Research Article
Quasi-Positive Delta Sequences and Their Applications in Wavelet Approximation

Shyam Lal and Susheel Kumar
Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India

Correspondence should be addressed to Susheel Kumar; susphdbhu@gmail.com
Received 24 June 2016; Accepted 26 September 2016

A sufficient literature is available for the wavelet error of approximation of certain functions in the L^2-norm. There is no work in context of multiresolution approximation of a function in the sense of sup-error. In this paper, for the first time, wavelet estimator for the approximation of a function $f \in \text{Lip}_\alpha[a,b]$ under supremum norm has been obtained. Working in this direction, four new theorems on the wavelet approximation of a function $f \in \text{Lip}_\alpha[a,b]$ have been estimated. The calculated estimator is best possible in wavelet analysis.

1. Introduction
Orthogonal wavelet is a new development in analysis but very useful in engineering and technology, especially in high-resolution images and signal processing due to their localization properties in time and frequency. Wavelet expansions are superior to classical orthogonal series like Fourier series. Some properties of wavelet expansions have been studied by Chui [1], Daubechies and Lagarias [2], Meyer [3], Walter [4, 5], Islam et al. [6], and so forth. The idea of approximation of various functional spaces under different norms is obtained by Lal and Kumar [7, 8], Abu-Sirhan [9], Coskun [10], and Shiri and Azadi Kenary [11] which gives the inspiration for the present work. But till now no work seems to have been done to obtain the wavelet approximation of a function $f \in \text{Lip}_\alpha[a,b]$ by $P_m f$ of its wavelet expansion and to discuss its convergence. In an attempt to make an advance study in this direction, in this paper, the best possible wavelet sup-error $E_m f$ of a function $f \in \text{Lip}_\alpha[a,b]$ by $P_m f$ of its wavelet expansion has been determined. The convergence of wavelet expansions has been also discussed.

2. Definitions and Preliminaries
2.1. Multiresolution Analysis. Let \mathbb{Z} be the set of all integers. A multiresolution analysis of $L^2(\mathbb{R})$ is defined as a sequence of closed subspaces V_j of $L^2(\mathbb{R})$, $j \in \mathbb{Z}$, with the following properties:

\begin{enumerate}
 \item $V_j \subset V_{j+1}$.
 \item $f(x) \in V_j \iff f(2x) \in V_{j+1}$.
 \item $f(x) \in V_0 \iff f(x+1) \in V_0$.
 \item $\bigcup_{j=-\infty}^{\infty} V_j$ is dense in $L^2(\mathbb{R})$ and $\bigcap_{j=-\infty}^{\infty} V_j = \{0\}$.
 \item Suppose a function $\phi \in V_0$ exists such that the collection $\{\phi(x-k); k \in \mathbb{Z}\}$ is a Riesz basis of V_0.
\end{enumerate}

Let $\psi \in L^2(\mathbb{R})$, and

$$
\psi_{j,k} = 2^{j/2} \psi \left(2^j x - k \right),
$$

$$
W_j = \text{clos} \left\{ \psi_{j,k} : k \in \mathbb{Z} \right\}.
$$

Then this family of subspaces of $L^2(\mathbb{R})$ gives direct sum decomposition of $L^2(\mathbb{R})$ in the sense that every $f \in L^2(\mathbb{R})$ has unique decomposition:

$$
f(x) = \cdots + g_{-2}(x) + g_{-1}(x) + g_0(x) + g_1(x) + \cdots,
$$

where $g_j \in W_j$ for all $j \in \mathbb{Z}$ and we describe this by writing

$$
L^2(\mathbb{R}) = \sum_{j=-\infty}^{\infty} W_j.
$$
where
\[V_j = \phi^{j-1}_{k=\infty} W_k. \]
(4)

\(\{\psi_{jk} : k \in \mathbb{Z}\} \) is a Riesz basis of \(W_k \).

A function \(\phi \in L^2(\mathbb{R}) \) is called a scaling function, if the subspaces \(V_j \) of \(L^2(\mathbb{R}) \) defined by
\[V_j = \text{clos}_{L^2(\mathbb{R})} \{\phi_{jk} : k \in \mathbb{Z}\}, \quad j \in \mathbb{Z} \]
(5)
satisfy properties (1) to (5) stated above in this section. It is important to note that the scaling function \(\phi \) generates a multi-resolution analysis \(\{V_j\} \) of \(L^2(\mathbb{R}) \) (Debnath [12]).

Following Walter [4], each \(f \in L^2(\mathbb{R}) \) has two representations
\[f(t) = \sum_{m=\infty}^{\infty} \sum_{n=\infty}^{\infty} \langle f, \psi_{mn} \rangle \psi_{mn}(t), \]
(6)
\[f(t) = \sum_{m=\infty}^{\infty} \langle f, \phi_{mn} \rangle \phi_{mn}(t) \]

\[+ \sum_{k=\infty}^{\infty} \sum_{n=\infty}^{\infty} \langle f, \psi_{kn} \rangle \psi_{kn}(t) \]
(7)

\[= (P_m f)(t) + (r_m f)(t), \]

where convergence is in sense of \(L^2(\mathbb{R}) \). The function \((P_m f) \in V_m \) and in fact is the projection of \(f \) onto \(V_m \). It is also given in terms of the kernel \(K_m(x, y) \) of \(V_m \) as
\[(P_m f)(x) = \int_{-\infty}^{\infty} K_m(x, t) f(t) \, dt. \]
(8)

The function \(K_m \) is given by
\[K_m(x, y) = 2^m K(2^m x, 2^m y), \]
(9)

where
\[K(x, y) = \sum_{n=\infty}^{\infty} \phi(x - n) \overline{\phi}(y - n), \]
(10)

\[1 = \int_{-\infty}^{\infty} \phi(x) \, dx = \sum_{n=-\infty}^{\infty} \phi(x - n). \]

It is remarkable to note that
\[K(x, y) = \sum_{n=\infty}^{\infty} \phi(x - n) \overline{\phi}(y - n) \]
(11)
\[K_m(x, y) = 2^m K(2^m x, 2^m y) \]

\[= 2^m \sum_{n=\infty}^{\infty} \phi(2^m x - n) \overline{\phi}(2^m y - n) \]
(12)
\[= \sum_{n=-\infty}^{\infty} 2^{m/2} \phi(2^m x - n) 2^{m/2} \overline{\phi}(2^m y - n). \]

Then
\[\int_{-\infty}^{\infty} K_m(x, y) \]

\[= \sum_{n=-\infty}^{\infty} 2^{m} \left(\int_{-\infty}^{\infty} \phi(2^m x - n) \, dx \right) \overline{\phi}(2^m y - n) \]

\[= \sum_{n=-\infty}^{\infty} \phi(2^m y - n). \]

2.2. Quasi-Positive Delta Sequences. If

(1) there is \(C > 0 \) such that \(\int_{-\infty}^{\infty} |\delta_m(x, y)| \, dx \leq C, \ y \in \mathbb{R}, \ m \in \mathbb{N}, \)

(2) \(\int_{-\infty}^{\infty} |\delta_m(x, y)| \, dx \to 1 \) uniformly on compact subset of \(\mathbb{R} \), as \(m \to \infty, \)

(3) for each \(y > 0, \)
\[\sup_{|x-y|\leq y} |\delta_m(x, y)| \to 0 \quad \text{as} \quad m \to \infty \]
(14)

then \(\{\delta_m(\cdot, y)\} \) is known as quasi-positive delta sequence of function.

An example of a quasi-positive delta sequence is the Fejer kernel,
\[F_m(x, y) \]

\[= \left(\frac{\sin^2 \left(\frac{(m+1/2)(x-y)}{2} \right)}{2(m+1) \pi \sin^2 \left(\frac{(x-y)}{2} \right)} \right) \chi_{[-\pi,\pi]}(x - y), \]
(15)

while a delta sequence that is not quasi-positive is the Dirichlet kernel of Fourier series,
\[D_m(x, y) = \frac{\sin \left(\frac{(m+1/2)(x-y)}{2} \right)}{2\pi \sin \left(\frac{(x-y)}{2} \right)} \chi_{[-\pi,\pi]}(x - y) \]
(16)

because \(\int_{-\infty}^{\infty} D_m(x, y) \, dx \) is not absolutely convergent.

2.3. Function of \(Lip_\alpha[a, b] \) Class. A function \(f \in Lip_\alpha[a, b] \) if
\[|f(x) - f(y)| = O \left(|x - y|^{\alpha} \right), \quad \text{for} \ 0 < \alpha < 1, \]
(17)
(Titchmarsh [13], p. 406).

Examples

(1) If \(f(x) = |x| \ \forall x \in [0, 1], \ f \in Lip_\alpha. \)

(2) If \(f(x) = 1/x \ \forall x \in (0, 1], \ f \notin Lip_1(0, 1]. \)

Let \(N \) be a positive integer. Let \(x = 1/N, \ y = 1/(N + 1) \), \(x, y \in (0, 1]. \)

Then \(x - y = 1/N - 1/(1+N) < 1/N \) and \(1/(x-y) > N. \)

Now, \(|f(x) - f(y)|/|x-y| = |N-(N+1)|/|x-y| = 1/|x-y| \geq N \)
\[|f(x) - f(y)| > N|x - y| \]
\[\therefore \ f \notin Lip_1(0, 1]. \]
Remarks
(1) If \(f \in \text{Lip}_\alpha [a, b] \) \(\alpha > 0 \), then \(f \) is continuous, indeed, uniformly continuous on \([a, b]\).
(2) \(\text{Lip}_\alpha \) class is a linear space over \(\mathbb{R} \) or \(\mathbb{C} \).
(3) If \(f \in \text{Lip}_\alpha \) \(\alpha > 1 \), then \(f \) is constant function.

2.4. Projection \(P_m f \). \(P_m f \), the orthogonal projection of \(L^2(\mathbb{R}) \) onto \(V_m \), is defined by
\[
P_m f = \sum_{k=-\infty}^{\infty} \langle f, \phi_{m,k} \rangle \phi_{m,k}, \quad m \in \mathbb{Z},
\] (18)
(Sweldens and Piessens [14]).

2.5. Wavelet Approximation. The wavelet approximation \(E_m(f) \) of a function \(f \) under supremum norm is defined by
\[
E_m(f) = \| f - P_m f \|_{\infty} = \sup_x |(f(x) - P_m f(x))|
\] (19)
(Zygmund [15], p. 114).
If \(E_m(f) \to 0 \) as \(m \to \infty \) then \(E_m(f) \) is called the best approximation of \(f \) of order \(m \) (Zygmund [15], p. 115).

3. Theorems
In this paper, we prove the following theorems.

Theorem 11. Let \(\phi \in L^2(\mathbb{R}) \) be a scaling function and \(\psi \in L^2(\mathbb{R}) \) be a basic wavelet satisfying the admissibility condition
\[
C_\psi = \int_{-\infty}^{\infty} \left| \frac{\psi(\omega)}{\omega} \right|^2 d\omega < \infty.
\] (20)
If a function \(f \in \text{Lip}_\alpha [a, b] \) is represented by its wavelet expansion as
\[
f(\cdot) = \sum_{n=-\infty}^{\infty} \langle f, \phi_{m,n} \rangle \phi_{m,n}(\cdot)
\] + \(\sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \langle f, \psi_{m,n} \rangle \psi_{m,n}(\cdot)
\] (21)
then the wavelet approximation \(E_m(f) \) of \(f \) by \(P_m f \) satisfies
\[
E_m(f) = \| f - P_m f \|_{\infty} = \sup_y |\langle f(y) - P_m f(y) \rangle|
\] (22)
Theorem 12. If a function \(f \in \text{Lip}_\alpha [a, b] \) and \(P_m f \) is the projection of \(f \) onto \(V_m \) then \(P_m f \to f \) as \(m \to \infty \) uniformly on \([a, b]\).

Theorem 13. If \(f \in \text{Lip}_\alpha [a, b] \) and
\[
f(\cdot) = (P_m f)(\cdot) + (r_m f)(\cdot)
\] (23)
then
\[
\| r_m f \|_{\infty} = O\left(\frac{1}{(m+1)^\alpha} \right), \quad 0 < \alpha \leq 1.
\] (24)
Theorem 14. If \(f \in \text{Lip}_\alpha [a, b] \),
\[
f(\cdot) = (P_m f)(\cdot) + (r_m f)(\cdot),
\] (25)
then \(r_m f \to 0 \) as \(m \to \infty \) uniformly on \([a, b]\).

4. Proofs
For the proof of our theorems, the following lemma is required.

Lemma 15. If \(K_m(x, y) = 2^m K(2^m x, 2^m y) \), \(x, y \in [a, b] \), then \(\{ K_m(\cdot, y) \}_{m=-\infty}^{\infty} \) is a quasi-positive delta sequence of functions in \(L^1(\mathbb{R}) \).

4.1. Proof of Lemma 15. Following the proof of Walter ([4] p. 113),
\[
\int_{-\infty}^{\infty} |K_m(x, y)| \, dx = C.
\] (26)
Let \(c > 0 \); then
\[
\int_{y-c}^{y+c} |K_m(x, y)| \, dx = 1 - \int_{-\infty}^{y-2^m c} |K(t, y)| \, dt
\] (27)
\[
- \int_{y+2^m c}^{\infty} |K(t, y)| \, dt
\]
\[
\int_{-\infty}^{y-2^m c} |K(t, y)| \, dt \to 0 \quad \text{as} \quad m \to \infty \quad \text{and} \quad \int_{y+2^m c}^{\infty} |K(t, y)| \, dt \to 0
\]
Thus, \(\int_{y-c}^{y+c} |K_m(x, y)| \, dx \to 1 \) as \(m \to \infty \) uniformly on \([a, b] \subset \mathbb{R} \) and \(\sup_{|x-y| > \frac{1}{(m+1)}} |K_m(x, y)| \to 0 \) as \(m \to \infty \), [4].

Therefore \(\{ K_m(x, y) \}_{m=-\infty}^{\infty} \) is a quasi-positive delta sequence of functions.

5. Proofs
5.1. Proof of Theorem 11. \((P_m f) \) is given by
\[
(P_m f)(y) = \sum_{n=-\infty}^{\infty} \langle f, \phi_{m,n} \rangle \phi_{m,n}(y)
\]
\[
= \sum_{n=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x) \overline{\phi_{m,n}(x)} \, dx \right) \phi_{m,n}(y)
\]
\[
= \int_{-\infty}^{\infty} f(x) \left(\sum_{n=-\infty}^{\infty} \phi_{m,n}(y) \overline{\phi_{m,n}(x)} \right) \, dx
\]
\[
= \int_{-\infty}^{\infty} f(x) \left(\sum_{n=-\infty}^{\infty} 2^{m/2} \phi(2^m y - n) 2^{m/2} \overline{\phi(2^m x - n)} \right) \, dx
\]
\[= \int_{-\infty}^{\infty} f(x) \cdot \left(\sum_{n=-\infty}^{\infty} 2^m \phi(2^m y - n) \phi(2^m x - n) \right) dx \]

\[= \int_{-\infty}^{\infty} f(x) 2^m K(2^m x, 2^m y) dx \]

\[= \int_{-\infty}^{\infty} K_m(x, y) f(x) dx \]

\[f(y) - (P_m f)(y) = f(y) - \int_{-\infty}^{\infty} K_m(x, y) f(x) dx \]

\[\cdot f(x) dx, \quad \int_{-\infty}^{\infty} K_m(x, y) dx = 1 \]

\[= \int_{-\infty}^{\infty} K_m(x, y) (f(y) - f(x)) dx \]

\[= \int_{-\infty}^{-y/(|m|+1)} K_m(x, y) (f(y) - f(x)) \]

\[+ \int_{-y/(|m|+1)}^{y/(|m|+1)} K_m(x, y) (f(y) - f(x)) dx \]

\[+ \int_{y/(|m|+1)}^{\infty} K_m(x, y) (f(y) - f(x)) \]

\[|f(y) - (P_m f)(y)| \leq \int_{-\infty}^{\infty} |K_m(x, y)| \]

\[\cdot |f(y) - f(x)| + \int_{y/(|m|+1)}^{y-1/(|m|+1)} |K_m(x, y)| \]

\[\cdot |(f(y) - f(x))| dx + \int_{y-1/(|m|+1)}^{\infty} |K_m(x, y)| \]

\[\cdot |(f(y) - f(x))| dx = I_1 + I_2 + I_3 \text{ say.} \]

Let \(x, y \in [a, b] \). Select \(m \) such that

\[y + \frac{1}{|m| + 1} < b, \]

\[x - \frac{1}{|m| + 1} > a. \]

Since it is known that

\[\sup_{x \in [y-1/(|m|+1), y+1/(|m|+1)]} |f(x) - f(y)| \]

\[\leq \left| f \left(y + \frac{1}{|m| + 1} \right) - f(y) \right| \]

\[+ \left| f \left(y - \frac{1}{|m| + 1} \right) - f(y) \right| \]

\[= M_1 \left(\frac{1}{|m| + 1} \right)^\alpha + M_2 \left(\frac{1}{|m| + 1} \right)^\alpha, \quad f \in \text{Lip}_\alpha \]

\[= (M_1 + M_2) \frac{1}{(|m| + 1)^\alpha} \] where \(M_1 > 0, M_2 > 0 \)

therefore

\[I_2 = \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} |K_m(x, y)| \left| (f(x) - f(y)) \right| dx \]

\[\leq \frac{M_1 + M_2}{(|m| + 1)^\alpha} \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} |K_m(x, y)| dx \]

\[\leq \frac{M_1 + M_2}{(|m| + 1)^\alpha} \int_{-\infty}^{\infty} |K_m(x, y)| dx = \frac{(M_1 + M_2) C}{(|m| + 1)^\alpha}, \]

\[C > 0 \] by Lemma 15.

Next,

\[I_1 + I_3 = \int_{-\infty}^{\infty} \left| K_m(x, y) \right| \left| f(y) - f(x) \right| dx \]

\[+ \int_{y-1/(|m|+1)}^{\infty} \left| K_m(x, y) \right| \left| f(y) - f(x) \right| dx \]

\[= \int_{a}^{b} \left| K_m(x, y) \right| \left| f(y) - f(x) \right| dx \]

\[\leq \sup_{|x-y| \geq 1/(|m|+1)} \left| K_m(x, y) \right| \]

\[\cdot \left(\int_{y-1/(|m|+1)}^{y+1/(|m|+1)} \frac{M_3}{(|m| + 1)^\alpha} \left(dx + \int_{y+1/(|m|+1)}^{\infty} dx \right) \right), \]

\[M_3 > 0 \]

\[\leq \sup_{|x-y| \geq 1/(|m|+1)} \left| K_m(x, y) \right| \]

\[\cdot \frac{M_3}{(|m| + 1)^\alpha} \left((b-a) - \frac{2}{|m| + 1} \right), \]

\[\leq \frac{M_3 (b-a) C_1}{(|m| + 1)^\alpha}, \quad C_1 > 0. \]

\(\{K_m(x, y)\} \) is a quasi-positive delta sequence of function.

Now, collecting (50), (31), and (32), we have

\[|f(y) - (P_m f)(y)| \leq \frac{M_3 (b-a) C_1}{(|m| + 1)^\alpha} + \frac{(M_1 + M_2) C}{(|m| + 1)^\alpha} \]
\[M_3 (b-a) C_1 + (M_1 + M_2) C (|m|+1)^\alpha \]
\[= O \left(\frac{1}{(|m|+1)^\alpha} \right). \tag{33} \]

Thus
\[\|f - P_m f\|_\infty = \sup_{y \in [a,b]} |f(y) - P_m f(y)| \]
\[= O \left(\frac{1}{(|m|+1)^\alpha} \right). \tag{34} \]

Remark 16 (the converse of Theorem 11 is also true). Choose \(x, y \in [a, b] \) such that \(x - 1/(|m|+1), y + 1/(|m|+1) \in [a, b] \) and \(|y-x| = d/(|m|+1), d > 0 \).

\[
\begin{align*}
|f(x) - f(y)| & = |(f(x) - (P_m f)(x)) + (P_m f)(x) - (P_m f)(y)| \\
& \leq |f(x) - (P_m f)(x)| + |(P_m f)(x) - (P_m f)(y)| \\
& \leq \sup_{x \in [a, b]} |f(x) - (P_m f)(x)| + \sup_{y \in [a, b]} |(P_m f)(x) - (P_m f)(y)| \\
& \leq \sup_{x \in [a, b]} \|P_m f\|_\infty \|x - y\|_\infty
\end{align*}
\]
\[= O \left(\frac{1}{(|m|+1)^\alpha} \right) + O \left(\frac{1}{(|m|+1)^\alpha} \right).
\[= O \left(\frac{x - y}{(|m|+1)^\alpha} \right). \tag{35} \]

Since \(|f(x) - f(y)| = O|x - y|^{\alpha} \), therefore \(f \in \text{Lip}_\alpha[a, b] \). Hence, Theorem 11 is completely established.

5.2. Proof of Theorem 12. By the proof of Theorem 11
\[\|P_m f - f\|_\infty = O \left(\frac{1}{(|m|+1)^\alpha} \right). \tag{36} \]

Since,
\[\frac{1}{(|m|+1)^\alpha} \to 0 \quad \text{as} \quad m \to \infty, \tag{37} \]

therefore,
\[\|P_m f - f\|_\infty \to 0 \quad \text{as} \quad m \to \infty. \tag{38} \]

Thus,
\[P_m f \to f \quad \text{as} \quad m \to \infty \quad \text{uniformly on} \quad [a,b]. \tag{39} \]

Hence, Theorem 12 is completely established.

5.3. Proof of Theorem 13. Since,
\[f(x) = P_m f(x) + r_m f(x) \tag{40} \]
therefore,
\[r_m f(x) = f(x) - P_m f(x), \]
\[\|r_m f\|_\infty = \|f - P_m f\|_\infty \]
\[= O \left(\frac{1}{(|m|+1)^\alpha} \right), \quad \text{by Theorem 11.} \tag{41} \]

Hence, Theorem 13 is completely established.

5.4. Proof of Theorem 14. Following the proof of Theorem 13,
\[\|r_m f\|_\infty \to 0 \quad \text{as} \quad m \to \infty, \tag{43} \]

therefore,
\[r_m f \to 0 \quad \text{as} \quad m \to \infty \quad \text{uniformly on} \quad [a,b]. \tag{44} \]

Hence, Theorem 14 is completely established.

6. Notes

(1) \(E_m(f) \to 0 \) as \(m \to \infty \) in Theorem 11; the wavelet approximations determined in this theorem are best possible in wavelet analysis (Zygmund, [15], p. 115).

(2) Define a function \(\phi : [0, 1] \to \mathbb{R} \) by
\[\phi(t) = |t - 1|^{\alpha} - |t^{\alpha} - 1| \quad \forall t \in [0, 1], \quad 0 < \alpha < 1 \]
\[= (1-t)^{\alpha} - (1-t^{\alpha}) \]
\[= (1-t)^{\alpha} + t^{\alpha} - 1 \quad \forall t \in [0, 1]. \]
\[\therefore \phi'(t) = -\alpha (1-t)^{\alpha-1} + \alpha t^{\alpha-1} \quad \forall t \in (0, 1) \]
\[= \alpha \left(\frac{1}{t^{1-\alpha}} - \frac{1}{(1-t)^{1-\alpha}} \right) \tag{45} \]
\[\therefore \phi'(t) > 0, \quad \forall t \in \left(0, \frac{1}{2}\right) \]
\[= 0, \quad t = \frac{1}{2} \]
\[< 0, \quad \forall t \in \left(\frac{1}{2}, 1\right). \]
Therefore ϕ is monotonic increasing in $(0, 1/2)$ and monotonic decreasing in $(1/2, 1)$

\[\therefore \phi(t) \geq \phi(0) = \phi(1) = 0 \quad \forall t \in (0, 1) \]

\[\therefore |t - 1|^{\alpha} - |t^{\alpha} - 1| \geq 0 \]

(46)

Thus,

\[\left| \frac{x}{y} - 1 \right|^{\alpha} \geq \left| \frac{x^{\alpha}}{y^{\alpha}} - 1 \right| , \]

\[t = \frac{x}{y}, \]

\[0 < x, y < 1. \]

Hence \(|x - y|^{\alpha} \geq |x^{\alpha} - y^{\alpha}| \)

that is \(|x^{\alpha} - y^{\alpha}| \leq |x - y|^{\alpha} \quad \forall x, y < 1 \) \quad (48)

A function \(f : [a, b] \to \mathbb{R} \) is defined by \(f(x) = (1 - x^{2})^{\alpha} \), \(0 < \alpha < 1 \), \(\forall x \in [a, b] \subset [0, 1] \).

\[|f(x) - f(y)| = \left| (1 - x^{2})^{\alpha} - (1 - y^{2})^{\alpha} \right| \]

\[\leq \left| (1 - x^{2}) - (1 - y^{2}) \right|^{\alpha}, \]

\[|x^{\alpha} - y^{\alpha}| \leq |x - y|^{\alpha} \]

\[= \left| x^{2} - y^{2} \right|^{\alpha} = |x - y|^{\alpha} |x + y|^{\alpha} \]

\[\leq |x - y|^{\alpha} |x|^{\alpha} |x + y|^{\alpha} \]

\[= 2^{\alpha} \left(|a|^{\alpha} + |b|^{\alpha} \right) |x - y|^{\alpha} \]

\[= O \left(\frac{1}{|m| + 1} \right) \] \quad (49)

\[\therefore f \in \text{Lip}_{\alpha}, \quad 0 < \alpha < 1. \]

For this function,

\[\left| f(y) - P_{m}f(y) \right| \leq \int_{y}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| \left| f(x) - f(y) \right| dx \]

\[+ \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| \left| (f(y) - f(x)) \right| dx \]

\[+ \int_{y+1/(|m|+1)}^{\infty} \left| K_{m}(x, y) \right| \left| (f(y) - f(x)) \right| dx \]

\[= I_{1} + I_{2} + I_{3} \text{ say.} \]

Then

\[I_{2} = \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| |x - y|^{\alpha} |x + y|^{\alpha} dx \]

\[\leq 2^{\alpha} \left(|a|^{\alpha} + |b|^{\alpha} \right) \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| |x - y|^{\alpha} dx, \]

\[\leq 2^{2\alpha} \left(|a|^{\alpha} + |b|^{\alpha} \right) \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| |x - y|^{\alpha} dx, \]

\[\leq \frac{2^{2\alpha} (|a|^{\alpha} + |b|^{\alpha})}{(m + 1)^{\alpha}} \int_{y-1/(|m|+1)}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| dx, \]

\[\leq \frac{2^{2\alpha} (|a|^{\alpha} + |b|^{\alpha})}{(m + 1)^{\alpha}} \int_{-\infty}^{\infty} \left| K_{m}(x, y) \right| dx = \frac{2^{2\alpha} (|a|^{\alpha} + |b|^{\alpha})}{(m + 1)^{\alpha}} \int_{-\infty}^{\infty} \left| K_{m}(x, y) \right| dx = 1 \]

\[= O \left(\frac{1}{(m + 1)^{\alpha}} \right) \] \quad (50)

\[I_{1} + I_{3} = \int_{a}^{b} \left| K_{m}(x, y) \right| \left| f(y) - f(x) \right| dx \]

\[+ \int_{y+1/(|m|+1)}^{y+1/(|m|+1)} \left| K_{m}(x, y) \right| \left| f(y) - f(x) \right| dx \]

\[\leq \sup_{|x-y| \leq 1/(|m|+1)} \left| K_{m}(x, y) \right| 2^{\alpha} \left(|a|^{\alpha} + |b|^{\alpha} \right) \]

\[\cdot \left(\int_{y}^{y+1/(|m|+1)} dx + \int_{y+1/(|m|+1)}^{\infty} dx \right) \]

\[\leq \sup_{|x-y| \leq 1/(|m|+1)} \left| K_{m}(x, y) \right| 2^{\alpha} \left(|a|^{\alpha} + |b|^{\alpha} \right) (b - a) \]

\[= O \left(\frac{1}{(m + 1)^{\alpha}} \right). \] \quad (51)

Hence

\[\sup_{y \in [a,b]} \left| f(y) - P_{m}f(y) \right| = O \left(\frac{1}{(m + 1)^{\alpha}} \right). \] \quad (52)

\[\| f(y) - P_{m}f(y) \|_{\infty} = O(1/(m + 1)^{\alpha}). \]

Thus, the result of Theorem 11 is verified for a function f defined by $f(x) = (1 - x^{2})^{\alpha}$, \(0 < \alpha < 1 \).

(3) \textit{Hölder class}: Let $C_{2\pi}$ denote the Banach spaces of all 2π periodic continuous functions under sup-norm. For each $0 < \alpha \leq 1$ and some positive constant k, the function space H_{α} is defined by

\[H_{\alpha} = \left\{ f \in C_{2\pi} : |f(x) - f(y)| \leq k |x - y|^{\alpha} \right\} \] \quad (54)

(Das et al. [16] p. 83). Let $f \in H_{\alpha}$. Then

\[|f(x) - f(y)| = k |x - y|^{\alpha} = O \left(|x - y|^{\alpha} \right) \] \quad (55)

\[\therefore f \in \text{Lip}_{\alpha}. \]
The function $f(x) = (1 - x^3)^\alpha$, $0 < \alpha < 1$, $\forall x \in [0, 1]$. It is continuous and belonging to Lip_α but $f(x + 2\pi) \neq f(x)$. Then $f \notin \mathcal{H}_\alpha$.

Thus $\mathcal{H}_\alpha \subsetneq \text{Lip}_\alpha$.

Theorem 11 is also valid for a function $f \in \mathcal{H}_\alpha$.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

Shyam Lal is thankful to DST-CIMS for encouragement to this work. Susheel Kumar is grateful to CSIR (India) in the form of Junior Research Fellowship with Ref. no. 19-06/2011 (i)EU-IV dated 03-10-2011 for this research work.

References

Submit your manuscripts at http://www.hindawi.com