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Abstract. 
Using notions of composita and composition of generating functions, we show an easy way to obtain explicit formulas for some current polynomials. Particularly, we consider the Meixner polynomials of the first and second kinds.



1. Introduction
There are many authors who have studied polynomials and their properties (see [1–10]). The polynomials are applied in many areas of mathematics, for instance, continued fractions, operator theory, analytic functions, interpolation, approximation theory, numerical analysis, electrostatics, statistical quantum mechanics, special functions, number theory, combinatorics, stochastic processes, sorting, and data compression.
The research area of obtaining explicit formulas for polynomials has received much attention from Srivastava [11, 12], Cenkci [13], Boyadzhiev [14], and Kruchinin [15–17].
The main purpose of this paper is to obtain explicit formulas for the Meixner polynomials of the first and second kinds.
In this paper we use a method based on a notion of composita, which was presented in [18].
Definition 1. Suppose  is the generating function, in which there is no free term . From this generating function we can write the following condition: The expression  is composita [19] and it is denoted by . Below we show some required rules and operations with compositae.
Theorem 2.  Suppose  is the generating function, and  is composita of , and  is constant. For the generating function  composita is equal to 
Theorem 3.  Suppose  is the generating function, and  is composita of , and  is constant. For the generating function  composita is equal to 
Theorem 4.  Suppose ,  are generating functions, and ,  are their compositae. Then for the composition of generating functions  composita is equal to 
Theorem 5.  Suppose ,  are generating functions, and  is composita of . Then for the composition of generating functions  coefficients of generating functions  are 
Theorem 6.  Suppose ,  are generating functions. Then for the product of generating functions  coefficients of generating functions  are 
In this paper we consider an application of this mathematical tool for the Bessel polynomials and the Meixner polynomials of the first and second kinds.
2. Bessel Polynomials
Krall and Frink [20] considered a new class of polynomials. Since the polynomials connected with the Bessel function, they called them the Bessel polynomials. The explicit formula for the Bessel polynomials is 
Then Carlitz [21] defined a class of polynomials associated with the Bessel polynomials by 
The  is defined by the explicit formula [22] and by the following generating function: 
Using the notion of composita, we can obtain an explicit formula (9) from the generating function (10).
For the generating function  composita is given as follows (see [19]): 
We represent  as the composition of generating functions , where 
Then, using rules (2) and (3), we obtain composita of : 
Coefficients of the generating function  are equal to 
Then, using (5), we obtain the explicit formula which coincides with the explicit formula (9).
3. Meixner Polynomials of the First Kind
The Meixner polynomials of the first kind are defined by the following recurrence relation [23, 24]: where 
Using (16), we obtain the first few Meixner polynomials of the first kind: 
The Meixner polynomials of the first kind are defined by the following generating function [22]: 
Using the notion of composita, we can obtain an explicit formula  from the generating function (19).
First, we represent the generating function (19) as a product of generating functions , where the functions  and  are expanded by binomial theorem: 
Coefficients of the generating functions  and  are, respectively, given as follows: 
Then, using (6), we obtain a new explicit formula for the Meixner polynomials of the first kind: 
4. Meixner Polynomials of the Second Kind
The Meixner polynomials of the second kind are defined by the following recurrence relation [23, 24]: where 
Using (23), we get the first few Meixner polynomials of the second kind: 
The Meixner polynomials of the second kind are defined by the following generating function [22]: 
Using the notion of composita, we can obtain an explicit formula  from the generating function (26).
We represent the generating function (26) as a product of generating functions , where 
Next we represent  as a composition of generating functions  and we expand  by binomial theorem: 
Coefficients of generating function  are 
The composita for the generating function  is given as follows (see [15]): 
Then composita of the generating function  equals 
Using (5), we obtain coefficients of the generating function : 
Therefore, we get the following expression: 
Next we represent  as a composition of generating functions , where 
We also represent  as a composition of generating functions , where
The composita for the generating function  is given as follows (see [19]): where  is the Stirling number of the first kind.
Then composita of generating function  equals 
The composita for the generating function  is given as follows (see [19]): 
Therefore, composita of generating function  is equal to 
Using rules (4) and (2), we obtain composita of generating function : 
Coefficients of generating function  are defined by 
Then, using rule (5), we obtain coefficients of generating function : 
After some transformations, we obtain the following expression: 
Therefore, using (6), we obtain a new explicit formula for the Meixner polynomials of the second kind: 
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