
space in general and 𝐿

2
and

𝐿
∞

in particular play an important role in the theory of
signals and filters. From the point of view of the applications,
sharper estimates of infinite matrices [25] are useful to get
bounds for the lattice norms (which occur in solid state
physics) of matrix valued functions and enable to investigate
perturbations of matrix valued functions and compare them.
The following corollaries may be derived fromTheorem 5.

If 𝜔(|𝑥 − 𝑦|) ≤ 𝐵|𝑥 − 𝑦|
𝛼

, 𝜔
∗

(|𝑥 − 𝑦|) ≤ 𝐾|𝑥 − 𝑦|
𝛽

, 0 ≤

𝛽 < 𝛼 ≤ 1 and set

𝐻(𝑢) =

{

{

{

𝑢
𝛼−1

, 0 < 𝛼 < 1

log(1
𝑢

) , 𝛼 = 1,

(64)

then we get Corollary 11.

Corollary 11. If ̃𝑓 ∈ 𝐻
𝛼
, 0 < 𝛽 ≤ 𝛼 ≤ 1, then






�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)





𝛽

= {

𝑂((log (𝑛 + 1))𝛽/𝛼(𝑛 + 1)𝛽−𝛼) , 0 < 𝛼 < 1

𝑂 (log (𝑛 + 1) (𝑛 + 1)𝛽−1) , 𝛼 = 1.

(65)

If we put 𝛽 = 0 in Corollary 11, then we get Corollary 12.

Corollary 12. If ̃𝑓 ∈ Lip𝛼, 0 < 𝛼 ≤ 1, then






�̃�
𝑁𝐸

𝑛
(𝑓) −

̃
𝑓 (𝑥)





𝑐
=

{

{

{

𝑂((𝑛 + 1)
−𝛼

) , 0 < 𝛼 < 1

𝑂(

log (𝑛 + 1)
(𝑛 + 1)

) , 𝛼 = 1.

(66)

7. Example

In the example, we see how the sequence of averages (i.e.,
𝜎
1

𝑛
(𝑥)-means or (𝐶, 1)mean) andNörlundmean𝑁

𝑝
of partial

sums of a Fourier series is better behaved than the sequence
of partial sums 𝑠

𝑛
(𝑥) itself.

Let

𝑓 (𝑥) = {

−1, −𝜋 ≤ 𝑥 < 0,

1, 0 ≤ 𝑥 < 𝜋,

(67)

with 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) for all real 𝑥. Fourier series of 𝑓(𝑥) is
given by

2

𝜋

∞

∑

𝑛=1

1 − (−1)
𝑛

𝑛

sin 𝑛𝑥, −𝜋 ≤ 𝑥 ≤ 𝜋. (68)

Then 𝑛th partial sum 𝑠
𝑛
(𝑥) of Fourier series (68) and 𝑛th

Cesàro sum for 𝛿 = 1, that is, 𝜎1
𝑛
(𝑥) for the series (68), are

given by

𝑠
𝑛
(𝑥) =

4

𝜋

(sin𝑥 + 1

3

sin 3𝑥 + ⋅ ⋅ ⋅ + 1

𝑛

sin 𝑛𝑥) ,

𝜎
1

𝑛
(𝑥) =

2

𝜋

𝑛

∑

𝑘=1

(1 −

𝑘

𝑛

)(

1 − (−1)
𝑘

𝑘

) sin 𝑘𝑥.
(69)

FromTheorem 20 of Hardy’s “Divergent Series,” if a Nörlund
method 𝑁

𝑝
has increasing weights {𝑝

𝑛
}, then it is stronger

than (𝐶, 1).
Now, take𝑁

𝑝
to be the Nörlundmatrix generated by 𝑝

𝑛
=

𝑛 + 1, then Nörlund means𝑁
𝑝
is given by

𝑡
𝑁

𝑛
(𝑓; 𝑥) =

2

(𝑛 + 1) (𝑛 + 2)

𝑛

∑

𝑘=0

(𝑛 − 𝑘 + 1) 𝑠
𝑘
(𝑓; 𝑥) . (70)

In this graph, we observe that 𝜎1
𝑛
(𝑥), 𝑡
𝑁

𝑛
(𝑓; 𝑥) converges to

𝑓(𝑥) faster than 𝑠
𝑛
(𝑥) in the interval [−𝜋, 𝜋]. We further note

that near the points of discontinuities, that is, −𝜋, 0 and 𝜋,
the graph of 𝑠

5
and 𝑠
10

shows peaks that move closer to the
line passing through points of discontinuity as n increases
(Gibbs phenomenon), but in the graph of 𝜎1

𝑛
(𝑥), 𝑡
𝑁

𝑛
(𝑓; 𝑥),
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Figure 1: Graph of 𝑓(𝑥) (blue), 𝑠
𝑛
(𝑥) (pink), 𝜎1

𝑛
(𝑥) (yellow), 𝑡𝑁

𝑛
(𝑓; 𝑥) (green), 𝑛 = 5 and 10.

𝑛 = 5, 10 the peaks becomeflatter (Figure 1).TheGibbs phe-
nomenon is an overshoot a peculiarity of the Fourier series
and other eigen function series at a simple discontinuity;
that is, the convergence of Fourier series is very slow near
the point of discontinuity. Thus, the product summability
means of the Fourier series of 𝑓(𝑥) overshoot the Gibbs
Phenomenon and show the smoothing effect of the method.
Thus, 𝜎1

𝑛
(𝑥), 𝑡
𝑁

𝑛
(𝑓; 𝑥) is the better approximant than 𝑠

𝑛
(𝑥) and

𝑁
𝑝
method is stronger than (𝐶, 1) method.

8. Conclusion

Several results concerning the degree of approximation of
periodic signals (functions) by product summability means
of Fourier series and conjugate Fourier series in generalized
Hölder metric and Hölder metric have been reviewed. Using
graphical representation 𝜎

1

𝑛
(𝑥), 𝑡
𝑁

𝑛
(𝑓; 𝑥) is a better approxi-

mant to 𝑠
𝑛
(𝑥), but till now nothing has been done to show

this. Some interesting application of the operator (𝑁
𝑝
⋅ 𝐸
1

)

used in this paper is pointed out in Remark 6. Also, the result
of our theorem is more general rather than the results of any
other previous proved theorems, whichwill enrich the literate
of summability theory of infinite series.
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