A Note on Primitivity of Ideals in Skew Polynomial Rings of Automorphism Type

Edilson Soares Miranda

Departmento de Ciências, Centro de Ciências Exatas, Universidade Estadual de Maringá, 87360-000 Goioerê, PR, Brazil

Correspondence should be addressed to Edilson Soares Miranda; esmiranda@uem.br

Received 4 March 2016; Accepted 11 May 2016

Academic Editor: Kaiming Zhao

Copyright © 2016 Edilson Soares Miranda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We extend results about primitive ideals in polynomial rings over nil rings originally proved by Smoktunowicz (2005) for \(\sigma \)-primitive ideals in skew polynomial rings of automorphism type.

1. Introduction

Throughout this paper \(R \) denotes an associative ring but does not necessarily have an identity element and \(\sigma : R \to R \) an automorphism of \(R \), unless otherwise stated. We denote by \(R[x; \sigma] \) the skew polynomial rings of automorphism type whose elements are polynomials \(\sum_{i=0}^{n} a_i x^i \), \(a_i \in R \), for every \(i \geq 0 \), with usual addition and the following multiplication: \(xa = \sigma(a)x \) for all \(a \in R \).

An ideal \(I \) is said to be a Jacobson ring if every prime ideal of \(R \) is an intersection of (either left or right) primitive ideals of \(R \). In [1], Smoktunowicz proved that if \(R \) is a nil ring and \(I \) an ideal of \(R[x] \), then \(R[x]/I \) is Jacobson radical if and only if \(R[x]/I' \) is Jacobson radical, where \(I' \) is the ideal of \(R \) generated by coefficients of polynomial from \(I \). Also if \(R \) is a nil ring and \(I \) is a primitive ideal of \(R[x] \), then \(I = M[x] \) for some ideal \(M \) of \(R \) and affirmative answer to this question is equivalent to the Kôthe conjecture. Our main results state that if \(R \) is a nil ring and \(I \) an ideal of \(R[x; \sigma] \), then \(R[x; \sigma]/I \) is \(\sigma \)-Jacobson radical if and only if \(R[x; \sigma]/I' \) is \(\sigma \)-Jacobson radical, where \(I' \) is the ideal of \(R \) generated by coefficients of polynomial from \(I \). Also if \(R \) is a nil ring and \(I \) is a \(\sigma \)-primitive ideal of \(R[x; \sigma] \), then \(I = M[x; \sigma] \) for some ideal \(M \) of \(R \). This result includes, as particular cases, all the above results.

Now we recall some terminology and results; see [2–4]. A right ideal \(Q \) of a ring \(R \) is called modular in \(R \) if and only if there exists an element \(b \in R \) such that \(a - ba \in Q \) for every \(a \in R \). An ideal \(I \) of a ring \(R \) is said to be a \(\sigma \)-invariant if and only if \(\sigma(I) = I \). An ideal \(P \) of \(R \) is said to be a right \(\sigma \)-primitive in \(R \) if and only if there exists a modular maximal right ideal \(\sigma \)-invariant \(Q \) of \(R \) such that \(P \) is the maximal ideal contained in \(Q \). For \(f \in R[x; \sigma] \), \(\deg(f) \) denotes the degree of \(f \) and \(\text{lc}(f) \) the leading coefficient of \(f \).

2. Results

We begin with the following results that extend ([1, Lemma 1]) and the proof is also similar to the one in the paper.

Lemma 1. Let \(R \) be a ring, \(I \) a right ideal of \(R \), \(f \in J[x; \sigma] \), \(Q \) a right ideal of \(R[x; \sigma] \), and \(b \in R[x; \sigma] \) such that \(a - ba \in Q \) for every \(a \in R[x; \sigma] \). If \(b - fx \), then, for every \(i \geq 1 \), there are \(f_i \in J[x; \sigma] \) such that \(b - f_x^i \in Q \) and \(\deg(f_i) \leq \deg(f) \).

Proof. We proceed by induction on \(n \). If \(n = 1 \), we put \(f_1 = f \). Suppose the lemma holds for some \(n \geq 1 \). Let

\[
 f_n = a_0 + a_1 x + \cdots + a_k x^k \in J[x; \sigma],
\]

with \(b - f_n x^n \in Q \) and \(k \leq \deg(f) \). Consider

\[
 f_{n+1} = f \sigma(a_0) + a_1 + a_2 x + \cdots + a_k x^{k-1} \in J[x; \sigma].
\]

Since \(b - fx \in Q \), then \(fx = b + q, q \in Q \). Thus

\[
 b - f_{n+1} x^{n+1} = b - f_n x^n + (a_0 - ba_0) x^n - qa_0 x^n \in Q.
\]
We denote by R' the usual extension of R to a ring with identity and by σ again the natural extension of σ to R'.

The next lemma extends ([1, Lemma 2]).

Lemma 2. Let I be an ideal of $R[x;\sigma]$ with $\sigma(I) = 1$ and I a right ideal of R with $\sigma(J) = J$. Consider $p = a_0 + a_1 x + \cdots + a_k x^k \in I$, $k > 0$, and

$$ U = \sum_{i \in \mathbb{Z}} [x;\sigma] \sigma^i (a_k) R^1 [x;\sigma]. \quad (4) $$

(i) If $h \in U^l$, $l \geq 1$, and $\deg(h) \geq k$, then there exists $g \in U^{l-1}$ such that $h - g \in I$ and $\deg(g) < \deg(h)$.

(ii) Let Q be a right ideal of $R[x;\sigma]$, $b \in R[x;\sigma]$ such that $a - ba = b - ab \in Q$ for every $a \in R[x;\sigma]$, and $l \in Q$. If $b - fx = Q$ with $f \in [x;\sigma]$, $\deg(f) \geq 1$, and $b - g \in Q$, where $g \in U^{\deg(f)}$, then, for every $i > \deg(g)$, there exists $g_i \in [x;\sigma]$ such that $b - g_i x^i \in Q$ and $\deg(g_i) < k$.

Proof. (i) Let $h = c_0 + c_1 x + \cdots + c_t \in U^l$, $c_t \neq 0$, and $k \leq t$. We can write

$$ c_i = \sum_{j=0}^{m'} \alpha_j \beta_j, \quad \alpha_j \in U, \quad \beta_j \in U^{l-1}. \quad (5) $$

Then

$$ \alpha_j = \sum_{i=0}^{n_1} \left(t_{i,j} \sigma^i (a_k) u_{i,j} \right), \quad t_{i,j} \in I, \quad u_{i,j} \in R^1, \quad q_{i,j} \in \mathbb{Z}. \quad (6) $$

Hence

$$ c_i = \sum_{j=0}^{m'} \sum_{i=0}^{n_1} \left(t_{i,j} \sigma^i (a_k) u_{i,j} \beta_j \right) = \sum_{i=0}^{m} p_i \sigma^i (a_k) c_i q_i. \quad (7) $$

with $p_i \in I$, $e_i, q_i \in R^1$, $q_i \in U^{l-1}$, and $l_i \in \mathbb{Z}$. Put

$g = h - c_t x^t$

$$ + \sum_{i=0}^{m} p_i \left(\sigma^i (p) - \sigma^i (a_k) x^k \right) \sigma^{-k} (e_i q_i) x^{t-k}. \quad (8) $$

Therefore

$$ g - h = \sum_{i=0}^{m} p_i \left(\sigma^i (p) \right) \sigma^{-k} (e_i) \sigma^{-k} (q_i) x^{t-k} \in I. \quad (9) $$

Since $I[x;\sigma] U^{l-1} \subset U^{l-1}$ and $h \in U^{l-1}$, then $g \in U^{l-1}$ and $\deg(g) < \deg(h)$.

(ii) By Lemma 1, for every $i \geq 1$, there exists $f_i \in [x;\sigma]$ such that

$$ b - f_i x^i \in Q, \quad \deg(f_i) \leq \deg(f). \quad (10) $$

Consider

$$ g = \sum_{j=0}^{m} c_j x^j, \quad c_j \in U^{\deg(f)}. \quad (11) $$

For every $n > m$ denote

$$ h_n = \sum_{j=0}^{m} f_{n-j} \sigma^{n-j} (e_i) \in I[x;\sigma] \cap U^{\deg(f)}. \quad (12) $$

Note that $\deg(h_n) \leq \deg(f_{n-j}) \leq \deg(f)$; thus for every $i \geq 1$

$$ f_i x^i = b + q_i, \quad q_i \in Q. \quad (13) $$

Hence

$$ b - h_n x^n = b - \sum_{j=0}^{m} c_j x^j + \sum_{j=0}^{m} q_{n-j} x^j \in Q. \quad (14) $$

Because $b - g \in Q$ and $b - bg \in Q$, we have that, for every $n > t$, there exists $h_n \in U^{\deg(f) - 1} \subset I[x;\sigma]$ such that $b - h_n x^n \in Q$. If $\deg(h_n) \leq k$, then h_n is the g_0 required. If $\deg(h_n) \geq k$, by first part of this lemma, there exists

$$ \lambda_{n-1} \in U^{\deg(f) - 1} \subset I[x;\sigma] \quad (15) $$

such that $h_n - \lambda_{n-1} \in I$ and $\deg(\lambda_{n-1}) < \deg(h_n)$. Thus $b - \lambda_{n-1} x^n \in Q$ for all $n > m$. If $\deg(\lambda_{n-1}) < k$, then λ_{n-1} is the g_0 required. If $\deg(\lambda_{n-1}) \geq k$, using similar arguments as above, we can find $s \in \mathbb{N}$ such that

$$ \lambda_n \in U^{\deg(f) - 1} \subset I[x;\sigma] \quad (16) $$

with $b - \lambda_s x^s \in Q$ and $\deg(\lambda_s) \leq \deg(f) - s < k$ for every $n > m$. Hence λ_s is the g_0 required.

Lemma 3. Let Q be a right ideal of $R[x;\sigma]$ maximal in the set of all right ideals σ-invariants with $b \in R[x;\sigma]$ such that $a - ba = b - ab \in Q$ for all $a \in R[x;\sigma]$. Suppose $f \in R[x;\sigma]$ with $b - fx \in Q$ for some $j \geq 1$. If there is no right ideal I of R with $\sigma(I) = 1, J \subseteq Q$, and $J \neq I$, then there exists a positive integer s and $r \in R$ such that $if \in rR[x;\sigma]$ with $b - wx^m \in Q$, $m \geq 0$, and $\deg(w) \leq v$, then $lc(w) \in rR, lc(w)(Q \cap R) \subseteq Q$, and v is a good number for all $a \in rR$.

Proof. Let v be minimal positive integer such that there exists $w' = i_j + i_1 x + \cdots + i_x x^x \in R[x;\sigma]$ and $m \geq 1$ with $b - w' x^m \in Q$ and $\deg(w') = v$. It is clear that $r \notin Q$. If $\sigma = \sigma(r) - r \notin Q$, put $g = \sigma(w') - w'$ and

$$ A = \sum_{i \in \mathbb{Z}} \sigma^i (c) R^1. \quad (18) $$

Thus A is a right ideal of R with $\sigma(A) = A$ and $A \notin Q$. By assumption $A = R$, then $r = \sum_{i=0}^{x} \sigma^i (c) l_i$, where $l_i \in R^1$ and $q_i \in \mathbb{Z}$. Put

$$ t = w' + \sum_{i=0}^{x} \sigma^i (g) \sigma^{-v} (l_i). \quad (19) $$
Comparing the leading coefficients of \(w \)' and
\[
\sum_{i=0}^{k} \sigma^i(g)(\sigma^{-1}(t)),
\]
we have that
\[
b - tx^m \in Q, \quad \deg(t) \leq v - 1,
\]
which contradicts the minimality of \(v \). Therefore \(\sigma(r) - r \in Q \); consequently \(r \in \overline{R} \).

Suppose that \(rq \notin Q \) for some \(q \in R \cap Q \). Put \(g' = w' \sigma^{-1}(q) \in Q \); using similar arguments as above we can have a contradiction. Hence \(r(Q \cap R) \subseteq Q \).

If there exists \(w \in rR[x;\sigma] \) with \(b - wx^m \in Q \), \(j \geq 0 \), and \(\deg(w) \leq v \), then using similar arguments as above we can show that \(lc(w) \in \overline{R} \) and \(lc(w)(Q \cap R) \subseteq Q \). Moreover, if \(a \in \overline{R} \), then \(B = aR + Q \cap R \); we have that \(B \) is a right ideal of \(R \) with \(\sigma(B) = B \) and \(B \notin Q \).

By assumption \(B = aR + Q \cap R = R \). Thus \(w' = aw' + q' \), where \(w' \in R[x;\sigma] \), \(\deg(w') \leq \deg(w') \), and \(q' \in Q \). Therefore \(b - aw'x^m \in Q \). Consequently \(v \) is a good number for all \(a \in \overline{R} \).

Lemma 4. Let \(J \) be a right ideal \(R \) with \(\sigma(J) = J, J \notin Q \), and \(J \notin R \) such that for all sufficiently large \(n \) there are \(f_n \in]J[x;\sigma] \) such that \(b - f_nx^n \in Q \) and \(\deg(f_n) \leq v \). Put
\[
w' = i_0 + i_1x + \cdots + i_{v-1}x^{v-1} + rx^v \in]J[x;\sigma];
\]
with \(b - w'x^m \in Q, m \geq 0 \), and \(\deg(w') \leq v \). By Lemma 1 and minimality of \(v \) we have that \(r \notin Q \). Using the same ideas of Lemma 3, we have that \(r \in \overline{R} \) and \(r(Q \cap R) \subseteq Q \). Since \(r \in J \), we have that the first part of lemma is satisfied.

Let \(a \in \overline{R} \cap J \); we denote by \(B \) the right ideal of \(R \):
\[
B = \sum_{i \in \mathbb{Z}} a^i \sigma^i(B), \quad \sigma(B) = B, \quad B \subseteq J, \quad B \notin Q.
\]

For sufficiently large \(n \) there are \(g_n \in B[x;\sigma] \subseteq J[x;\sigma] \) such that \(b - g_nx^n \in Q \) and \(\deg(g_n) \leq v \). Put
\[
g_n = c_{n_0} + c_{n_1}x + \cdots + c_{n_v}x^v \in B[x;\sigma].
\]

For every \(0 \leq j \leq v \) we have that \(c_{n_j} = \sum_{i=0}^{m_j} \sigma^{l_i}a(l_i)h_i \), where \(h_i \in R \) and \(c_{n_j} \in \mathbb{Z} \). Consequently
\[
c_{n_j} = \sum_{i=0}^{m_j} (\sigma^{l_i}a - a)l_i + \sum_{i=0}^{m_j} l_i h_i.
\]

Since \(a \in \overline{R} \), we can write
\[
c_{n_j} = s_{n_j} + r_{n_j}, \quad s_{n_j} \in Q \cap R, \quad r_{n_j} \in R.
\]

Put \(h_n = r_{n_0} + r_{n_1}x + \cdots + r_{n_v}x^v \); therefore \(b - aha_{n}x^n \in Q \). Therefore \(v \) is a good number for all \(a \in \overline{R} \).

Lemma 5. Let \(Q \) be a right ideal of \(R[x;\sigma], b \in R[x;\sigma] \), such that \(a - ba \in Q \) for all \(a \in R[x;\sigma] \) and \(v \) is good number for all \(a \in \overline{R} \), where \(r \in \overline{R} \). Assume that for every \(w \in rR[x;\sigma] \) with \(b - wx^m \in Q, m \geq 0 \), and \(\deg(w) \leq v \) one has that \(lc(w) \in \overline{R} \) and \(lc(w)(Q \cap R) \subseteq Q \). If there are \(p \) and \(p' \in \overline{R} \) with
\[
(pR + Q \cap R) \cap (pR + Q \cap R) \subseteq Q,
\]
then \(v - 1 \) is a good number for \(r \).

Proof. Since \(v \) is a good number for \(p \) and \(p' \), then for every sufficiently large \(n \) there are \(g_n \in pR[x;\sigma] \) and \(g'_n \in p'R[x;\sigma] \) such that
\[
b - g_nx^n \in Q, \quad b - g'_nx^n \in Q.
\]
with \(\deg(g_n), \deg(g'_n) \leq v \). Consider
\[
g_n = p_n + p_n'x + \cdots + p_nx^v, \quad p_n \in pR,
\]
\[
g'_n = p'_n + p'_nx + \cdots + p'_nx^v, \quad p'_n \in p'R.
\]

Since \(p_n - p'_n \in Q \), then
\[
\left(pR + Q \cap R\right) \cap \left(p'R + Q \cap R\right) \subseteq Q,
\]
a contradiction.

Thus there exists sufficiently large \(i \in \mathbb{N} \) such that \(c = p_i - p'_i \in \overline{R} \); hence \(v \) is a good number for \(c \). Then for all sufficiently large \(n \) there are \(h_n \in R[x;\sigma] \) such that \(b - ch_nx^n \in Q \) and \(\deg(h_n) \leq v \). We denote
\[
h_n = r_{n_0} + r_{n_1}x + \cdots + r_{n_v}x^v.
\]

Consider
\[
k_n = c_{n_0} + (g_i - g_i) \sigma^{-1}(r_n) \in rR[x;\sigma].
\]

Since \(g_i - g_i \in Q \), then \(b - k_nx^v \in Q \). Moreover
\[
k_n = c_{n_0} - cr_{n_1}x + \sum_{j=0}^{v-1} \left(p_{i,j} - p_{i,j}
ight)x^j \sigma^{-1}(r_n).
\]

Consequently \(v - 1 \) is a good number for \(r \).

Theorem 6. Let \(R \) be a nil ring and let \(I \) be a \(\sigma \)-primitive ideal in \(R[x;\sigma] \). Then \(I = I'[x;\sigma] \), where \(I' \) is an ideal \(\sigma \)-invariant of \(R \).

Proof. Assume by contradiction that there are \(a_0, a_1, \ldots, a_k \in R \) with
\[
a_0 + a_1x + \cdots + a_kx^k \in I, \quad a_k \notin I.
\]
Since I is a σ-primitive ideal in $R[x;\sigma]$, there is a right ideal Q of $R[x;\sigma]$ with $\sigma(Q) = Q$ and $b \in R[x;\sigma]$ such that $a - ba \in Q$ for all $a \in R[x;\sigma]$. Moreover, Q is a maximal in the set of right ideals σ-invariants and J is the maximal ideal contained in Q. We have that $R[x;\sigma]x \notin Q$; otherwise $b \in R$, which is impossible because R is a nil ring. By definition of Q it follows that $R[x;\sigma]x + Q = R[x;\sigma]$.

If $b - \Delta x^i \in Q$ for some $i \geq 0$ with $h \in R[x;\sigma]$, then $\deg(h^i) \geq 1$. In fact, if $h \in R$, let $i \geq 1$ be the minimal positive integer with respect to $h^i \in Q$. Thus $(b - \Delta x^i)\sigma^{-i}(h^i - 1) \in Q$. Then $b\sigma^{-i}(h^i - 1) \in Q$; hence $\sigma^{-i}(h^i - 1) \in Q$. Consequently $h^i - 1 \in Q$, a contradiction.

Let J be a right ideal of R with $\sigma(J) = J$ and $J \notin Q$. We have that $J[x;\sigma]x + Q = R[x;\sigma]$. There exists $f \in J[x;\sigma]$ such that $b - fx \in Q$. Consider

$$U = \sum_{i \in \mathbb{Z}} \left(J[x;\sigma] \sigma^{-i}(a_k) R^1[x;\sigma] \right).$$

Since I is an ideal σ-prime and $a_k \notin I$, then $U \notin I$. Consequently $U \notin Q$, because I is the maximal ideal contained in Q. Then $U_{\deg(f)} + Q = R[x;\sigma]$. There exists $g^i \in U_{\deg(f)}$ such that $b - g^i \in Q$. By Lemma 2, for every $i \geq \deg(g^i)$, there are $g_i \in J[x;\sigma]$ such that $b - g_i x^i \in Q$ and $\deg(g_i) < k$. Lemmas 3 and 4 imply that there are $r^i \in R$ and $v' \geq 1$ such that if $w \in r' R[x;\sigma]$ with $b - uw^m \in Q$, $m \geq 1$, and $\deg(w) \leq v'$, then $l(w) \in r'' R$ and $l(w)(Q \cap R) \subseteq Q$. Moreover v' is a good number for all $a \in r'' R$. Let v be minimal such that v is a good number for all $a \in r'' R$. We have that $v \leq v'$. Let $r \in r'' R$. Since v is a good number for r, then for sufficiently large n there are $h_n \in R[x;\sigma]$, such that

$$b - rh_n x^n \in Q, \quad \deg(h_n) \leq v.$$

Consider $f_n = rh_n$, then $b - f_n x^n \in Q$ and $\deg(f_n) \leq v$. For some $i \in \mathbb{N}$, there are $f_i, f_{i+1}, \ldots, f_{i+k} \in R[x;\sigma]$, such that $b - f_j x^j \in Q$, $\deg(f_j) \leq v$, and $i \leq j \leq i + k$. Put

$$f_j = ra_j x + r\Delta, j \geq j, c_j = c_j x^j,$$

where $c_j = ra_j + r\Delta, j \geq j, c_j = c_j x^j \in R[x;\sigma]$ and $c_j = ra_j$. Since $\deg(f_j) \leq v \leq v'$, then $c_j \notin Q$. Moreover,

$$\sigma(c_j) - c_j \in Q, \quad c_j (Q \cap R) \subseteq Q.$$

Since R is a nil ring, consider $e_j = c_j x^j$, where n_j is a minimal with respect to the condition $c_j x^j \notin Q$. Thus $\sigma(e_j) - e_j \in Q$ for all $i \geq 0$. We have that

$$f_j \sigma^i(e_j) = g^i \sigma^i(e_j) + c_j \sigma^i \sigma^v(e_j) x^v$$

$$= g^i \sigma^i(e_j) + c_j \sigma^i \sigma^v(e_j) - e_j \sigma^v + c_j e_j x^v.$$

Put $t_j = g^i \sigma^i(e_j) \in R[x;\sigma]$, thus,

$$f_j \sigma^i(e_j) - t_j \in Q \quad \deg(t_j) \leq v - 1$$

for every $i \leq j \leq i + k$. Since $e_j \in \overline{r} R \subseteq \overline{r'' R}$, if $v - 1$ is not a good number for r, then Lemma 5 implies that

$$\bigcap_{j=1}^{i+k} \left(e_j R + Q \cap r'' R \right) \notin Q.$$

In this case, there exists $s \in \bigcap_{j=1}^{i+k} (e_j R + Q \cap r'' R)$ such that $s \notin Q$. Consequently $s - e_j d_j \in Q \cap r'' R$, $d_j \in R$, and $e_j d_j \in e_j R$. Then $s \in \overline{r'' R} \subseteq \overline{r'' R}$. Therefore v is a good number for s. Then for sufficiently large n there are $\overline{f}_n \in s R[x;\sigma]$, such that

$$b - \overline{f}_n x^n \in Q, \quad \deg(\overline{f}_n) \leq v.$$

Let

$$\overline{f}_n = \sum s b_{j_n} x^j.$$

Since $b - \overline{f}_n x^n \in Q$, $s - e_j d_j \in Q$, and $e_j d_j - be_j d_j \in Q$, then $(b - f_n x^n) e_j d_j \in Q$. Thus $be_j d_j - f_n x^n e_j d_j \in Q$; hence $s - f_n x^n e_j d_j \in Q$ for every $i \leq j \leq i + k$.

Let

$$\overline{g}_n = \sum_{i=0}^{v} \left(f_{i+1} \sigma^{i+1} \sigma^v \left(e_{i+1} \sigma^v d_i + h_i \right) x^{i+1} \right) \in r R[x;\sigma].$$

We have that $\overline{f}_n - \overline{g}_n x^n = (b - \overline{f}_n x^n) + (\overline{f}_n - \overline{g}_n)x^n \in Q$. Put

$$\overline{h}_n = \sum_{j=0}^{v} t_{i+j} \sigma^{i+j} \sigma^v \left(d_{i+j} + h_j \right) \in r R[x;\sigma].$$

We can write $b - \overline{h}_n x^{i+j} + v$ as

$$b - \sum_{j=0}^{v} \left(t_{i+j} - f_j \sigma^j \sigma^v \left(e_{i+j} \right) \sigma^v \left(d_{i+j} + h_j \right) \right) x^{i+j} \in r R[x;\sigma].$$

Thus for all sufficient large n

$$b - \overline{h}_n x^{i+j} \in Q, \quad \deg(\overline{h}_n) \leq v - 1.$$

Then $v - 1$ is a good number for all $r \in r'' R$. This contradicts the minimality of v. \hfill \Box

Recall that the σ-Jacobson radical $J_\sigma(R)$ of a ring R is defined as the intersection of all σ-primitive ideals of R. A ring R is a σ-Jacobson radical if and only if $R[x;\sigma]/I$ is σ-Jacobson radical.

Theorem 7. Let R be a nil ring and let I be an ideal of $R[x;\sigma]$. Consider \overline{I} the ideal of R generated by coefficients of polynomial from I. Then $R[x;\sigma]/\overline{I}[x;\sigma]$ is σ-Jacobson radical if and only if $R[x;\sigma]/I$ is σ-Jacobson radical.
Proof. Assume by contradiction that $R[x;\sigma]/I$ is not σ-Jacobson radical. Then there is a σ-primitive ideal P of $R[x;\sigma]/I$ such that $P \neq R[x;\sigma]/I$. We have that there is an ideal K of $R[x;\sigma]$ such that $P = K/I$. Therefore K is a σ-primitive ideal of $R[x;\sigma]$. By Theorem 6, there is an ideal \overline{P} of R such that $K = \overline{P}[x;\sigma]$. It is clear that $\overline{I} \subseteq \overline{P}$. Since

$$\frac{(R[x;\sigma]/\overline{I}[x;\sigma])}{(\overline{P}[x;\sigma]/\overline{I}[x;\sigma])} \cong \frac{R[x;\sigma]}{K},$$

then $\overline{P}[x;\sigma]/\overline{I}[x;\sigma]$ is a σ-primitive ideal, a contradiction. Using the fact that $I \subseteq \overline{I}[x;\sigma]$, the converse follows.

Corollary 8. If R is a nil ring, then the polynomial ring of type automorphism $R[x;\sigma]$ can not be homomorphically mapped onto a σ-simple σ-primitive ring.

Competing Interests

The author declares that they have no competing interests.

References

