Research Article

New Results on the (Super) Edge-Magic Deficiency of Chain Graphs

Ngurah Anak Agung Gede¹ and Adiwijaya²

¹Department of Civil Engineering, Universitas Mercade Malang, Jl. Taman Agung No. 1, Malang 65146, Indonesia
²School of Computing, Telkom University, Jl. Telekomunikasi No. 1, Bandung 40257, Indonesia

Correspondence should be addressed to Adiwijaya; kang.adiwijaya@gmail.com

Received 3 February 2017; Accepted 29 May 2017; Published 12 July 2017

1. Introduction

Let G be a finite and simple graph, where $V(G)$ and $E(G)$ are its vertex set and edge set, respectively. Let $n = |V(G)|$ and $e = |E(G)|$ be the number of the vertices and edges, respectively. In [1], Kotzig and Rosa introduced the concepts of edge-magic labeling and edge-magic graph as follows: an edge-magic labeling of a graph G is a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, n + e\}$ such that $f(x) + f(xy) + f(y)$ is a constant for every edge $xy \in E(G)$. An edge-magic labeling f of a graph G with $f(V(G)) = \{1, 2, 3, \ldots, v\}$ is called a super edge-magic labeling. Furthermore, the edge-magic deficiency of a graph G, $\mu(G)$, is defined as the smallest nonnegative integer n such that $G \cup nK_1$ has an edge-magic labeling. Similarly, the super edge-magic deficiency of a graph G, $\mu_s(G)$, is either the smallest nonnegative integer n such that $G \cup nK_1$ has a super edge-magic labeling or ∞ if there exists no such integer n. In this paper, we investigate the (super) edge-magic deficiency of chain graphs. Referring to these, we propose some open problems.

1. Chain Graphs

A chain graph is a graph with blocks B_1, B_2, \ldots, B_k such that, for every i, B_i and B_{i+1} have a common vertex in such a way that the block-cut-vertex graph is a path. We will denote the chain graph with k blocks B_1, B_2, \ldots, B_k by $C[B_1, B_2, \ldots, B_k]$. If $B_1 = \cdots = B_k = B$, we will write $C[B_1, B_2, \ldots, B_k]$ as $C[B^{(t)}]$. If, for every i, $B_i = H$ for a given graph H, then $C[B_1, B_2, \ldots, B_k]$ is denoted by kH-path. Suppose that $c_1, c_2, \ldots, c_{k-1}$ are the consecutive cut vertices of $C[B_1, B_2, \ldots, B_k]$. The string of $C[B_1, B_2, \ldots, B_k]$ is $(k-2)$-tuple $(d_1, d_2, \ldots, d_{k-2})$, where d_i is the distance between c_i and c_{i+1}, $1 \leq i \leq k-2$. We will write $(d_1, d_2, \ldots, d_{k-2})$ as $(d^{(p)}, d_{t+1}, \ldots, d_{k-2})$, if $d_1 = \cdots = d_t = d$.

For any integer $m \geq 2$, let $L_m = P_m \times P_2$. Let TL_m and DL_m be the graphs obtained from the ladder L_m by adding a single diagonal and two diagonals in each rectangle of L_m, respectively. Thus, $|V(TL_m)| = |V(DL_m)| = 2m$, $|E(TL_m)| = 4m - 3$, and $|E(DL_m)| = 5m - 4$. TL_m and DL_m are called triangle ladder and diagonal ladder, respectively.

Recently, the author studied the (super) edge-magic deficiency of kDL_m-path, $C[K_1^{(k)}]$, DL_m, $K_1^{(n)}$, and K_4-path with some strings. Other results on the (super) edge-magic
deficiency of chain graphs can be seen in [4]. The latest developments in this area can be found in the survey of graph labelings by Gallian [5]. In this paper, we further investigate the (super) edge-magic deficiency of chain graphs whose blocks are combination of TL_m and DL_m and K_4 and TL_m, as well as the combination of C_4 and L_m. Additionally, we propose some open problems related to the (super) edge-magic deficiency of these graphs. To present our results, we use the following lemmas.

Lemma 1 (see [6]). A graph G is a super edge-magic graph if and only if there exists a bijective function f : V(G) → \{1,2,...,v\} such that the set S = {f(x) + f(y) : xy ∈ E(G)} consists of e consecutive integers.

Lemma 2 (see [2]). If G is a super edge-magic graph, then e ≤ 2v − 3.

2. Main Results

For k ≥ 3, let G = C[B_1,B_2,...,B_k], where B_i = TL_m when j is odd and B_j = DL_m when j is even. Thus G is a chain graph with |V(G)| = (2m−1)k+1 and |E(G)| = (1/2)(k+1)(4m−3)+ (1/2)(k−1)(5m−4) when k is odd, or |E(G)| = (k/2)(4m−3)+(k/2)(5m−4) when k is even. By Lemma 2, it can be checked that G is not super edge-magic when m ≥ 3 and k is even and when m ≥ 4 and k is odd. As we can see later, when m = 3 and k is odd, G is super edge-magic. Next, we investigate the super edge-magic deficiency of G. Our first result gives its lower bound. This result is a direct consequence of Lemma 2, so we state the result without proof.

Lemma 3. Let k ≥ 3 be an integer. For any integer m ≥ 3,

\[μ_s(G) \geq \begin{cases} \frac{1}{4}k(m-3) + 1, & \text{if } k \text{ is even,} \\ \frac{1}{4}(k(m-3)-(m-1)) + 1, & \text{if } k \text{ is odd.} \end{cases} \]

Notice that the lower bound presented in Lemma 3 is sharp. We found that when m is odd, the chain graph G with particular string has the super edge-magic deficiency equal to its lower bound as we state in Theorem 4. First, we define vertex and edge sets of B_i as follows.

V(B_i) = \{u^i_j, v^i_j : 1 ≤ i ≤ m\}, for 1 ≤ j ≤ k, E(B_j) = \{u^i_jv^{i+1}_j, v^i_jv^{i+1}_j : 1 ≤ i ≤ m-1\} ∪ {e}; where e is either u^i_jv^{i+1}_j or v^i_jv^{i+1}_j, 1 ≤ i ≤ m−1, for 1 ≤ j ≤ k, when j is odd, and E(B_j) = \{u^i_jv^{i+1}_j, v^i_jv^{i+1}_j, v^i_jv^{i+1}_j, v^i_jv^{i+1}_j : 1 ≤ i ≤ m−1\} ∪ {u^i_jv^{i+1}_j : 1 ≤ i ≤ m}, for 1 ≤ j ≤ k, when j is even.

Theorem 4. Let k ≥ 3 be an integer and G = C[B_1,B_2,...,B_k] with string (m−1,d_1,m−1,d_2,m−1,...,d_{(1/2)(k−3)},m−1) when k is odd or (m−1,d_1,m−1,d_2,...,m−1,d_{(1/2)(k−2)}) when k is even, where d_1,d_2,...,d_{(1/2)(k−2)} ∈ \{m−1,m\}. For any odd integer m ≥ 3,

\[μ_s(G) = \begin{cases} \frac{1}{4}k(m-3) + 1, & \text{if } k \text{ is even,} \\ \frac{1}{4}(k-1)(m-3), & \text{if } k \text{ is odd.} \end{cases} \]

Proof. First, we define G as a graph with vertex set V(G) = \bigcup_{j=1}^{k} V(B_j), where u^m_j = v^{i+1}_j, 1 ≤ j ≤ k − 1, and edge set E(G) = \bigcup_{j=1}^{k} E(B_j). Under this definition, u^m_j = v^{i+1}_j, 1 ≤ j ≤ k − 1, are the cut vertices of G.

Next, for 1 ≤ i ≤ m and 1 ≤ j ≤ k, define the labeling f : V(G)∪αK_1 → {1,2,3,...,2m−1}k+1+α, where α = (1/4)(k(m−3)+1) when k is even or α = (1/4)(k−1)(m−3) when k is odd, as follows:

\[f(x) = \begin{cases} \frac{1}{4}((j-1)(9m-7) + 2i - 1), & \text{if } x = u^i_j \text{, } j \text{ is odd,} \\ \frac{1}{4}((j-1)(9m-7) + 2i), & \text{if } x = v^{i+1}_j \text{, } j \text{ is odd,} \\ \frac{3}{4}((j-1)(9m-7) + 2i), & \text{if } x = v^{i+1}_j \text{, } j \text{ is even,} \\ \frac{3}{4}((j-1)(9m-7) + 2i-1), & \text{if } x = u^i_j \text{, } j \text{ is even,} \end{cases} \]

where β = (1/4)(j−2)(9m−7)+2m.

Under the vertex labeling f, it can be checked that no labels are repeated, f(u^m_j) = f(v^{i+1}_j), 1 ≤ j ≤ k − 1, \{f(x) + f(y) : xy ∈ E(G)\} is a set of |E(G)| consecutive integers, and the largest vertex label used is (1/4)(k−2)(9m−7)+(1/2)(9m−3) when k is even or (1/4)(k−1)(9m−7)+2m when k is odd. Also, it can be checked that f(u^i_j) + f(v^{i+1}_j) = f(v^{i+1}_j) + f(u^{i+1}_j) = f(v^{i+1}_j) + f(u^{i+1}_j) when j is odd.

Next, label the isolated vertices in the following way.

Case k Is Odd. In this case, we denote the isolated vertices with \{z^i_{2j-1} : 1 ≤ l ≤ (1/2)(m-3), 1 ≤ j ≤ (1/2)(k-1)\} and set f(z^i_{2j-1}) = f(v^{m}_j) + 5l.

Case k Is Even. In this case, we denote the isolated vertices with \{z^i_{2j-1} : 1 ≤ l ≤ (1/2)(m-3), 1 ≤ j ≤ k/2\} and set f(z^i_{2j-1}) = f(v^{m}_j) + 5l + f(z_0) = f(v^{m}_k) + 1.

By Lemma 1, f can be extended to a super edge-magic labeling of G∪αK_1 with the magic constant (k/4)(27m−21)+5 when k is even or (1/4)(k−1)(27m−21)+6m when k is odd. Based on these facts and Lemma 3, we have the desired result.

An example of the labeling defined in the proof of Theorem 4 is shown in Figure 1(a).

Notice that when m = 3 and k is odd, \mu_s(G) = 0. In other words, the chain graph G with string (2,d_1,2,d_2,2,...,d_{(1/2)(k−3)},2), where d_1 ∈ {2,3}, is super edge-magic.
when \(m = 3 \) and \(k \) is odd. Based on this fact and previous results, we propose the following open problems.

Open Problem 1. Let \(k \geq 3 \) be an integer. For \(m = 2 \), decide if there exists a super edge-magic labeling of \(G \). Further, for any even integer \(m \geq 2 \), find the super edge-magic deficiency of \(G \).

Next, we investigate the super edge-magic deficiency of the chain graph \(H = C[K_4^{(p)}], TL_m, K_4^{(q)}] \) with string \((1^{(p-1)}, d, 1^{(q-1)})\), where \(d \in \{m-1, m\} \). \(H \) is a graph of order \(3(p+q) + 2m \) and size \(6(p+q) + 4m - 3 \). We define the vertex and edge sets of \(H \) as follows: \(V(H) = \{a_i, b_i; 1 \leq i \leq p\} \cup \{c_i; 1 \leq i \leq p + 1\} \cup \{u_j, v_j; 1 \leq j \leq m\} \cup \{x_j, y_j; 1 \leq j \leq t \leq q\} \cup \{z_j; 1 \leq t \leq q+1\} \), where \(c_{p+1} = u_1 \) and \(v_m = z_1 \), and \(E(H) = \{a_i b_i, a_i c_i, a_i c_{i+1}, b_i c_i, b_i c_{i+1}, c_i c_{i+1}; 1 \leq i \leq p\} \cup \{u_j v_j; 1 \leq j \leq m\} \cup \{u_j u_{j+1}, v_j v_{j+1}; 1 \leq j \leq m-1\} \cup \{e_i; e_i \text{ is either } u_j v_{j+1} \text{ or } v_j u_{j+1}, 1 \leq j \leq m-1\} \cup \{x_j y_j, x_j x_{j+1}, x_j z_{j+1}, y_j z_j, y_j z_{j+1}, z_j z_{j+1}; 1 \leq t \leq q\} \). Hence, the cut vertices of \(H \) are \(c_i, 2 \leq i \leq p + 1 \), and \(z_j, 1 \leq t \leq q \). Notice that \(H \) has string \((1^{(p-1)}, m-1, 1^{(q-1)})\), if at least one of \(e_j \) is \(u_j v_{j+1} \), and its string is \((1^{(p-1)}, m, 1^{(q-1)})\), if \(e_j = v_j u_{j+1} \) for every \(1 \leq j \leq m-1 \).

Theorem 5. For any integers \(p, q \geq 1 \) and \(m \geq 2 \), \(\mu_s(H) = 0 \).

Proof. Define a bijective function \(g : V(H) \to \{1, 2, 3, \ldots, 3(p+q) + 2m\} \) as follows:

\[
g(x) = \begin{cases}
3i - 2, & \text{if } x = a_i, 1 \leq i \leq p, \\
3i, & \text{if } x = b_i, 1 \leq i \leq p, \\
3i - 1, & \text{if } x = c_i, 1 \leq i \leq p + 1, \\
3p + 2j, & \text{if } x = u_j, 1 \leq j \leq m, \\
3p + 2j - 1, & \text{if } x = v_j, 1 \leq j \leq m, \\
3p + 2m + 3t - 2, & \text{if } x = x_j, 1 \leq t \leq q, \\
3p + 2m + 3t, & \text{if } x = y_j, 1 \leq t \leq q, \\
3p + 2m + 3t - 4, & \text{if } x = z_j, 1 \leq t \leq q + 1.
\end{cases}
\]

Under the labeling \(g \), it can be checked that \(g(c_{p+1}) = g(u_1) \) and \(g(v_m) = g(z_1) \). Also, it can be checked that \(g(u_j) + g(v_{j+1}) = g(u_{j+1}) + g(v_j), 1 \leq j \leq m - 1, \) and \(|g(x) + g(y)|, xy \in E(H) = \{3, 4, 5, \ldots, 6(p+q) + 4m - 1\} \). By Lemma 1, \(g \) can be extended to a super edge-magic labeling of \(H \) with the magic constant \(9(p+q) + 6m \). Hence, \(\mu_s(H) = 0 \).

Open Problem 2. For any integers \(p, q \geq 1 \) and \(m \geq 2 \), find the super edge-magic deficiency of \(C[K_4^{(p)}], TL_m, K_4^{(q)}] \) with string \((1^{(p-1)}, d, 1^{(q-1)})\), where \(d \in \{1, 2, 3, \ldots, m - 2\} \).
Proof. Let $V(L_m) = \{u_i, v_i : 1 \leq i \leq m\}$ and $E(G) = \{u_iu_{i+1}, v_i v_{i+1} : 1 \leq i \leq m-1\} \cup \{u_i v_{i+1} : 1 \leq i \leq m\}$ be the vertex set and edge set, respectively, of L_m. It is easy to verify that the labeling $h : V(L_m) \cup E(L_m) \to \{1, 2, 3, \ldots, 5m-2\}$ is a bijection and, for every $xy \in E(L_m)$, $h(x)+h(xy)+h(y) = 6m$.

Thus, $\mu(L_m) = 0$ for every $m \geq 2$.

Theorem 6. For any integer $m \geq 2$, $\mu(L_m) = 0$.

Next, we study the edge-magic deficiency of ladder L_m and chain graphs whose blocks are combination of C_4 and L_m with some strings. In [6], Figueroa-Centeno et al. proved that the ladder L_m is super edge-magic for any odd m and suspected that L_m is super edge-magic for any even $m > 2$. Here, we can prove that L_m is edge-magic for any $m \geq 2$ by showing its edge-magic deficiency is zero. The result is presented in Theorem 6.

Theorem 7. Let p and $q \geq 1$ be integers.

(a) If $m \geq 2$ is an even integer and $F_1 = C[C_4^{(p)} , L_m , \epsilon_4^{(q)}] \text{ with string } (2^{(p-1)}, m, 2^{(q-1)})$, then $\mu(F_1) = 0$.

(b) If $m \geq 3$ is an odd integer and $F_2 = C[C_4^{(p)} , L_m , \epsilon_4^{(q)}] \text{ with string } (2^{(p-1)}, m-1, 2^{(q-1)})$, then $\mu(F_2) = 0$.

Proof. (a) First, we introduce a constant λ as follows: $\lambda = 1$, if m is odd and $\lambda = 2$, if m is even. Next, we define F_1 as a graph with $V(F_1) = \{a_i, b_i : 1 \leq i \leq p\} \cup \{c_i, d_i : 1 \leq i \leq p+1\} \cup \{u_i, v_i : 1 \leq j \leq m\} \cup \{x_j, y_j : 1 \leq j \leq q\} \cup \{z_i, t_i : 1 \leq i \leq q+1\}$, where $c_{p+1} = v_1$ and $u_m = z_1$, and $E(H) = \{c_1a_1, c_1b_1, a_1a_2, b_1b_2, a_1c_2, b_1d_2, a_2c_3, b_2d_3, \ldots, a_{p+1}c_p, b_{p+1}d_p\}$. The cut vertices of F_1 are $c_{i+1}, 2 \leq i \leq p$, and $z_{1}, 1 \leq i \leq q+1$.

Next, define a bijection $f_2 : E(F_1) \cup E(F_2) \to \{1, 2, 3, \ldots, 7(p+q) + 5m - 2\}$ as follows:

\[
f_1(x) = \begin{cases}
4(p+q) + 3m + i - 1, & \text{if } x = a_i, 1 \leq i \leq p, \\
p + q + m + i, & \text{if } x = b_i, 1 \leq i \leq p, \\
i, & \text{if } x = c_i, 1 \leq i \leq p + 1, \\
5p + 4q + 3m + 1 \frac{1}{2}(j - 1), & \text{if } x = u_j, j \text{ is odd}, \\
p + j, & \text{if } x = u_j, j \text{ is even}, \\
p + j, & \text{if } x = v_j, j \text{ is odd}, \\
2p + q + m + j \frac{1}{2}, & \text{if } x = v_j, j \text{ is even}, \\
5p + 4q + y_1 + t, & \text{if } x = x_t, 1 \leq t \leq q, \\
2p + q + y_2 + t, & \text{if } x = y_t, 1 \leq t \leq q, \\
5p + m + t - 1, & \text{if } x = z_t, 1 \leq t \leq q + 1, \\
4(p+q) + 3m + 1 - 2i, & \text{if } x = c_ia_i, 1 \leq i \leq p, \\
7(p+q) + 5m - 2i, & \text{if } x = c_ia_i, 1 \leq i \leq p, \\
4(p+q) + 3m - 2i, & \text{if } x = c_ia_i, 1 \leq i \leq p, \\
7(p+q) + 5m - 1 - 2i, & \text{if } x = c_ia_i, 1 \leq i \leq p, \\
2p + 4q + 3m + 1 \frac{1}{2}(j + 1), & \text{if } x = u_{j+1}, j \text{ is odd}, \\
2p + 4q + 3m + 1 \frac{1}{2}(j), & \text{if } x = u_{j+1}, j \text{ is even}, \\
5p + 7q + 5m + 1 \frac{1}{2}(j + 1), & \text{if } x = v_{j+1}, j \text{ is odd}, \\
5p + 7q + 5m - 1 \frac{1}{2}(j + 1), & \text{if } x = v_{j+1}, j \text{ is even}, \\
5p + 7q + 5m - 3 \frac{1}{2}, & \text{if } x = u_{j+1}, j \text{ is odd}, \\
5p + 4q + y_2 - 2t, & \text{if } x = z_t x_t, 1 \leq t \leq q, \\
5p + 7q + y_2 - 2t, & \text{if } x = z_t y_t, 1 \leq t \leq q, \\
2p + 4q + y_2 - 2t, & \text{if } x = z_t x_t, 1 \leq t \leq q, \\
5p + 7q + y_2 - 2t, & \text{if } x = z_t y_t, 1 \leq t \leq q, \\
5p + 4q + y_2 - 2t, & \text{if } x = z_t x_t, 1 \leq t \leq q, \\
5p + 7q + y_2 - 2t, & \text{if } x = z_t y_t, 1 \leq t \leq q,
\end{cases}
\]

where $y_1 = (3/2)(\lambda - 1)(7m - 2) - (1/2)(\lambda - 2)(7m - 1), y_2 = (1/2)(\lambda - 1)(3m - 1), y_3 = (1/2)(\lambda - 1)(3m - 1), y_5 = (1/2)(\lambda - 1)(3m + 2) - (1/2)(\lambda - 2)(3m + 1), y_6 = (1/2)(\lambda - 1)(7m) - (1/2)(\lambda - 2)(7m + 1)$.

It can be checked that, for every edge $xy \in E(F_1)$, $f(x) + f(xy) + f(y) = 8(p+q) + 6m$.

(b) We define F_2 as graph with $V(F_2) = V(F_1)$, where $c_{p+1} = v_1$ and $v_m = z_1$, and $E(F_2) = E(F_1)$. Under this definition, the cut vertices of F_2 are $c_{i+1}, 2 \leq i \leq p + 1$, and $z_{1}, 1 \leq i \leq q+1$. Next, we define a bijection $f_2 : V(F_2) \cup E(F_2) \to \{1, 2, 3, \ldots, 7(p+q) + 5m - 2\}$, where $f_2(x) = f_1(x)$ for all $x \in V(F_2) \cup E(F_2)$. It can be checked that f_2 is an edge-magic labeling of F_2 with the magic constant $8(p+q) + 6m$.

Open Problem 3. Let p and $q \geq 1$ be integers.

(a) If $m \geq 3$ is an odd integer, find the super edge-magic deficiency of $C[C_4^{(p)}, L_m, \epsilon_4^{(q)}]$ with string $(2^{(p-1)}, m, 2^{(q-1)})$.

(b) If $m \geq 2$ is an even integer, find the super edge-magic deficiency of $C[C_4^{(p)}, L_m, \epsilon_4^{(q)}]$ with string $(2^{(p-1)}, m - 1, 2^{(q-1)})$.

International Journal of Mathematics and Mathematical Sciences
Theorem 8. Let \(p, q \geq 2 \) and \(r \geq 1 \) be integers.

(a) If \(m \geq 2 \) is an even integer and \(H_1 = C\{c^{(p,q)}_4\} \) with string \((2^{(p-2)}, 1^{(2)}, 2^{(r-1)}), m, 2^{(r-1)}) \), then \(\mu(H_1) = 0 \).

(b) If \(m \geq 3 \) is an odd integer and \(H_2 = C\{c^{(p,q)}_r\} \) with string \((2^{(p-2)}, 1^{(2)}, 2^{(r-1)}), m-1, 2^{(r-1)} \), then \(\mu(H_2) = 0 \).

Proof. (a) First, we define \(H_1 \) as a graph with \(V(H_1) = \{a_i; 1 \leq i \leq 2p\} \cup \{b_i; 1 \leq i \leq p + 1\} \cup \{u_i; 1 \leq j \leq 2q\} \cup \{v_i; 1 \leq j \leq q + 1\} \cup \{w_i; 1 \leq s \leq 2m\} \cup \{x_i; 1 \leq t \leq 2r\} \cup \{y_i; 1 \leq t \leq r + 1\} \), where \(a_{2p} = u_1, v_{q+1} = w_1 \), and \(w_{2m} = y_1 \), and \(E(H_1) = \{b_i a_{i+1}, b_i a_{i+1}, a_i b_{i+1}, a_i b_{i+1}, a_i b_{i+1}; 1 \leq i \leq p\} \cup \{v_j u_{i,j}, v_j u_{i,j}, u_j v_{j+1}, u_j v_{j+1}; 1 \leq j \leq q\} \cup \{w_i w_{i+1}, w_i w_{i+1}, v_{i+1} w_{i+2}; 1 \leq s \leq m-1\} \cup \{w_i w_{i+1}, v_{i+1} w_{i+2}; 1 \leq s \leq m\} \cup \{y_i x_r, x_r y_{r+1}, x_{r+1} y_{r+1}, x_{r+1} y_{r+1}; 1 \leq t \leq r\} \).

Next, define a bijection \(g_1 : V(H_1) \rightarrow \{1, 2, 3, \ldots, 7(p + q + r) + 5m - 2\} \) as follows:

\[
g_1(z) = \begin{cases}
6p + 7(q + r) + 5m + i - 2, & \text{if } z = a_i, 1 \leq i \leq p, \\
3p + q + r + m + 1 + i, & \text{if } z = a_{p+i}, 1 \leq i \leq p, \\
i, & \text{if } z = b_i, 1 \leq i \leq p + 1, \\
4p + q + r + m + j, & \text{if } z = u_j, 1 \leq j \leq q, \\
\left(4(p + q + r) + 3m + 1 + j, \right) & \text{if } z = v_j, 1 \leq j \leq q + 1, \\
p + q + 1 + s, & \text{if } z = w_j, s \text{ is odd}, \\
4p + 2q + r + m + \frac{1}{2}s, & \text{if } z = w_j, s \text{ is even}, \\
4p + 5q + 4r + 3m + \frac{1}{2}(s - 1), & \text{if } z = w_{m+s}, s \text{ is odd}, \\
p + q + 1 + s, & \text{if } z = w_{m+s}, s \text{ is even}, \\
\left(4p + 2q + r + y_2 + t, \right) & \text{if } z = x_t, 1 \leq t \leq r, \\
4p + 5q + 4r + y_1 + t, & \text{if } z = x_{t+1}, 1 \leq t \leq r, \\
p + q + m + t, & \text{if } z = y_t, 1 \leq t \leq r + 1, \\
3p + q + r + n + 3 - 2t, & \text{if } z = b_t a_i, 1 \leq i \leq p, \\
6p + 7(q + r) + 5m - 2i, & \text{if } z = b_t a_{i+1}, 1 \leq i \leq p, \\
3p + q + r + m + 2 - 2i, & \text{if } z = a_t b_{i+1}, 1 \leq i \leq p, \\
6p + 7(q + r) + 5m - 2i, & \text{if } z = a_t b_{i+1}, 1 \leq i \leq p, \\
4p + 7(q + r) + 5m - 2j, & \text{if } z = v_j u_{i,j}, 1 \leq j \leq q, \\
4p + 7(q + r) + 5m - 2j, & \text{if } z = u_j v_{j+1}, 1 \leq j \leq q, \\
4p + 7(q + r) + 5m - 2j, & \text{if } z = u_j v_{j+1}, 1 \leq j \leq q, \\
4p + 5q + 7r + 5m - \frac{1}{2}(3s + 1), & \text{if } z = w_j w_{i+1}, s \text{ is odd}, \\
4p + 5q + 7r + 5m - \frac{1}{2}(3s + 2), & \text{if } z = w_j w_{i+1}, s \text{ is even}, \\
4p + 2q + 4r + 3m - \frac{1}{2}(3s + 1), & \text{if } z = w_j w_{i+1}, s \text{ is odd}, \\
4p + 2q + 4r + 3m - \frac{1}{2}(3s + 1), & \text{if } z = w_j w_{i+1}, s \text{ is even}, \\
4p + 2q + 4r + 3m - \frac{1}{2}(3s - 1), & \text{if } z = w_j w_{i+1}, s \text{ is odd}, \\
4p + 2q + 4r + 3m - \frac{1}{2}(3s - 1), & \text{if } z = w_j w_{i+1}, s \text{ is even}, \\
4p + 5q + 7r + 5m - \frac{1}{2}s, & \text{if } z = w_j w_{i+1}, s \text{ is even}, \\
4p + 5q + 7r + y_4 - 2t, & \text{if } z = y_t x_r, 1 \leq t \leq r, \\
4p + 2q + 4r + y_3 - 2t, & \text{if } z = y_t x_r, 1 \leq t \leq r, \\
4p + 5q + 7r + y_6 - 2t, & \text{if } z = x_t y_{r+1}, 1 \leq t \leq r, \\
4p + 2q + 4r + y_5 - 2t, & \text{if } z = x_t y_{r+1}, 1 \leq t \leq r,
\end{cases}
\]
where \(\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6 \), and \(\lambda \) are defined as in the proof of Theorem 7. It can be checked that, for every edge \(xy \in E(H_1) \),
\[g_1(x)+g_1(xy)+g_1(y) = 9p+8(q+r)+6m+1. \]
Hence \(\mu(H_1) = 0. \)

An illustration of the labeling defined in the proof of Theorem 8 is given in Figure 1(b).

(b) We define \(H_2 \) as graph with \(V(H_2) = V(H_1) \), where \(a_{2p} = u_1, v_{q+1} = w_1, \) and \(w_m = y_1 \), and \(E(H_2) = E(H_1) \). It can be checked that \(g_2 : V(H_2) \cup E(H_2) \rightarrow \{1, 2, 3, \ldots, 7(p+q+r)+5m-2\} \) defined by \(g_2(x) = g_1(x) \), for all \(x \in V(H_2) \cup E(H_2) \), is an edge-magic labeling of \(H_2 \) with the magic constant \(9p+8(q+r)+6m+1. \)

\[\square \]

Open Problem 4. Let \(p, q \geq 2 \) and \(r \geq 1 \) be integers.

(a) If \(m \geq 3 \) is an odd integer, find the edge-magic deficiency of \(C[4 \times 4, 4 \times 4, L_m, 4 \times 4] \) with string \((2^{(p-2)}, 1^{(2)}, 2^{(r-1)}, m, 2^{(r-1)})\).

(b) If \(m \geq 2 \) is an even integer, find the edge-magic deficiency of \(C[4 \times 4, 4 \times 4, L_m, 4 \times 4] \) with string \((2^{(p-2)}, 1^{(2)}, 2^{(r-1)}, m-1, 2^{(r-1)})\).

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The first author has been supported by “Hibah Kompetensi 2016” (018/SP2H/P/K7/KM/2016) from the Directorate General of Higher Education, Indonesia.

References

Submit your manuscripts at
https://www.hindawi.com