Research Article

On Killing Forms and Invariant Forms of Lie-Yamaguti Superalgebras

Patricia L. Zoungrana1,2 and A. Nourou Issa1,2

1Département de Mathématiques de la Décision, Université Ouaga 2, 12 BP 412, Ouagadougou 12, Burkina Faso
2Département de Mathématiques, Université d'Abomey-Calavi, 01 BP 4521, Cotonou, Benin

Correspondence should be addressed to Patricia L. Zoungrana; patibfr@yahoo.fr

Received 15 October 2016; Accepted 20 December 2016; Published 12 January 2017

Academic Editor: Hernando Quevedo

Copyright © 2017 P.L.Zoungrana and A.N.Issa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The notions of the Killing form and invariant form in Lie algebras are extended to the ones in Lie-Yamaguti superalgebras and some of their properties are investigated. These notions are also Z2-graded generalizations of the ones in Lie-Yamaguti algebras.

1. Introduction

A Lie-Yamaguti algebra is a triple \((T, *, [\cdot, \cdot, \cdot])\) consisting of a vector space \(T\), a bilinear map \(\ast : T \times T \to T\), and a trilinear map \([\cdot, \cdot, \cdot] : T \times T \times T \to T\) such that

\begin{align*}
\text{(LY1)} & \quad x \ast y = -y \ast x, \\
\text{(LY2)} & \quad [x, y, z] = -[y, x, z], \\
\text{(LY3)} & \quad \sigma_{x,y,z}(([x \ast y] \ast z) + [x, y, z]) = 0, \\
\text{(LY4)} & \quad \sigma_{x,y,z}[[x \ast y, z, u] = 0, \\
\text{(LY5)} & \quad [x, y, u \ast v] = [x, y, u] \ast v + u \ast [x, y, v], \\
\text{(LY6)} & \quad [u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]],
\end{align*}

for all \(u, v, x, y, z\) in \(T\), where \(\sigma_{x,y,z}\) denotes the sum over cyclic permutation of \(x, y, z\). The bilinear map \(\ast\) sometimes will be denoted by juxtaposition. If \(x \ast y = 0, \forall x, y \in T\), one gets a Lie triple system \((T, [\cdot, \cdot, \cdot])\), while \([x, y, z] = 0\) in \((T, \ast, [\cdot, \cdot, \cdot])\) induces a Lie algebra \((T, \ast)\).

Lie-Yamaguti algebras were introduced by Yamaguti [1] (who formerly called them “generalized Lie triple systems”) in an algebraic study of the characteristic properties of the torsion and curvature of a homogeneous space with canonical connection [2]. Later on, these algebraic objects were called “Lie triple algebras” [3] and the terminology of “Lie-Yamaguti algebras” is introduced in [4] for these algebras. For further development of the theory of Lie-Yamaguti algebras one may refer, for example, to [5–8]. From the standard enveloping Lie algebra of a given Lie-Yamaguti algebra, the notions of the Killing-Ricci form and the invariant form of a Lie-Yamaguti algebra are introduced and studied in [9]. Further properties of invariant forms of Lie-Yamaguti algebras were considered in [10].

Lie superalgebras as a \(\mathbb{Z}_2\)-graded generalization of Lie algebras are considered in [11, 12] while a \(\mathbb{Z}_2\)-graded generalization of Lie triple systems (called Lie supertriple systems) was first considered in [13]. For an application of Lie supertriple systems in physics, one may refer to [14]. Next, Lie-Yamaguti superalgebras as a \(\mathbb{Z}_2\)-graded generalization of Lie-Yamaguti algebras were first considered in [15].

Definition 1 (see [16]). A Lie-Yamaguti superalgebra is a \(\mathbb{Z}_2\)-graded vector space \(T = T_0 \oplus T_1\) with a binary operation denoted by juxtaposition satisfying \(T_IT_j \subseteq T_{i+j}\) and a ternary operation \([\cdot, \cdot, \cdot]\) satisfying \([T_i, T_j, T_k] \subseteq T_{i+j+k}\) \((i, j, k \in \mathbb{Z}_2)\) such that

\begin{align*}
\text{(LYS1)} & \quad xy = -(-1)^{xy}yx, \\
\text{(LYS2)} & \quad [x, y, z] = -(-1)^{xy}[y, x, z], \\
\text{(LYS3)} & \quad \sigma_{x,y,z}((-1)^{xy}(xy)z) + [x, y, z] = 0, \\
\text{(LYS4)} & \quad \sigma_{x,y,z}((-1)^{xy}xyu) = 0, \\
\text{(LYS5)} & \quad [x, y, uv] = [x, y, u]v + (-1)^{xy}u[x, y, v],
\end{align*}
Observing that \(T_0 \) is a Lie-Yamaguti algebra.

As a part of the general theory of superalgebras, the notion of the Killing form of Lie algebras is extended to the one of Lie triple systems (see [17] and references therein), Lie superalgebras [12], and next Lie supertriple systems [18] (see [19]).

In this paper we define and study the Killing form and invariant form of a Lie-Yamaguti superalgebra in some conditions, it is shown (Theorem 21) that the Killing form of a Lie-Yamaguti superalgebra is defined (see Theorem 10 and Definition 11) and some of its properties are investigated (Proposition 13, Theorem 14, and Corollary 15). In Section 4 the invariant form of a Lie-Yamaguti superalgebra is defined (Definition 16) and, under some conditions, it is shown (Theorem 21) that the Killing form of a Lie-Yamaguti superalgebra \(T \) is nondegenerate if and only if the standard enveloping Lie superalgebra of \(T \) is semisimple.

All vector spaces and algebras are finite-dimensional over a fixed ground field \(k \) of characteristic 0.

2. Some Basics on Lie-Yamaguti Superalgebras

We give here some definitions and results which can be found in [11, 12, 16].

A superalgebra over \(k \) is a \(Z_2 \)-graded algebra \(A = A_0 \oplus A_1 \), where \(A_iA_j \subseteq A_{i+j} \). The subspaces \(A_0 \) and \(A_1 \) are called the even and the odd parts of the superalgebra and so are called the elements from \(A_0 \) and from \(A_1 \), respectively.

Below, all elements assumed to be homogeneous, that is, either even or odd, and for a homogeneous element \(x \in A_i, i = 0, 1 \), the notation \(x = i \) is used and means the parity of \(x \).

Let \(G \) be the Grassmann algebra over \(k \) generated by the elements \(e_1, e_2, \ldots, e_n \) such that \(e_i^2 = 0, e_i e_j = -e_j e_i \) for \(i \neq j \). The elements \(1, e_1, e_2, \ldots, e_n, i_1 < i_2 < \cdots < i_m \) form a basis of \(G \). Denote by \(G_0 \) (resp., \(G_1 \)) the span of the products of even length (resp., odd length) in the generators. The product of zero \(e_i \)'s is by convention equal to 1. Then \(G = G_0 \oplus G_1 \) is an associative and supercommutative superalgebra; that is, \(g_1 g_2 = (-1)^{i_1i_2} g_2 g_1 \), where \(g_1, g_2 \in G_0 \cup G_1 \). Let \(A = A_0 \oplus A_1 \) be a superalgebra. Consider the graded tensor product \(G \otimes A \) which becomes a superalgebra with the product given by \((x \otimes g_1)(y \otimes g_2) = (-1)^{x y} xy \otimes g_1 g_2 \) for homogeneous elements \(g_1, g_2 \in G, x, y \in A \) and grading given by \((G \otimes A)_0 = G_0 \otimes A_0 \oplus G_1 \otimes A_1 \) and \((G \otimes A)_1 = G_0 \otimes A_1 \oplus G_1 \otimes A_0 \). The subalgebra \(G(A) = (G \otimes A)_0 = G_0 \otimes A_0 \oplus G_1 \otimes A_1 \) is called the Grassmann envelope of the superalgebra \(A \).

Having in mind that if \(V \) is a homogeneous variety of algebras [20], a superalgebra \(A = A_0 \oplus A_1 \) is called a \(V \)-superalgebra, if its Grassmann envelope \(G(A) \) belongs to \(V \), we can state the following proposition.

Proposition 2. A superalgebra \(T = T_0 \oplus T_1 \) equipped with bilinear and trilinear products verifying \(T_1 T_1 \subseteq T_{1+2} \) and \([T_1, T_1, T_1] \subseteq T_{1+j+k} \) is a Lie-Yamaguti superalgebra if its Grassmann envelope \(G(T) = G_0 \oplus G_1 \otimes G_1 \) is a Lie-Yamaguti superalgebra under the following products:

\[
\begin{align*}
(x \otimes g_1)(y \otimes g_2) &= (-1)^{x y} xy \otimes g_1 g_2; \\
(x \otimes g_1, y \otimes g_2, z \otimes g_3) &= (-1)^{x y z} x y z \otimes g_1 g_2 g_3.
\end{align*}
\]

Proof. The proof is straightforward by using the fact that, for any element \(x \otimes g \) in \(G(T) \), we have \(x = \overline{x} \).

Example 3. (1) Lie superalgebras are Lie-Yamaguti superalgebras with \([x, y, z] = 0 \).

(2) If \(xy = 0 \) for any \(x, y \in T_0 \cup T_1 \), then (LYS2), (LYS3), and (LYS6) define a Lie supertriple system.

(3) Let \(M = M_0 \oplus M_1 \) be a Malcev superalgebra; that is, for any \(x, y, z, t \) in \(T \),

\[
\begin{align*}
xy &= -(-1)^{x y} yx; \\
-(-1)^{x y z} (x y z) t &= ((x y) z) t \\
&+ (-1)^{x y z t} (y z t) x \\
&+ (-1)^{x y z t} ((z t) x) y \\
&+ (-1)^{x y z t} ((t x) y) z.
\end{align*}
\]

It is shown in [16] that \(M \) becomes a Lie-Yamaguti superalgebra if we set \([x, y, z] = x(y z) - (-1)^{x y} y(x z) + (x y) z \).

Conversely, if on a Malcev superalgebra \((M, \cdot) \) we define a trilinear operation by \([x, y, z] = x \cdot y \cdot z - (-1)^{x y} y \cdot x z + x y \cdot z \) then \((M, \cdot, [\cdot, \cdot, \cdot]) \) is a Lie-Yamaguti superalgebra.

Definition 4. Let \(T = T_0 \oplus T_1 \) be a Lie-Yamaguti superalgebra. A graded subspace \(H = H_0 \oplus H_1 \) of \(T \) is a graded Lie-Yamaguti subalgebra of \(T \) if \(H_i H_j \subseteq H_{i+j} \) and \([H_i, H_j, H_k] \subseteq H_{i+j+k} \) for any \(i, j, k \in Z_2 \).

Definition 5. A graded subalgebra of a Lie-Yamaguti superalgebra \(T \) is an invariant graded subalgebra (resp., an ideal) of \(T \) if \([T, T, H] \subseteq H \) (resp., \(TH \subseteq H \) and \([T, H, T] \subseteq H \)).

If \(H \) is an ideal of \(T \), it is an invariant graded subalgebra of \(T \). Obviously the center \(Z(T) \) of a Lie-Yamaguti superalgebra \(T \) defined by \(Z(T) = \{ x \in T, xy = 0 \} \) and \([x, y, z] = 0, \forall y, z \in T \) is an ideal of \(T \).

Definition 6. Let \(T = T_0 \oplus T_1 \) and \(T' = T'_0 \oplus T'_1 \) be Lie-Yamaguti superalgebras. A linear map \(f : T \rightarrow T' \) is said to be of degree \(r \) if \(f(T_i) \subseteq T'_r \) for all \(r, i \in Z_2 \).

Definition 7. Let \(T = T_0 \oplus T_1 \) and \(T' = T'_0 \oplus T'_1 \) be Lie-Yamaguti superalgebras. A linear map \(f : T \rightarrow T' \) is called a homomorphism of Lie-Yamaguti superalgebras if
(1) f preserves the grading, that is, $f(T_i) \subseteq T'_i$, $i \in \mathbb{Z}_2$;
(2) $f(xy) = f(x)f(y)$;
(3) $f([x, y, z]) = [f(x), f(y), f(z)]$ for any $x, y, z \in T_0 \cup T_1$.

Recall [11] that if $V = V_0 \oplus V_1$ is a \mathbb{Z}_2-graded vector space then, if we set $\text{End}_n(V) = \{f \in \text{End}(V) | f(V) \subseteq V_i\}$, we obtain an associative superalgebra $\text{End}_n(V) = \text{End}_0(V) \oplus \text{End}_1(V)$; $\text{End}_n(V)$ consists of the linear mappings of V into itself which are homogeneous of degree n. The bracket $[f, g] = fg - (-1)^{|f||g|}gf$ makes $\text{End}(V)$ into a Lie superalgebra which we denote by $\mathbb{L}(V)$ or $l(m, n)$ where $m = \dim V_0$ and $n = \dim V_1$. Let $e_1, \ldots, e_m, e_{m+1}, \ldots, e_{m+n}$ be a basis of V. In this basis the matrix of $a \in l(m, n)$ is expressed as $(\begin{pmatrix} a_{ij} \end{pmatrix})$, a being an $(m \times n)$- matrix of even elements and those of odd ones $(\begin{pmatrix} 0 & \gamma \beta \\ \delta & 0 \end{pmatrix})$. For any $a = (\begin{pmatrix} a_{ij} \end{pmatrix})$, the supertrace of a is defined by $\text{str}(a) = \text{tr}a - \text{tr}a^\dagger$ and does not depend on the choice of a homogeneous basis. We have $\text{str}(ab) = -(-1)^{|a||b|} \text{str}(ba)$ and $\text{str}(aba^{-1}) = \text{str}(b)$.

Definition 8. Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra; $D \in \text{End}_n(T)$ be a superderivation of degree n, for any $x, y, z \in T_0 \cup T_1$,

$$D(xy) = D(x) y + (-1)^{|x||y|} x D(y);$$

$$D([x, y, z]) = [D(x), y, z] + (-1)^{|x||y|}[x, D(y), z] + (-1)^{|x||y||z|}[x, y, D(z)].$$

Let $D_n(T)$ consist of all the superderivations of degree n and $D(T) = D(T) \oplus D_n(T)$. It is easy to check that $D(T)$ is a graded subalgebra of $\text{End}(T)$ called the Lie superalgebra of superderivations of T.

Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra. For any $x, y, z \in T_0 \cup T_1$, denote by $D_{x,y}$ the endomorphism of T defined by $D_{x,y}(z) = [x, y, z]$ for any $z \in T$. We have, for any $x, y, z \in T_0 \cup T_1$, $r \in \mathbb{Z}_2$, $D_{x,y}(T_r) \subseteq T_{r+\eta}$, where $D_{x,y}$ is a linear map of degree $\bar{x} + \bar{y}$. Moreover, it comes from (L5S5) and (L5S6) that

$$D_{x,y}(zw) = D_{x,y}(z) w + (-1)^{|z||y|} z D_{x,y}(w);$$

$$D_{x,y}([z, w, v]) = [D_{x,y}(z), v, w] + (-1)^{|z||v||w|}[z, D_{x,y}(w), v] + (-1)^{|z||y||w|}[z, v, D_{x,y}(w)].$$

for any $x, y, z, v, w \in T_0 \cup T_1$. It follows that $D_{x,y}$ is a superderivation of T called an inner superderivation of T.

Let $D(T, T)$ be the vector space spanned by all $D_{x,y}$, $x, y \in T$.

We can define naturally a \mathbb{Z}_2-gradation by setting $D(T, T) = D(T) \oplus D(T, T)$, where $D(T, T)$ consists of the superderivation $D_{x,y}$ of degree r. From (5) we also have that, for any $x, y, z, v, w \in T_0 \cup T_1$,

$$[D_{x,y}, D_{z,v}] = D_{[x,y,z],v} + (-1)^{|x||y||z|} D_{z,[x,y,v]}. \tag{6}$$

It is clear from (6) that $D(T, T)$ is a \mathbb{Z}_2-graded Lie superalgebra of $D(T)$ called the Lie superalgebra of all inner superderivations of T.

Now, let (T, \cdot, \cdot, \cdot) be a Lie-Yamaguti superalgebra.
Set $L_1(T) = T \oplus D(T, T), i = 0, 1$, and define a new bracket operation in $L(T) = L_0(T) \oplus L_1(T) = T \oplus D(T, T)$ as follows: for any $x, y \in T_0 \cup T_1$, $D_1, D_2 \in D_0(T, T) \cup D_1(T, T)$,

$$[x, y] = xy + D_{x,y};$$

$$[D_1, x] = -(-1)^{|x||y|}[x, D] = D(x); \tag{7}$$

$$[D_1, D_2] = D_1 D_2 - (-1)^{|y||z|} D_2 D_1.$$

Theorem 9. Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra. Then

(1) $L(T)$ is a Lie superalgebra called the standard enveloping Lie superalgebra of T and $D(T, T)$ becomes a graded subalgebra of $L(T)$.

(2) If H is an ideal of T then $H \oplus D(T, H)$ is an ideal of $\text{End}(T)$.

Proof. The bracket $[\cdot, \cdot]$ is bilinear by definition and $XY = (-1)^{|X||Y|} YX$ for any $X, Y \in L(T)$ by (LYS1) and (LYS2). Jacobi’s superidentity follows from (LTS3–6). (2) is obvious. \(\square\)

3. Killing Forms of Lie-Yamaguti Superalgebras

The definition of the Killing form given here for Lie-Yamaguti superalgebras stems from [9] in the case of Lie-Yamaguti algebras and extends the one given in [18] for Lie supertriple systems. Let $T = T_0 \oplus T_1$ be an n-dimensional Lie-Yamaguti superalgebra. Denote by β the Killing form of the standard enveloping Lie superalgebra $L(T) = (T_0 \oplus D(T, T)) \oplus (T_1 \oplus D(T, T))$. Consider the bilinear form β of T obtained by restricting α to $T \times T$. For any $x, y, z \in T$, define the endomorphisms L_x and $R_{x,y}$ of the vector space T by $L_x(y) = xy$ and $R_{x,y}(z) = (-1)^{|x||y|}[z, x, y] = (-1)^{|x||y||z|} D_{x,y}(y)$. It is clear that $R_{x,y}$ is of degree $\bar{x} + \bar{y}$ and $[D_{x,y}, R_{x,y}] = R_{y,x} R_{x,y} + (-1)^{|x||y|} R_{x,[x,y]}$.

Theorem 10. For $x, y \in T$, we have

$$\beta(x, y) = \text{str}(L_x L_y) + \text{str}(R_{x,y} + (-1)^{|x||y|} R_{y,x}). \tag{8}$$
Proof. Let \(\{a_i\}, \{b_i\}, \{u_i\}, \{v_i\} \) be bases of \(T_0, T_1, D_0(T, T), D_1(T, T) \), respectively. For these bases, we express the operations of \(T \) and \(D(T, T) \) as follows:

\[
a_i a_j = \sum_i s_{ij}^a a_i; \quad a_i a_j \in T_0,
\]

\[
a_i b_j = \sum_i t_{ij}^a b_i; \quad a_i b_j \in T_1,
\]

\[
b_i b_j = \sum_i k_{ij}^b a_i; \quad b_i b_j \in T_0,
\]

\[
D_{a,aj} = \sum_{\alpha} D_{ij}^\alpha u_{\alpha}; \quad D_{a,aj} \in D_0(T, T),
\]

\[
D_{a,bj} = \sum_{\alpha} D_{ij}^\alpha v_{\alpha}; \quad D_{a,bj} \in D_1(T, T),
\]

\[
D_{b,aj} = \sum_{\alpha} D_{ij}^\alpha w_{\alpha}; \quad D_{b,aj} \in D_0(T, T),
\]

\[
[u_{\alpha}, a_i] = u_{\alpha}(a_i) = \sum_j K_{ij}^\alpha a_j;
\]

\[
[v_{\alpha}, a_i] = v_{\alpha}(a_i) = \sum_j L_{ij}^\alpha b_j;
\]

\[
[u_{\alpha}, b_i] = u_{\alpha}(b_i) = \sum_j H_{ij}^\alpha b_j;
\]

\[
[v_{\alpha}, b_i] = v_{\alpha}(b_i) = \sum_j Q_{ij}^\alpha a_j.
\]

To prove the theorem, it suffices to show that \(\beta(a_i, a_j) = \alpha(a_i, a_j) \), \(\beta(a_i, b_j) = \alpha(a_i, b_j) \), and \(\beta(b_i, b_j) = \alpha(b_i, b_j) \). Since \((L_a L_b)(T_0) \subseteq T_1 \) and \((L_a L_b)(T_1) \subseteq T_0 \), we have \(\text{str}(L_a L_b) = 0 \). Also, \(R_{a,bj}(T_1) \subseteq T_0 \) and \(R_{a,bj}(T_0) \subseteq T_1 \) give \(\text{str}(R_{a,bj} + R_{b,aj}) = 0 \) and then \(\beta(a_i, b_j) = 0 = \alpha(a_i, b_j) \) because of the consistency property of \(\alpha(a_i \in T_0 \oplus D_0(T, T), b_j \in T_1 \oplus D_1(T, T)) \). Hence, it remains to show that \(\beta(a_i, a_j) = \alpha(a_i, a_j) \) and \(\beta(b_i, b_j) = \alpha(b_i, b_j) \). The operations in \(T \) and the identities (7) imply the following:

\[
[a_i, [a_j, a_k]] = [a_i, a_j a_k + D_{a,aj}]
\]

\[
= [a_i, \sum_{\alpha} c_{\alpha} a_m + \sum_{\alpha} D_{\alpha}^a u_{\alpha}]
\]

\[
= \sum_{\alpha} S_{\alpha}^m (a_m a_i + D_{a,am}) - \sum_{\alpha} D_{\alpha}^a \sum_{\alpha} K_{ij}^\alpha a_i
\]

\[
= \sum_{\alpha} S_{\alpha}^m \left(\sum_{\alpha} S_{ij}^\alpha a_i + \sum_{\alpha} D_{\alpha m}^a u_{\alpha} \right)
\]

\[
- \sum_{\alpha} D_{\alpha j}^a \sum_{\alpha} K_{ij}^\alpha a_i
\]

\[
= \sum_{\alpha} S_{\alpha}^m \sum_{\alpha} S_{ij}^\alpha a_i + \sum_{\alpha} D_{\alpha m}^a u_{\alpha}
\]

\[
- \sum_{\alpha} D_{\alpha j}^a \sum_{\alpha} K_{ij}^\alpha a_i.
\]

In a similar way, we get

\[
\sum_{\alpha} D_{\alpha j}^a \sum_{\alpha} K_{ij}^\alpha a_i.
\]

By interchanging \(i \) and \(j \), we have

\[
R_{\alpha,aj} (a_k) = \sum_{\alpha} D_{\alpha j}^a K_{aj}^m a_m.
\]

\[
R_{\alpha,aj} (b_k) = \sum_{\alpha} \sum_{\alpha} C_{\alpha j}^a \sum_{\alpha} D_{\alpha j}^a b_{m}.
\]
Therefore,

\[\beta(a_i, a_j) = \alpha(a_i, a_j) \]

\[= \sum_{m,k} s_{jk}^m a_k + \sum_{m,k} D_{jk}^a a_{a_k} - \sum_{m,k} T_{jk}^{m} a_k + \sum_{a,k} C_{jk}^a a_i \]

\[
\text{str } (L_a L_b) + \text{tr } (R_{a,b} + R_{b,a}) \\
= \sum_{p,k} C_{p}^{a_{k}} a_k + \sum_{p,k} D_{p,k}^a a_k + \sum_{a,k} D_{jk}^a a_k + \sum_{a,k} C_{jk}^a a_k \]

\[\beta(\beta(x, y)) = \beta(x, y) \]

It remains to show that \(\beta(b_i, b_j) = \text{str}(L_b L_{b_j}) + \text{str}(R_{b,j} + R_{b,j}) \),

\[[b_i, [b_j, a_k]] = [b_i, [b_j, a_k]] + D_{b_i b_j} \]

\[= [b_i, \sum_{m,k} R_{jk}^m a_k + \sum_{a,k} C_{jk}^a a_k] \]

\[= -\sum_{m,k} R_{jk}^m a_k + \sum_{a,k} C_{jk}^a a_k \]

\[= -\sum_{a,k} C_{jk}^a a_k \]

Likewise, we have

\[[b_i, [b_j, a_k]] = -[b_i, [b_j, a_k]] \]

\[= -[b_i, [b_j, a_k]] \]

\[= -\sum_{a,k} C_{jk}^a a_k \]

Therefore,

\[\beta(a_i, a_j) = \alpha(a_i, a_j) \]

\[= -\sum_{m,k} s_{jk}^m a_k - \sum_{a,k} C_{jk}^a a_k + \sum_{m,k} R_{jk}^m a_k \]

\[+ \sum_{a,k} C_{jk}^a a_k \]

Now,

\[L_b L_{b_j}(a_k) = b_j(b_k a_k) = -b_j \left(\sum_{m} T_{jk}^m b_m \right) \]

\[= -\sum_{m} T_{jk}^m (b_j b_m) = -\sum_{m} T_{jk}^m b_m a_k; \]

\[L_b L_{b_j}(b_k) = b_j(b_k b_j) = \left(\sum_{m} R_{jk}^m b_m \right) \]

\[= -\sum_{m} R_{jk}^m (a_k b_m) = -\sum_{m} R_{jk}^m a_k b_m; \]

By interchanging \(i \) and \(j \), we have

\[\text{R}_{b,b_j}(a_k) = \sum_{a,\alpha} C_{a}^{\alpha} Q^\alpha a_k; \]

\[\text{R}_{b,b_j}(b_k) = \sum_{x,\alpha} X_{x}^{\alpha} H_{x}^b a_k; \]

\[\text{str} (L_b L_{b_j}) + \text{tr } (R_{b,j} + R_{b,j}) \]

\[= -\sum_{m} R_{jk}^m a_k + \sum_{m} C_{jk}^a a_k - \sum_{a} \sum_{a} C_{jk}^a T_{jk}^m b_m \]

\[- \sum_{a} C_{jk}^a Q^\alpha a_k + \sum_{a} X_{x}^{\alpha} H_{x}^b b_k \]

Hence the theorem is proved.

Definition II. The bilinear form \(\beta \) defined on the Lie-Yamaguti superalgebra \(T = T_0 \oplus T_1 \) by

\[\beta(x, y) = \text{str} (L_x L_y) + \text{tr } (R_{x,y} + (-1)^{x} R_{y,x}) \]

for \(x, y \in T \) is called the Killing form of \(T \).

Remark 12. Recall that if \(T \) is a Lie superalgebra, then the Killing form \(\beta \) on \(T \) is defined as \(\beta(x, y) = \text{str}(L_x L_y) \), \(x, y \in T \). Likewise, if \(T \) is a Lie supertriple system (resp., a Lie-Yamaguti algebra), the Killing form on \(T \) is defined as \(\beta(x, y) = \text{str}(R_{x,y} + (-1)^{x} R_{y,x}) \) (resp., \(\beta(x, y) = \text{tr}(L_x L_y) + \text{tr}(R_{x,y} + R_{y,x}) \)) with \(L_u \) and \(R_{a,v} \) defined according to the considered structure on \(T \). So if a Lie-Yamaguti superalgebra \(T \) is reduced to a Lie superalgebra (resp., a Lie supertriple system, the Lie-Yamaguti algebra) then \(\beta \) as defined in Definition II is the Killing form of the Lie superalgebra (resp., the Lie supertriple system, the Lie-Yamaguti algebra) \(T \).
Proposition 13. Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra with a Killing form denoted by β. Then,

(1) $\beta(T_0, T_1) = 0$ (consistence),
(2) $\beta(x, y) = (−1)^{\overline{x}\overline{y}} \beta(y, x)$ (supersymmetry),
(3) $\beta(A(x), A(y)) = \beta(x, y)$, $A \in \text{Aut}(T)$.

Proof. As $L_T, L_T, (T_0) \subseteq T_0$, $L_T, L_T, (T_0) \subseteq T_1$ and $R_T, R_T, (T_1) \subseteq T_0$ we can see that $\beta(T_0, T_1) = 0$.

(2) comes from the definition of β.

Now, for any $A \in \text{Aut}(T)$, x in T, $A(x) = \bar{x}$, and

$$\beta(A(x), A(y)) = \text{str} \left(L_{A(x)} L_{A(y)} \right) + \text{str} \left(R_{A(x), A(y)} + (-1)^{\overline{x}\overline{y}} R_{A(y), A(x)} \right).$$

As $A(xy) = A(x)A(y)$ then $AL_x(x) = L_{A(x)} A(y)$; that is, $AL_x = L_{A(x)} A$ and $AL_x A^{-1} = L_{A(x)}$.

Hence, $\text{str}(L_{A(x)} L_{A(y)}) = \text{str}(AL_x A^{-1} AL_y A^{-1}) = \text{str}(AR_{x,y} A^{-1} + (-1)^{\overline{x}\overline{y}} R_{x,y} A^{-1})$.

(21)

From $\text{str} \left(L_{A(x)} L_{A(y)} \right) = \text{str} \left(R_{A(x), A(y)} + (-1)^{\overline{x}\overline{y}} R_{A(y), A(x)} \right)$, that is, $AR_{x,y} A^{-1} = R_{A(x), A(y)}$, Then,

$$\beta(A(x), A(y)) = \text{str} \left(L_{A(x)} L_{A(y)} \right) + \text{str} \left(R_{A(x), A(y)} + (-1)^{\overline{x}\overline{y}} R_{A(y), A(x)} \right)$$

$$= \text{str} \left(L_{A(x)} L_{A(y)} \right) + \text{str} \left(R_{A(x), A(y)} + (-1)^{\overline{x}\overline{y}} R_{A(y), A(x)} \right)$$

$$= \beta(x, y).$$

(22)

Now, let y be a trilinear form in T given by $\gamma(x, y, z) = \text{str}(D_{x,y} L_z)$ for any $x, y, z \in T$. We can easily see that, for any $x, y, z \in T$, $\gamma(x, y, z) = (−1)^{\overline{y}\overline{z}} \gamma(x, y, z)$ and that γ vanishes identically if T is reduced to Lie superalgebra or Lie superalgebra system.

Theorem 14. Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra with a Killing form denoted by β. Then, β satisfies the identities

$$\beta(xy, z) + (−1)^{\overline{x}\overline{y}} \beta(y, xz)$$

$$= (−1)^{\overline{y}} \gamma(x, y, z) + (−1)^{\overline{y}\overline{z}} \gamma(z, x, y);$$

(23)

$$\beta([x, y, w]) + (−1)^{\overline{x}\overline{y}} \beta([x, w, y]) + (−1)^{\overline{x}\overline{y}} \beta([x, w, y])$$

(24)

for all $x, y, z \in T$.

Proof. The Killing form α of $L = (T_0 \oplus D_0(T, T)) \oplus (T_1 \oplus D_1(T, T))$ satisfies $\alpha(y, [x, z]) = (−1)^{\overline{y}} \alpha([x, y], z) = 0$; that is, $\alpha(y, [x, z]) = \alpha([x, y], z)$. But, using (7), we have

$$\alpha([x, y], z) = \alpha(xy + D_{x,y} z)$$

$$= \alpha(xy, z) + \alpha(D_{x,y} z)$$

$$= \beta(xy, z) + \beta(D_{x,y} L_z)$$

$$= \beta(xy, z) + \gamma(x, y, z),$$

$$\alpha(y, [x, z]) = \alpha(y, xz + D_{x,z})$$

$$= \alpha(y, xz) + \beta(L_y D_{x,z})$$

$$= \beta(y, xz) + (−1)^{\overline{y}} \alpha \beta(D_{x,z} L_y)$$

$$= \beta(y, xz) + (−1)^{\overline{y}} \alpha \beta(D_{x,z} L_y)$$

Then the identity $\alpha(y, [x, z]) = (−1)^{\overline{y}} \alpha([x, y], z) = 0$ gives $\beta(xy, z) + \gamma(x, y, z) + (−1)^{\overline{y}} \beta(y, xz) + (−1)^{\overline{y}} \gamma(x, y, z) = 0$ that is $\beta(xy, z) + (−1)^{\overline{y}} \beta(y, xz) = −\gamma(x, y, z) − (−1)^{\overline{y}} \gamma(x, y, z) = (−1)^{\overline{y}} \gamma(x, y, z)$ and (23) is obtained.

From $\alpha([x, y], z) = \alpha([x, y], z)$ we deduce $\alpha([x, w], [y, z]) = \alpha([x, w], [y, z])$ that is $−(−1)^{\overline{y}\overline{z}} \alpha\beta([x, w], [y, z]) = 0$ and (26) is obtained.

Then, using (7) again and developing (26), we have $\alpha\beta([x, [y, z], w]) + (−1)^{\overline{y}\overline{z}} \alpha\beta([xw + D_{xw}, y], z) = 0$ and we get

$$\alpha\beta([x, [y, z], w]) + (−1)^{\overline{y}\overline{z}} \alpha\beta([xw + D_{xw}, y], z) = 0$$

$$\alpha\beta([x, (yz) w] + D_{y, w} + [y, z, w])$$

$$+ (−1)^{\overline{y}\overline{z}} \alpha\beta([xw + D_{xw}, y], z)$$

$$= 0.$$
Thus,
\[
\begin{align*}
\beta(x, (yz)w) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \text{str}(L_{D_{xyw}} L_x) \\
&+ \beta(x, [y, z, w]) + (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \text{str}(L_{D_{xyw}} L_z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0;
\end{align*}
\]
that is,
\[
\begin{align*}
\beta(x, (yz)w) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(yz, w, x) \\
&+ \beta(x, [y, z, w]) + (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(xy, y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

Corollary 15. Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra with a Killing form denoted by β. Then, β satisfies the following for $x, y, z \in T$:
\[
\begin{align*}
\beta(xy, [y, z, w]) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0;
\end{align*}
\]
where
\[
\begin{align*}
\beta([y, z, x], w) &+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((yw) x, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta([y, x, w], z) = 0.
\end{align*}
\]

This implies
\[
\begin{align*}
\beta(x, [y, z, w]) &+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(yz, w, x) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(xy, y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

Proof. Using (24) we have
\[
\begin{align*}
\beta([y, z, x], w) &+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0,
\end{align*}
\]
where
\[
\begin{align*}
\beta((xw) y, z) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(yz, w, x) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(xy, y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

By adding memberwise (36) and (37) we obtain the identity (34).

Also, the identity (37) is equivalent to
\[
\begin{align*}
\beta([y, z, x], w) &+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

Then, we obtain
\[
\begin{align*}
\beta((xw) y, z) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(yz, w, x) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(xy, y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

Hence, $\beta(x, [y, z, w]) + (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) = (-1)^{\frac{|y|+|z|+|w|}{2}} \gamma(yz, w, x)$ and (24) is proved.

4. Invariant Forms of Lie-Yamaguti Superalgebras

In this section we introduced the concept of invariant forms of Lie-Yamaguti superalgebras as generalizations of those of Lie superalgebras and Lie supertriple systems.

Definition 16. An invariant form b of a Lie-Yamaguti superalgebra $T = T_0 \oplus T_1$ is a supersymmetric bilinear form on T satisfying the identities
\[
\begin{align*}
\beta((xw) y, z) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

Remark 17. (1) If $\gamma = 0$, the Killing form of T is an invariant form of T.

By adding memberwise (36) and (37) we obtain the identity (34).

Also, the identity (37) is equivalent to
\[
\begin{align*}
\beta((xw) y, z) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(yz, w, x) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(xy, y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

By adding memberwise (36) and (37) we obtain the identity (34).

Also, the identity (37) is equivalent to
\[
\begin{align*}
\beta((xw) y, z) &+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(yz, w, x) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \gamma(xy, y, z) \\
&+ (-1)^{\frac{|x|+|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]

Then, we obtain
\[
\begin{align*}
\beta(x, [y, z, w]) &+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta((xw) y, z) \\
&+ (-1)^{\frac{|y|+|z|+|w|}{2}} \beta([x, w, y], z) = 0.
\end{align*}
\]
(2) If T is reduced to a Lie supertriple system (resp., a Lie superalgebra, a Lie-Yamaguti algebra), then b is reduced to an invariant form of a Lie supertriple system [19] (resp., a Lie superalgebra [12], a Lie-Yamaguti algebra [10]).

Definition 18. Let b be an invariant form of a Lie-Yamaguti superalgebra S and T a subset of T. The orthogonal S^\perp of S with respect to b is defined by $S^\perp = \{x \in T, \ b(x, y) = 0, \forall y \in S\}$. The invariant form b is nondegenerate if $T^\perp = \{0\}$.

Lemma 19. Let b be an invariant form of a Lie-Yamaguti superalgebra T. Then, for any $x, y, z, \in T$, we have
\[b\left([x, y, w], z\right) + (-1)^{(x+y)z} b\left(w, [x, y, z]\right) = 0. \] (40)

Proof. By interchanging y and w in (39) we have
\[b\left([x, y, w], z\right) + (-1)^{(x+y)z} b\left(x, [y, w, z]\right) = 0 \] (41)
that is $(-1)^{(x+y)z} b\left(z, [x, y, w]\right) = 0$ by supersymmetry. Also by switching z and w in (41), we obtain
\[b\left([x, y, z], w\right) + (-1)^{(x+y)z} b\left(y, [z, w, x]\right) = 0 \] (42)
Thus adding (41) and (42) we get (40) whence the lemma. □

Lemma 20. Let b be an invariant form of a Lie-Yamaguti superalgebra T. Then,
1. $(T + [T, T, T])^\perp = Z(T)$ if b is nondegenerate;
2. If H is an ideal of T then H^\perp is an ideal of H. In particular, T^\perp is an ideal of T.

Proof. Consider x in $(T + [T, T, T])^\perp$. Then, for any $u, v, w \in T$, we have $b(x, uv) = 0$ and $b(x, [u, v, w]) = 0$. This implies, by (38) and (39), that $(-1)^{xy} b(xu, v) = 0$ and $(-1)^{xy} b(x, [u, v, w]) = 0$.

Conversely, if $x \in Z(T)$, we have, for any $u, v, u', v', w' \in T$, $b(x, uv + [u, v, w']) = b(x, uv) + b(x, [u, v, w']) = 0$ and $b(x, [u, v, w]) = 0$. Thus $x \in Z(T)$.

Now, suppose that H is an ideal of T that is $TH \subseteq H$ and $[T, H, T] \subseteq H$; then for any $y, x, u, \in T, u \in H^\perp$, and $h \in H$, we have $b(xu, h) = (-1)^{xy} b(x, uh) = 0$ and $b(x, y, h) = (-1)^{xy} b(x, y, h) = (-1)^{xy} b(x, y, h) = 0$. Then $TH^\perp \subseteq H^\perp$ and $[[T, H, T], T] \subseteq H^\perp$ which proves (2). □

We are now ready to prove the following theorem.

Theorem 21. Let $T = T_0 \oplus T_1$ be a Lie-Yamaguti superalgebra with $y = 0$. Then the Killing form α is nondegenerate if and only if the standard enveloping Lie superalgebra $L(T) = T \oplus D(T, T)$ is a semisimple Lie superalgebra.

Proof. Let α be the Killing form of the Lie superalgebra $L(T)$. If $y = 0$, we have, for any $x, y, z \in T, y(x, y, z) = \text{str}(D_{x,y}L_z) = 0$ and
\[\alpha\left(D_{x,y}, z\right) = 0. \] (43)

Then, using the invariance of α and (43), we have, for any $x, y, z, w \in T: \alpha([x, y], D_{z,w}) = \alpha(x, [y, D_{z,w}])$; that is, by (7),
\[\alpha(xy + D_{x,y}, D_{z,w}) = (-1)^{(x+y)z} \alpha(x, [z, w, y]) \] and
\[\alpha(D_{x,y}, D_{z,w}) = (-1)^{(x+y)z} \alpha(x, [z, w, y]). \] This gives
\[\alpha\left(D_{x,y}, D_{z,w}\right) = (-1)^{(x+y)z} \beta(x, [z, w, y]). \] (44)
Thus, if β is nondegenerate, the restriction of α on $D(T, T) \times D(T, T)$ is nondegenerate and α is nondegenerate. Now, suppose that β is degenerate. Then by the lemma above, \perp^\perp is an ideal of T so $T^\perp \oplus D(T, T^\perp)$ is a nonzero ideal of T.

Using the identities (43) and (44) we get
\[\alpha\left(T^\perp \oplus D(T, T^\perp), T \oplus D(T, T)\right) = \alpha\left(T^\perp, T\right) + \alpha\left(T^\perp, D(T, T)\right) + \alpha\left(D(T, T^\perp), T\right) + \alpha\left(D(T, T^\perp), D(T, T)\right) \] (45)
\[\alpha\left(T^\perp, T\right) + \beta\left(T, [T, T^\perp, T]\right) = 0. \]

It comes that α is degenerate and $T^\perp \oplus D(T, T)$ is not semisimple which proves the theorem. □

The results of this paper could be used for a study of the structure of a pair consisting of a semisimple Lie superalgebra and its semisimple graded subalgebra.

Competing Interests

The authors declare that they have no competing interests.

References

