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Abstract. 
Hypergeometric functions of matrix arguments occur frequently in multivariate statistical analysis. In this paper, we define and study extended forms of Gauss and confluent hypergeometric functions of matrix arguments and show that they occur naturally in statistical distribution theory.



1. Introduction
The classical beta function, denoted by , is defined (Luke [1]) by the integral 
						
					Based on the beta function, the Gauss hypergeometric function, denoted by , and the confluent hypergeometric function, denoted by , for , are defined as (Luke [1]) 
						
					Further, using the series expansions of , , and  in (2) and (3), respectively, series representations of hypergeometric functions  and , for , are obtained as 
						
					respectively.
From the confluent hypergeometric function , the Whittaker function (Whittaker and Watson [2])  is defined as 
						
					where . Most of the properties and integral representations of the Whittaker function can be proved from those of the confluent hypergeometric function.
In 1997, Chaudhry et al. [3] extended the classical beta function to the whole complex plane by introducing in the integrand of (1) the exponential factor  with . Thus, the extended beta function is defined as 
						
					where . If we take  in (7), then for  and  we have . Further, replacing  by  in (7), one can see that . The rationale and justification for introducing this function are given in Chaudhry et al. [3] where several properties and a statistical application have also been studied. Miller [4] further studied this function and has given several additional results.
In 2004, Chaudhry et al. [5] presented definitions of the extended Gauss hypergeometric function and the extended confluent hypergeometric function, denoted by  and , respectively. These functions were introduced by considering the extended beta function (7) instead of beta function (1) in the general term of series (4) and (5). They defined these functions as 
						
					Using the integral representation of the extended beta function (7) in (8) and (9), the integral representations of extended hypergeometric functions, for  and , are obtained as 
						
Substituting  in (8) or (10), we have ; that is, the classical Gauss hypergeometric function is a special case of the extended Gauss hypergeometric function. Similarly, by taking  in (9) or (11), we have , which means that the classical confluent hypergeometric function is a special case of the extended confluent hypergeometric function. Chaudhry et al. [5] found that the extended hypergeometric functions are related to the extended beta, Bessel, and Whittaker functions and also gave several alternative integral representations.
The classical functions, such as gamma, beta, confluent hypergeometric, Gauss hypergeometric, Bessel, and Whittaker, have been generalized to the matrix case and their properties have been studied extensively. For example, see Butler and Wood [6–8], Herz [9], Constantine [10], James [11], Muirhead [12], and Gupta and Nagar [13]. Many distributions of random matrices and their functions such as determinant and trace and moments of test statistics can be expressed in terms of hypergeometric functions of matrix arguments. For some recent work, the reader is referred to Bekker et al. [14, 15], Bekker et al. [16], and Gupta and Nagar [17]. Recently, Nagar et al. [18] have defined and studied the extended beta function of matrix argument.
The extended Gauss hypergeometric function and extended confluent hypergeometric function have not been generalized to the matrix case and therefore the main objective of this work is to define these generalizations, give various integral representations, study their properties, and establish their relationships with other special functions of matrix argument.
This paper is divided into eight sections. Section 2 deals with some well-known definitions and results on matrix algebra, multivariate gamma function, multivariate beta function, and special functions. In Section 3, the extended Gauss hypergeometric function of matrix argument has been defined and its properties have been studied. Section 4 deals with the extended confluent hypergeometric function of matrix argument and Section 5 defines the extended Whittaker function of matrix argument. Section 6 is devoted to several integrals involving these newly defined functions. The results contained in this section show the relationship of these functions with some known special functions. Finally, Sections 7 and 8 give a number of matrix variate distributions.
2. Some Known Definitions and Results
This section provides definitions and important properties of some classical special functions that are critical to the development of this work.
Replacing the confluent hypergeometric function that appears in (6) by its integral representation (3), we obtain the integral representation of the Whittaker function as 
						
Another integral representation of  is obtained by substituting  in (12), to get 
						
					Further, application of Kummer’s transformation, namely, 
						
					in (6) yields 
						
Let  be an  matrix of real or complex numbers. Then,  denotes the transpose of ; ; ;  determinant of  means that  is symmetric positive semidefinite;  means that  is symmetric positive definite,  means that both  and  are symmetric positive definite, and  denotes the unique positive definite square root of .
Several generalizations of Euler’s gamma function are available in the scientific literature. The multivariate gamma function which is frequently used in multivariate statistical analysis is defined by (Ingham [19] and Siegel [20]) 
						
					where  and the integration is carried out over  symmetric positive definite matrices. By evaluating the above integral, it is easy to see that 
						
					Let  be an  symmetric positive definite matrix and make the transformation , where  is the positive definite square root of , with the Jacobian . Then, 
						
					The above result also holds for complex symmetric  with  by analytic continuation. The multivariate generalization of the beta function is given by 
						
					where  and .
Siegel [20] established the identity 
						
					which can be derived from (19) by using the matrix transformation  with the Jacobian .
The type 3 Bessel function of Herz (Herz [9, p. 517, p. 506]), , of  symmetric positive definite matrix argument  is defined by 
						
The Gauss hypergeometric function of  symmetric matrix argument , denoted by , is defined by 
						
					where , , and . The confluent hypergeometric function of  symmetric matrix argument , denoted by , is defined by 
						
					where  and . If we make the transformation  in (22) and (23) with the Jacobian , we obtain alternative integral representations for  and  as 
						
					Further, substituting  with the Jacobian  in (24), we get another interesting integral form of  as 
						
					Putting  in (22) and evaluating the resulting integral using (19), one obtains 
						
					where . Putting  in (26) and using (20), one can easily show that 
						
					Transforming , (23) becomes 
						
					A comparison of (23) and (29) leads to the well-known Kummer’s relation (Herz [9, Eq. 2.8, p. 488]): 
						
					Further, by using the transformation , (23) can be written as 
						
For properties and further results on these functions, the reader is referred to Constantine [10], James [11], Muirhead [12], and Gupta and Nagar [13]. The numerical computation of a hypergeometric function of matrix arguments is very difficult. However, some numerical methods are proposed in recent years; see Hashiguchi et al. [21] and Koev and Edelman [22].
Also, in 1968, Abdi [23] defined the Whittaker function of matrix argument expressing it in terms of a confluent hypergeometric function of matrix argument  as 
						
					where . He also studied several properties and integral representations of this function. It is apparent that, by using different integral representations of  in (32), a variety of integral representations for  can be obtained. For example, using (31) in (32), we get 
						
Next, we give definition and properties of the extended beta function of matrix argument due to Nagar et al. [18].
Definition 1. The extended matrix variate beta function, denoted by , is defined as
							
						where  and  are arbitrary complex numbers and .
From the definition, it is apparent that the function  is invariant under the transformation , ; thereby,  is a function of the eigenvalues of the matrix . If we take  in (34), then for  and  we have . Further, replacing  by  in (34), one can show that .
Now, applying the transformation  in (34) with the Jacobian , we arrive at 
						
					If we take  in (35) and compare the resulting expression with (21), we obtain an interesting relation between the extended matrix variate beta function and the type 3 Bessel function of Herz as 
						
					Also, from (20) and (35), one can prove the inequality 
						
Let  be a scalar valued function of an  symmetric positive definite matrix  such that , . Then, the -transform of , denoted by , is defined by 
						
					where .
The -transform of the extended beta function of the matrix argument is given by 
						
					where , , and .
3. Extended Gauss Hypergeometric Function of Matrix Argument
In this section, we define the extended Gauss hypergeometric function of matrix argument (EGHFMA), which is a matrix variate generalization of the extended Gauss hypergeometric function (10) and an extended form of the classical Gauss hypergeometric function of matrix argument defined in (22). We also give several integral representations and properties of this function.
Definition 2. The extended Gauss hypergeometric function of matrix argument (EGHFMA), denoted by , is defined for an  symmetric matrix  as 
							
						where , , , and .
If we take  in (40), then EGHFMA reduces to a classical Gauss hypergeometric function of matrix argument (22); that is, . Also, if we consider  in (40) and compare the resulting expression with representation (34), we find that the extended beta function of matrix argument and EGHFMA are connected by the expression 
						
					Further, substituting  in (41) and using (36), we obtain 
						
Theorem 3.  For , , and , we have . That is, , , is a function of the eigenvalues of the matrix . Further, for ,  which indicates that , , is a function of the eigenvalues of the matrix .
Proof. Substituting  with  and replacing  by , , in (40), we arrive at 
							
						where the last line has been obtained by substituting  with the Jacobian  and using (40). This means that , , is a function of the eigenvalues of the matrix . Similarly, if in (40) we take  with  and  is replaced by , , we obtain 
							
						which shows that , , is a function of the eigenvalues of the matrix .
The following theorem gives an extended form of the integral representation given in (24).
Theorem 4.  Let  be an  symmetric matrix such that , , , and . Then, 
							
Proof. In the integral representation of EGHFMA given in (40), substituting  with the Jacobian , we obtain the desired result.
Theorem 5.  If  is an  symmetric matrix such that , , , and , then 
							
Proof. From the Trace Inequality given in Abadir and Magnus [24, p. 338], it follows that  which implies that  and 
							
						Now, using the above inequality in the integral given in (45), we get 
							
						where the last line has been obtained by using (24). If  is an  positive definite matrix, then it has been shown in Abadir and Magnus [24, p. 333] that . This inequality, for , yields 
							
						which gives the second part of the inequality.
If we take  in (46) and then use (41) and (27) in the resulting expression, we obtain 
						
					where .
The following theorem gives -transform of the extended matrix variate Gauss hypergeometric function .
Theorem 6.  If  is an  symmetric matrix such that , , , and , then 
							
Proof. Replacing  by its integral representation given in (40) and changing the order of integration, we get 
							
						Now, using (18), we arrive at
							
						Finally, the last integral is replaced by the Gauss hypergeometric function of matrix argument by using representation (22).
Substitution of  in (51) gives the following interesting relationship between EGHFMA and classical Gauss hypergeometric function of matrix argument: 
						
					Also, if we take  in (51) and then use (41) and (27) in the resulting expression, we obtain the -transform of the extended beta function of matrix argument as 
						
					where  with .
The transformation formula for the extended Gauss hypergeometric function of matrix argument is given next.
Theorem 7.  If  is an  symmetric matrix such that , , , and , then 
							
Proof. Making the transformation  in the integral representation given in (40), one obtains 
							
						Now, writing 
							
						in (57) and noting that , we have 
							
						Finally, evaluating the above integral by using (40), we get the desired result.
It is noteworthy that  in (56) gives the well-known transformation formula 
						
4. Extended Confluent Hypergeometric Function of Matrix Argument
In this section, we define and study the extended confluent hypergeometric function of matrix argument (ECHFMA), which is a generalization to the matrix case of the extended confluent hypergeometric function .
Definition 8. The extended confluent hypergeometric function of an  symmetric matrix argument (ECHFMA), denoted by , is defined as 
							
						where , , and .
If we take  in (61), then ECHFMA becomes the confluent hypergeometric function of matrix argument; that is, . Also, if we put  in (61) and compare the resulting expression with (34), we will arrive at the conclusion that the ECHFMA and extended beta function of matrix argument retain the relationship 
						
Theorem 9.  If  and , then , . That is,  is a function of the eigenvalues of the matrix . Further, for ,  which indicates that , , is a function of the eigenvalues of the matrix .
Proof. The proof is similar to the proof of Theorem 3.
Theorem 10.  Let  and  be  symmetric matrices with . If  and , then 
							
Proof. In the integral representation of the ECHFMA given in (61), consider the substitution  with the Jacobian .
Corollary 11.  Let  and  be  symmetric matrices with . If  and , then 
							
Proof. The desired result is obtained by evaluating the integral in (63) by using (61).
For , expression (64) reduces to the well-known Kummer’s relation for the classical confluent hypergeometric function of matrix argument. Moreover, the previous corollary is the generalization to the matrix case of Kummer’s relation for the extended confluent hypergeometric function of scalar argument.
Theorem 12.  If  and , then 
							
						where  and  are  symmetric matrices with .
Proof. In the integral of the ECHFMA given in (61), consider the transformation , whose Jacobian is .
If we take  in (65), we arrive at representation (25) of the classical confluent hypergeometric function of matrix argument.
Theorem 13.  Let , , , and  be  symmetric matrices with  and . If  and , then 
							
						where .
Proof. Transforming  with the Jacobian  in representation (61), we obtain the result.
If we consider  and  in the above theorem, then we have 
						
Theorem 14.  Let  and  be  symmetric matrices, . If  and , then 
							
Proof. The proof is similar to the proof of Theorem 5.
The -transform of the extended matrix variate confluent hypergeometric function is given next.
Theorem 15.  If  is an  symmetric matrix, , , and , then 
							
Proof. Replacing  by its equivalent integral representation given in (61) and changing the order of integration, the integral in (69) is rewritten as 
							
						where the last line has been obtained by using (18). Finally, evaluating (70) using the definition of the confluent hypergeometric function of matrix argument, we get the desired result.
By putting , in (69), we get an interesting relation: 
						
5. Extended Whittaker Function of Matrix Argument
This section gives the definition of the extended Whittaker function of matrix argument, which is a generalization of the Whittaker function of matrix argument given in (32). Several properties and integral representations of this function are also derived.
Definition 16. The extended Whittaker function of matrix argument (EWFMA), denoted by , is defined for an  symmetric matrix  as 
							
						where  and .
If we consider  in (72), then the extended Whittaker function of matrix argument reduces to the classical Whittaker function of matrix argument given in (32); that is, . Several properties of the extended Whittaker function of matrix argument are inherited from the ECHFMA, so, as a consequence of Theorem 9, we have 
						
					which indicates that the function  with  depends on the matrix  only through its eigenvalues. Similarly, 
						
					The above equation means that  with  depends on the matrix  only through its eigenvalues.
An integral representation for the extended Whittaker function of matrix argument  is obtained by replacing in (72) the integral representation of ECHFMA given in (61). In fact, 
						
					Likewise, substitution of (67) in (72) yields the representation
						
					Clearly, when we take  in the above expression, we obtain the integral representation (33) of the classical Whittaker function of matrix argument.
Theorem 17.  For  symmetric matrix , 
							
						where  and .
Proof. Using transformation (64) in (72), we have
							
						Substituting (72) in the previous expression gives the result.
Theorem 18.  If  and , then 
							
Proof. The result follows by using inequality (68) in (72).
The following theorem gives the -transform of the extended Whittaker function of matrix argument.
Theorem 19.  If  is an  symmetric matrix, , and , then 
							
Proof. Writing  in terms of  using (72), one obtains 
							
						Now, calculating the above integral by using (69) and then substituting the resulting expression in terms of Whittaker function of matrix argument, we get the final result.
Substitution of  in the above theorem yields an interesting relationship between  and  as
						
6. Relationship between EGHFMA, ECHFMA, and EWFMA
In this section, we derive some results that are related to EGHFMA, ECHFMA, and EWFMA.
Theorem 20.  Let , , and  be  symmetric matrices such that , , , and . If , , and , then
							
Proof. Using the integral representation (61) and changing the order of integration, we have
							
						Now, by virtue of (18), we have 
							
						Finally, we use (40) to achieve the final result.
Corollary 21.  Let  and  be  symmetric matrices such that  and . If , , and , then 
							
Proof. Application of transformation (64) yields 
							
						Evaluating the above integral by applying (83) and then using (41), we get the result.
Corollary 22.  Let  and  be  symmetric matrices such that  and . If , , and , then 
							
Proof. Just take  in (86) and then use (36).
Theorem 23.  Let  and  be  symmetric matrices such that  and . If  and , then 
							
Proof. Writing  in terms of integral representation by using (40), taking , and applying the result 
							
						we obtain the desired result.
Theorem 24.  Let  and  be  symmetric matrices such that  and . If , , , and , then 
							
Proof. Using (40) and changing the order of integration, we obtain
							
						Now, evaluating the integral involving  using (22) and applying (28), we have 
							
						Finally, using representation (40), we arrive at the desired result.
Corollary 25.  For , , , , and , we have 
							
Proof. Just take  in (91) and then use (41).
Corollary 26.  For , , , , and , we have 
							
Proof. Just take  in (94) and then use (36).
Corollary 27.  For , , , , and , we have 
							
Proof. The proof follows from Corollary 25.
Theorem 28.  Let  and  be  symmetric matrices such that  and . If , , , and , then 
							
Proof. Using representation (40) and changing the order of integration, we get 
							
						Now, using (20) to integrate with respect to , we get 
							
						Finally, we use (34) to obtain the result.
Corollary 29.  Let  and  be  symmetric matrices such that  and . If , , , and , then 
							
Proof. Just take  in (97) and use relation (36).
Theorem 30.  Let , , and  be  symmetric matrices such that , , , and . If  and , then 
							
Proof. Using the definition of the extended Whittaker function of matrix argument given in (72), we have 
							
						Now, we use (83) in the above integral to obtain the desired result.
Corollary 31.  Let  and  be  symmetric matrices such that  and . If  and , then
							
Proof. Take  in (101) and then use (41) in the resulting expression.
Corollary 32.  Let  and  be  symmetric matrices such that  and . If  and , then 
							
Proof. Take  in (103) and then use (36) to get the result.
7. Extended Matrix Variate Gauss Hypergeometric Function Distribution
This section defines the extended matrix variate Gauss hypergeometric function distribution which is a generalization of the matrix variate Gauss hypergeometric function distribution. We show that this distribution occurs naturally as the distribution of the matrix quotient , where the  random matrices  and  are independent, the random matrix  has a matrix beta type 2 distribution, and the random matrix  follows an extended matrix variate beta type 1 distribution.
Definition 33. An  positive definite random matrix  is said to have an extended matrix variate Gauss hypergeometric function distribution with parameters , denoted by , if its pdf is given by 
							
						where , , , , and .
Note that the matrix variate Gauss hypergeometric function distribution (see Gupta and Nagar [13]) can be obtained from (105) by substituting  and putting an additional condition .
Theorem 36 derives the extended matrix variate Gauss hypergeometric function distribution as the distribution of the matrix ratio of two independent random matrices distributed as beta type 2 and extended beta type 1. First, we define the extended matrix variate beta type 1, matrix variate beta type 1, and the matrix variate beta type 2 distributions. These definitions can be found in Gupta and Nagar [13], Nagar et al. [18], and Nagar and Roldán-Correa [25].
Definition 34. An  random matrix  is said to have an extended matrix variate beta type 1 distribution with parameters , , , , and , denoted by , if its pdf is given by 
							
Note that, for , we take  and  and the extended matrix variate beta type 1 distribution defined by the above density slides to a matrix variate beta type 1 distribution with the pdf 
						
					We will designate this distribution by .
Definition 35. An  random matrix  is said to have a matrix beta type 2 distribution with parameters  and , denoted by , if its pdf is given by 
							
Theorem 36.  Let  and  be independent random matrices, where  and . Then, .
Proof. As  and  are independent, by (106) and (108), the joint density of  and  is given by 
							
						where  and . Using the transformation , with the Jacobian , we obtain the joint density as 
							
						where  and . To find the density of , we integrate the above expression with respect to  to get 
							
						Evaluation of the above expression using (40) yields the desired result.
8. Extended Matrix Variate Confluent Hypergeometric Function Distribution
This section defines the extended matrix variate confluent hypergeometric function distribution which is a generalization of the matrix variate confluent hypergeometric function type 1 distribution. We study several properties of this new distribution and its relationship with other known matrix variate distributions. We also show that this distribution occurs naturally as the distribution of the matrix quotient , where the  random matrices  and  are independent, the random matrix  has a matrix variate gamma distribution, and the random matrix  follows an extended matrix variate beta type 1 distribution.
Definition 37. An  positive definite random matrix  is said to have an extended matrix variate confluent hypergeometric function distribution with parameters , denoted by , if its pdf is given by 
							
						where , , , and .
For  (with an additional condition ), (112) reduces to the matrix variate confluent hypergeometric function density (see Gupta and Nagar [13]).
The extended matrix variate confluent hypergeometric function distribution can be derived as the distribution of the matrix quotient of independent gamma and extended beta matrices as given in the following theorem. First we define the matrix variate gamma distribution. The definition of matrix variate gamma distribution can be found in Gupta and Nagar [13] and Iranmanesh et al. [26].
Definition 38. An  random matrix  is said to have a matrix variate gamma distribution with parameters  and , denoted by , if its pdf is given by 
							
Theorem 39.  If    and  are independent, then .
Proof. As  and  are independent, from (106) and (113), the joint density of  and  is given by 
							
						where  and . Making the transformation , with the Jacobian , we find the joint density of  and  as 
							
						where  and . Now, the density of  is obtained by integrating the above expression with respect to  by using the integral representation (61).
Theorem 40.  Let the random variables  and  be independent, , and . Then,  has the density 
							
Proof. The joint density of  and  is given in (109). Using the transformation , with the Jacobian , we obtain the joint density of  and  as 
							
						where  and . Now, integration of  in the above expression by using (40) yields the desired result.
Corollary 41.  Let the random variables  and  be independent, , and . Then,  has the density 
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