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Abstract. 
The order of appearance  of the positive integer  is the smallest positive integer  such that  divides , the th member of the Fibonacci sequence. In this paper, we improve upon some results from (Marques, 2011) concerning local minima of .



1. Introduction
Let  be the Fibonacci sequence given by , , and  for all . For a positive integer , let  be the order of appearance of  in the Fibonacci sequence, which is the minimal positive integer  such that . It is known that  always exists and in fact , where  is the sum of divisors of . Let us say that  is a local minimum for the function  if . It is not hard to prove that if  for some positive integer  (so ), then  is a local minimum for  (see Page 1 in [1]).
In Theorem 1.1 in [1], Marques exhibited a family of positive integers which are not members of the Fibonacci sequence but are local minima for . That family is where  is some fixed number depending on  which is not computable from the arguments in [1]. This problem was revisited in [2], where a different family of local minima is given; namely, where as before  depends on  and  and is not computable from the arguments in [2].
None of the above two families gives us too many examples. Indeed, let be  a large positive real number and put . Assume that . Then, using the Binet formulavalid for all integers , it follows that  is determined in at most  ways by a pair of parameters  with  such that where . Using the classical estimates on the summatory function of the number of divisors function we get thatBefore we formulate the main result of this paper we need one more notion. A prime factor  of  is called primitive if . A celebrated result of Carmichael [3] (see [4] for the most general result of this type) asserts that  always exists whenever . The main result of this paper is the following.
Theorem 1.  Let  and where  is a divisor of  subject to the following restrictions: (i);(ii)there exists a primitive prime factor  of  such that .Then  is a local minimum for . Furthermore, each such  is representable in a unique way as  for some integers  and  satisfying (i) and (ii) above, and  is not a Fibonacci number whenever .
The inequality  is valid for all positive integers  and . To prove it, fix , note that it trivially holds for , and then use induction on  and the recurrence formula for the Fibonacci numbers to show that it holds for all . In particular, . Thus, if , then where if we put  and , then  because . Additionally,  because  and . Further, the number  is clearly divisible by a primitive divisor of  (in fact, by any of the primitive divisors of ). This argument shows that the set  is contained in the set of numbers  satisfying the conditions of Theorem 1. Now Theorem 1 says that in fact the parameter  from  can always be taken to be . Putting  for the set of numbers satisfying the conditions of Theorem 1, we have the following estimate.
Theorem 2.  The estimate  where .
Theorem 2 implies that the counting function of local minima  exceeds  for any positive constant  (compare with (5)). In particular, the series diverges for all .
2. Proof of Theorem 1
Suppose that . Then  and the only divisors  of  satisfying (i) of Theorem 1 is . Now one checks that , , ,  are all larger than . One does not even have to compute the above orders of appearance; one only has to factor the first  members of the Fibonacci sequence in order to convince oneself that none of them is a multiple of  or of  or of  or of . From now on, .
Assume that  satisfies the conditions of Theorem 1. Then . Indeed, , so . On the other hand, if  for some positive integer , then (ii) of Theorem 1 shows that  for some prime  with ; therefore . Thus, . Assume now that  for some . We then get an equation of the formfor some positive integers  and . Since we get soLet us see that in fact . Indeed, if , then multiplying both sides of (10) by , we get . This implies first that  and secondly that But this conclusion is impossible because it leads, by (13), to which is false for . Hence, . Since for , together with inequality (13), we get . We will use the inequalityvalid for all integers . We then have, using inequality (17) with  and , respectively, that so  for some integer . Using Binet formula (3) with  and , respectively, (10) is equivalent to which can be regrouped asThe number  is an algebraic integer in  which is not zero; otherwise , which is impossible for positive integers . Thus, the norm of  over  is an integer which is at least  in absolute value. Hence, givingInserting (22) into (20) and using also (17), we get where we used the fact that  for . The above inequality leads to the conclusion that  satisfies the inequalityHowever, the largest root of the quadratic polynomial from the left-hand side above is  for , so quadratic (24) in  cannot be negative for , which is a contradiction.
The remaining assertions of the theorem are easy. To see unicity, assume that  are two representations of the same  satisfying conditions (i) and (ii) of the theorem. If , then  and we are through. If , suppose without loss of generality that . Then, by (ii), there is some primitive prime factor  of  which divides . Since  is primitive for  it cannot divide , which is a multiple of , a contradiction. In particular, if  and , then  cannot have another representation of the form  with  (so ), so it cannot be a Fibonacci number.
The theorem is therefore proved.
3. Proof of Theorem 2
Let  be large and let  be such thatSince  by (17), it follows that any number  satisfying the conditions of Theorem 1 with  satisfying (25) is in . We now choose  maximal satisfying inequality (25) of the form where  denotes the sequence of all primes. By the Prime Number Theorem, we have as , showing that  as . By the Prime Number Theorem again, we get thatas . Now let  be a divisor of . For large , we have ; therefore , so condition (i) from Theorem 1 is satisfied. Condition (ii) is also satisfied and in fact any primitive prime factor of  will divide , which is a divisor of . Now by the Primitive Divisor Theorem, for every divisor  of ,  has a primitive prime factor  which of course divides . This shows that  has at least distinct prime factors, where  denotes the number of divisors of the positive integer . Hence, the number of such convenient ’s is at least as large as the number of square-free integers built up with prime factors from a set of  distinct primes, and this number is at least as large as Thus, where  satisfies estimate (28), which leads to the desired conclusion of the theorem.
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