Research Article

Homotopic Chain Maps Have Equal s-Homology and d-Homology

M. Z. Kazemi-Baneh

Department of Mathematics, University of Kurdistan, P.O. Box 416, Sanandaj 66177-15175, Iran

Correspondence should be addressed to M. Z. Kazemi-Baneh; zaherkazemi@uok.ac.ir

Received 21 September 2015; Accepted 15 November 2015

Academic Editor: Aloys Krieg

Copyright © 2016 M. Z. Kazemi-Baneh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The homotopy of chain maps on preabelian categories is investigated and the equality of standard homologies and d-homologies of homotopic chain maps is established. As a special case, if X and Y are the same homotopy type, then their nth d-homology R-modules are isomorphic, and if X is a contractible space, then its nth d-homology R-modules for $n \neq 0$ are trivial.

1. Introduction and Preliminaries

It is known that the homotopic chain maps of abelian groups or more generally of R-modules have the same homologies; see [1, 2]. In this paper, the homotopy of chain maps on preabelian categories is investigated and it is proved that homotopic chain maps have the same s-homologies and the same d-homologies.

To this end, for a pointed category \mathcal{C}, following the notation of [3], we recall the following.

(i) For $f : A \to B$, the maps $k_f, \pi_f, p_f : A \to A, k_f, \pi_f, p_f : A \to B, c_f, \pi_f, p_f : B \to C_f$, and $P_f, \pi_f, p_f : C_f \to A$ are, respectively, the kernel, the cokernel, and the kernel pair of f; see [4, 5].

(ii) The image I_f of f is the coequalizer of the kernel pair of f. In a homological category, $I_f \cong \text{Cer}(k_f)$; see [4].

(iii) For a pair of maps $A \xrightarrow{f,g} B$, the maps $	ext{Equ}(f,g) \xrightarrow{\text{eq}} A$ and $B \xrightarrow{\text{cof}(f,g)} \text{Cer}(f,g)$ are, respectively, the equalizer and the coequalizer of (f,g).

(iv) Given the diagram below in which the squares are commutative and the rows are coequalizers, i is the unique map making the right square commute. Furthermore, i is a regular epi.

\begin{equation}
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{r} & & \downarrow{1_B} \\
A' & \xrightarrow{g'} & B
\end{array}
\end{equation}

\begin{equation}
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{\alpha} & & \downarrow{\beta} \\
A' & \xrightarrow{f'} & B'
\end{array}
\end{equation}

(v) For a category \mathcal{C} with a zero object, kernels, kernel pairs, and coequalizers of kernel pairs, the arrow category \mathcal{C} of \mathcal{C} has as objects the morphisms of \mathcal{C} and as morphisms from $f : A \to B$ to $f' : A' \to B'$ the pairs (α, β) of morphisms of \mathcal{C}, making the following square commutative:
And the pair-chain category $\hat{\mathcal{C}}$ of \mathcal{C} has as objects the pair-chains, that is, the composable pairs, (f, g), of morphisms of \mathcal{C}, such that $gf = 0$, and as morphisms from (f, g) to (f', g') the triple (α, β, γ) of morphisms of \mathcal{C}, making the following squares commutative:

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{a} & & \downarrow{\beta} \\
A' & \xrightarrow{f'} & B'
\end{array} \quad \text{and} \quad
\begin{array}{ccc}
C & \xrightarrow{g} & \ast \\
\downarrow{\gamma} & & \downarrow{} \\
C' & \xrightarrow{g'} & \ast
\end{array}
$$

Being functor of the following items are investigated and established in [3].

(iii) The kernel functor $K : \hat{\mathcal{C}} \to \mathcal{C}$ takes $(\alpha, \beta) : f \to f'$ to the left vertical arrow in the following commutative diagram:

$$
\begin{array}{ccc}
K_f & \xrightarrow{k_f} & A \\
\downarrow{K(\alpha, \beta)} & & \downarrow{a} \\
K_{f'} & \xrightarrow{k_{f'}} & A'
\end{array}
$$

(vii) The image functor $I : \hat{\mathcal{C}} \to \mathcal{C}$ takes $(\alpha, \beta) : f \to f'$ to the left vertical arrow in the following commutative diagram:

$$
\begin{array}{ccc}
A & \xrightarrow{e_f} & I_f \\
\downarrow{\alpha} & & \downarrow{I(\alpha, \beta)} \\
A' & \xrightarrow{e_{f'}} & I_{f'}
\end{array}
$$

(xii) Let $\mathcal{C} = R\text{mod}$ and $d = rpr_1 + spr_2 = + (r \times s)$ with $r, s \in R$. Let (f, g) be a pair-chain. Then, $R_{fg} = \{[a, b] \in K^2 | ra + sb \in I_f, j^* \text{ is the inclusion},$ and $H_{fg} = K_g(I_{fg} - j_f(R_{fg})) = \{[a] : a \in K_g\}$, where $[a] = [b] | r(a - b) \in (r + s)K_g + I_f$ is the equivalence class under the equivalence relation $a \sim b$ if and only if $\exists m, n \in K_g$ such that $a - b = m - n$ and $rm + sn \in I_f$.

(xiii) As a special case of above example, for $d = +(r \times 1)$ or $d = +(1 \times r)$ with $r \in R$, we have $H_{fg} = K_g((1 + r)K_g + I_f)$.

We call the homology which is defined in [2, 4] the standard homology.

(xiv) The standard homology or s-homology functor H^s takes $(f, g) \in \mathcal{C}$ to $\text{Coker}(j_{fg})$, and for a pair-chain map $(\alpha, \beta, \gamma) : (f, g) \to (f', g')$, we have the following commutative diagram:

$$
\begin{array}{ccc}
K_g & \xrightarrow{q} & H_{fg} \\
\downarrow{K(\alpha, \beta)} & & \downarrow{K(\alpha, \beta, \gamma)} \\
K_g' & \xrightarrow{q'} & H_{f'g'}
\end{array}
$$

where $q = \text{coker}(j_{fg})$ and $q' = \text{coker}(j_{f'g'})$.

2. Homotopy

Definition 1. Let \mathcal{C} be an additive category. Two morphisms

$$
(f, g) \xrightarrow{(\alpha, \beta, \gamma)} (f', g')
$$

are homotopic if there exists a commutative diagram:}

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{a} & & \downarrow{\beta} \\
A' & \xrightarrow{f'} & B'
\end{array} \quad \text{and} \quad
\begin{array}{ccc}
C & \xrightarrow{g} & \ast \\
\downarrow{\gamma} & & \downarrow{} \\
C' & \xrightarrow{g'} & \ast
\end{array}
$$

\end{align*}

In a pointed regular (homological, semiabelian, or abelian) category, f_{fg} is monic; see [3, 4].
in C are said to be homotopic whenever there is a pair of morphisms (h, h') in C, as in the diagram below, such that $f' h + h' g = \beta - \beta'$; see [2],

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{\alpha} & & \downarrow{g} \\
A' & \xrightarrow{f'} & B'
\end{array}
$$

Theorem 2. Let C be a preabelian category. If the maps (α, β, γ) and $(\alpha', \beta', \gamma')$ in C are homotopic, then $H^d(\alpha, \beta, \gamma) = H^d(\alpha', \beta', \gamma')$.

Proof. Consider

$$
(k_g j_{f', g'} e_f h + h' g) k_g = (\beta - \beta') k_g,
$$

$$
(k'_g j_{f', g'} e_f h k_g) k_g = (k(\beta, \gamma) - k(\beta', \gamma'))
$$

since $q' j_{f', g'} = 0$ we have $q'(k(\beta, \gamma) - k(\beta', \gamma')) = 0$.

$$
(H^d(\alpha, \beta, \gamma) - H^d(\alpha', \beta', \gamma'))q = 0, H^d(\alpha, \beta, \gamma) = H^d(\alpha', \beta', \gamma')
$$

Lemma 3. Let C be a pointed category with pullbacks and pushouts and let d be a kernel transformation in C. There is a natural transformation $p : H^d \to H^d : \check{C} \rightarrow C$. Furthermore, p is pointwise regular epic.

Proof. Let $d : S \circ K \to K$ be a natural transformation. For $(f, g) \in \check{C}$ and $h : I_f \to 0$, $I_f = K_1$. Factoring $f = m e_f$ and using the morphism $(m, 0) : h \to g$, naturality of d yields, $jd_h = d_g j$, and so $d_g(j, 0) = d_g(1, 0) = jd_h(1, 0)$. Setting $r = d_g(1, 0)$, we get $d_g(j, 0) = jr$. So, there exists a unique map ψ, such that the triangles in the following diagram commute:

$$
\begin{array}{ccc}
I_f & \xrightarrow{\psi} & K_g \\
\downarrow{\alpha} & & \downarrow{d_g} \\
R_{f g} & \xrightarrow{d_g} & I_f
\end{array}
$$

Therefore, $j = pr_1(j, 0) = pr_1 j^* \psi = j_1 \psi$ and $0 = pr_2(j, 0) = pr_2 j^* \psi = j_2 \psi$ so that $q j = q pr_1 j^* \psi = q pr_2 j^* \psi = q 0 = 0$. Then, there is a unique morphism $p_{fg} : H^g f \to H^g f'$ such that $p_{fg} c_j = q$; that is, the following diagram commutes:

$$
\begin{array}{ccc}
I_f & \xrightarrow{\psi} & K_g \\
\downarrow{\alpha} & & \downarrow{d_g} \\
R_{f g} & \xrightarrow{d_g} & I_f
\end{array}
$$

We have $p_{f', g} H^d(\alpha, \delta, \zeta) c_j = p_{f', g} c_j K(\delta, \zeta) = q_{f'} \psi K(\delta, \zeta)$ and $p_{f', g} H^d(\alpha, \delta, \zeta) p_{fg} c_j = H^d(\alpha, \delta, \zeta) p_{fg} c_j$. Since c_j is epic, $p_{f', g} H^d(\alpha, \delta, \zeta) q_{fg} = H^d(\alpha, \delta, \zeta) p_{fg} c_j$ and the right parallelogram commutes. Then, the following diagram commutes:

$$
\begin{array}{ccc}
K_g & \xrightarrow{q_{fg}} & H^d \\
\downarrow{c_j} & & \downarrow{p_{fg}} \\
H^d(\alpha, \delta, \zeta) & \xrightarrow{\psi} & H^d(\alpha, \delta, \zeta)
\end{array}
$$

and so $p : H^d \to H^d : \check{C} \rightarrow C$ is a natural transformation.

Theorem 4. Let C be a preabelian category. If (α, β, γ) and $(\alpha', \beta', \gamma')$ are homotopic, then $H^d(\alpha, \beta, \gamma) = H^d(\alpha', \beta', \gamma')$.
Proof. The equalities $p_{f+g} = q$, $p_{f'} = q'$, $H^d(\alpha, \beta, \gamma)q = q'K(\alpha, \beta)$, and $H^d'(\alpha', \beta', \gamma')q = q'K(\alpha', \beta')$ and the facts that p is regular epic and standard homologies are equal imply $H^d(\alpha, \beta, \gamma) = H^d'(\alpha', \beta', \gamma')$ as desired.

Definition 5. Let \mathcal{C} be a pointed category. A chain complex in \mathcal{C} is a differential graded object of \mathcal{C} of degree -1 as

$$\cdots \rightarrow C_{n+1} \xrightarrow{\nu_{n+1}} C_n \xrightarrow{\nu_n} C_{n-1} \rightarrow \cdots \tag{16}$$

in which $\nu_n \nu_{n+1} = 0$ for all $n \in \mathbb{Z}$ and a chain map $f_* : C_* \rightarrow D_*$ is a graded map $\{f_n : C_n \rightarrow D_n : n \in \mathbb{Z}\}$ as in the following diagram, in which all the squares commute:

$$\cdots \rightarrow C_{n+1} \xrightarrow{\nu_{n+1}} C_n \xrightarrow{\nu_n} C_{n-1} \xrightarrow{\nu_{n-1}} \cdots \tag{17}$$

$$\cdots \rightarrow D_{n+1} \xrightarrow{\mu_{n+1}} D_n \xrightarrow{\mu_n} D_{n-1} \xrightarrow{\mu_{n-1}} \cdots$$

These chain complexes and chain maps form a category that is denoted by $C_*(\mathcal{C})$.

Definition 6. Let \mathcal{C} be an additive category and $C_* \xrightarrow{f_*} D_*$ two maps in $C_*(\mathcal{C})$; one says f_* is chain homotopic to g_* if there is a morphism $h_* : C_* \rightarrow D_*$ of degree 1 as

$$\cdots \rightarrow C_{n+1} \xrightarrow{\nu_{n+1}} C_n \xrightarrow{\nu_n} C_{n-1} \xrightarrow{\nu_{n-1}} \cdots \tag{18}$$

$$\cdots \rightarrow D_{n+1} \xrightarrow{\mu_{n+1}} D_n \xrightarrow{\mu_n} D_{n-1} \xrightarrow{\mu_{n-1}} \cdots$$

such that $\mu_n h_n + h_{n-1} \nu_n = f_n - g_n$.

Corollary 7. Let \mathcal{C} be a preabelian category and let f_* and g_* be homotopic in $C_*(\mathcal{C})$. Then, $H^d(f_*) = H^d(g_*)$ and $H^d'(f_*) = H^d'(g_*)$.

By the above theorems, $H^d(f_*) = H^d(g_*)$ and $H^d'(f_*) = H^d'(g_*)$, where $H_n(f) = H(f_{n+1}, f_n, f_{n-1})$.

Let Top, $\text{Set}^{\Delta^\text{op}}$, $\text{Rmod}^{\Delta^\text{op}}$, $\text{C}_* \text{Rmod}$, and $g\text{Rmod}$ be, respectively, categories of topological spaces, simplicial sets, simplicial R-modules, chain complexes of R-modules, and graded R-modules, and let $S_{\Delta^\text{op}} : \text{Top} \rightarrow \text{Set}^{\Delta^\text{op}}$, $\Delta^{\text{op}} : \text{Set}^{\Delta^\text{op}} \rightarrow \text{Rmod}^{\Delta^\text{op}}$, $\text{C}_* \text{Rmod} \rightarrow g\text{Rmod}$ be, respectively, singular functor, induced functor by free generator functor $F : \text{Set} \rightarrow \text{Rmod}$, chain complexes generator functor, and d-homology functor. If $X \in \text{Top}$, then the singular d-homology of X is $H^d_*(X) = H^d_* o C_* o F^{\Delta^\text{op}} o S_{\Delta^\text{op}}(X)$. R is PID.

Example 8. If $X \xrightarrow{f} Y$ is homotopic continuous maps, then $H^d(f) = H^d_*(g) : H^d_*(X) \rightarrow H^d_*(Y)$.

Example 9. Let 1 be a terminal object in Top. Since $H^d_*(1) = 0$ for $n \neq 0$ and the natural transformation $p : H^d \rightarrow H^d : \overline{\mathcal{C}} \rightarrow \mathcal{C}$ is pointwise regular epic, $H^d_*(1) = 0$ for $n \neq 0$ and $H^d_0(1) = R/(j_1 - j_2)(R_{00})$ in which $R_{00} = Ker(d_0)$.

Let SimC_x be simplicial complexes and let $S_* : \text{SimC}_x \rightarrow \text{Set}^{\Delta^\text{op}}$ be the simplicial functor. If $(K, S) \in \text{SimC}_x$, then the simplicial d-homology of (K, S) is $H^d_*(X) = H^d_* o C_* o F^{\Delta^\text{op}} o S_*(K, S)$.

Example 10. Let $(1, 1)$ be a terminal object in SimCx. Then, $H_n^1(1, 1) = 0$ for $n \neq 0$.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References
