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Abstract. 
In this work, we search the existence shifting compliance optimal form of some boundary membrane, which is not elastic and not isotropic, generating nonlinear PDE. An optimal form of the elastic membrane described by the -Laplacian is investigated. The boundary perturbation method due to Hadamard is applied in Sobolev spaces.



1. Introduction and Preliminaries
In this work we will study the geometric shape optimization of forms, where the main idea is to vary the edge position of a form, without changing its topology which remains the same. We use a membrane model as shown in Figure 1. At rest the membrane occupies a reference domain  whose edge is divided into three disjoint parts:where  is the free variable part,  is the fixed part of the boundary (Dirichlet boundary conditions), and  is also the free part of the boundary on which we apply the efforts  (Neumann boundary condition). The three of parts of the boundary are supposed to be nonzero surface measurements, as we suppose that the free boundary variable  responds to homogenous Neumann condition. So the vertical displacement  is the solution of the following membrane model:We want to minimize the compliance defined by  whenever .




	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1: Membrane.


The shape optimization problem is  where it remains to define the set of admissible forms.
1.1. Existence under a Condition of Regularity
The main idea of this section is to apply a regularity constraint on all the admissible forms , to demonstrate a result of existence of optimal forms. The results and demonstrations are mainly due to F. Murat and J. Simons [1, 2]. It rests on a very significant restriction of ; in other words,  is obtained by applying a regular diffeomorphism T to the reference domain . We first define a diffeomorphism set:Then we define a set of the admissible forms obtained by deformation of :Finally we introduce a pseudo-distance on :Thus, we introduce a condition of uniform regularity of the permissible forms, that is to say,  open sets close to  in the sense of pseudo-distance; for each  we pose  =  such that  and  where  is an imposed volume. The result is the following theorem.
Theorem 1.  For all objective functions, the shape optimization problem  admits at least a minimum point.
1.2. Derivation from the Domain
The boundary variation method that we study is a classical idea well known and used before by Hadamard [3] in 1907 and many others as [4–12]. We will adopt the same representation as F. Murat and J. Simons [1]. In fact, let  be an open regular bounded referential domain of  and the admissible form class  composed of the open sets such as  where  is a Lipschitz diffeomorphism andwhere  is the identity application, and we note  defined by
Lemma 2 (See [13]).  For all  satisfying , the application  is a bijection of  and .
Definition 3.  Let  be application from  to . One says that it is differentiable with respect to the domain at  if the functionis Frechet differentiable at 0 in the Banach space . i.e., , a linear continuous form on , such thatThe linear form  depends only on the normal component of  on the boundary of .
Proposition 4.  Let  be a regular bounded open set of . Let  be a differentiable application on . If  are such that  such that  on , then the derivative  is verifying:
1.3. Derivation of Integrals
Since the compliance  is defined by surface or volume integrals then its differentiation devotes the following tools.
Lemma 5 (see [1, 7]).  Let  be an open set of . Let  and .Then  iff  and one hasOn the other hand  iff  and one has
Proposition 6 (See [13]).  Let  be a regular bounded open set of . Let  and  be an application from  to  defined by . Then  is differentiable in  and
Now we move to a lemma on the change of variables in surfaces integrals.
Lemma 7 (See [1, 7]).  Let  be an open set of . Let  be a class  diffeomorphism of , and .Then  iff  and one haswhere  is the external normal to .
The surface integral derivative of a function with respect to the domain is given by the following proposition.
Proposition 8 (See [13]).  Let  be a regular bounded open set of . Let  and  be an application from  to  defined by . Then  is differentiable in  andwhere  is the average curvature of  defined by .
1.4. Derivation of a Domain Dependent Function
In this section we try to derive a function depending on the domain; for this we use the Eulerian  or Lagrangian  derivative. The second is a more reliable concept than the first. Let  be a function defined for all  and depending on . It represents a solution of an PDE posed in . In a point  belonging to both  and , we can calculate the differential :  is a linear continuous form in ; it represents a directional derivative in the direction . This definition makes sense in the case where , but it poses a problem if . Then in this case we use the Lagrangian derivative; for this we build the transported  on .
By changing variables we obtain .
To arrive at the derivative Lagrangian by drifting  with respect to  is a linear continuous form in ; it represents a directional derivative in the direction .
There is a relation between these two derivatives .
Proposition 9.  Let  be a regular bounded open set of . Let  be an application from  to ; one defines its transpose from  to  which we suppose to be derivable in  and  is considered as its derivative. So the application  from  to  defined by  is differentiable in  and for all  one hasIn the same way, if  is derivable as an application from  to , so the application  from  to  defined by  is differentiable in  and for all  one has
2. Deriving an Equation with respect to the Domain
2.1. Dirichlet Conditions
We consider the following equation with Dirichlet boundary conditions:With  a regular bounded open set in ,  and  with 
Equation (20) admits a unique solution in .
Remark. For  we obtain the linear operator “Laplacian”.
The variational formulation of problem (20) is as follows:  we have  or ; it implies thatUsing the Green formula we obtainbut ; it implies that  on . So the first term equals zero. Then
Proposition 10.  Let ;  is the solution of the problem (20). We define its transported on  byThen the application  from  to  is differentiable in  and its directional derivative called Lagrangian derivative ,  is the unique solution ofwith .
Proof.  We consider a test function . Let  such that  is a solution of problem (20) satisfying . We remark that  and  are independent of . By a change of variable  and the Lemma 5, (23) becomesand since  we have ; it implies thatThen (23); then we drift with respect to  in 0.
On the other hand the application  from  to  is differentiable in 0.
In fact  with . Therefore  because  is small enough.By using [14] we findOn the other hand .
ThusTherefore, we haveThen afterwards we putThus  the Lagrangian of  is a solution of the following differential equation:
Remark 11.  When  we will have:(i)(ii)(iii) Then , the Lagrangian of , will be solution of the following reduced differential equation:with 
2.2. Neumann Conditions
We consider the following equation with Neumann boundary conditions (see [15]):where  a regular bounded open set in , , , and  with .
The variational formulation of problem (35) is to find  such that  (v represents a test function)  or .
It implies that :By using the Green formula we find
Proposition 12.  Let ;  is the solution of problem (35). We define its transport on  by .
Then the application  from  to  is differentiable in  on the direction  and its directional derivative called Lagrangian derivative of  is  where  is the unique solution ofwhere .
Proof.  We make a change of variable  where  and  in the variational formulation (37). We pose  noticing that  does not depend on . Thus by drifting the variational formulation, we obtain by using Lemmas 5 and 7OrWe have by using [14]AndForSo the transported derivative of  at 0 in the direction  is the Lagrangian =<> which is the solution of the following equation:where .
3. Optimality Condition
To calculate the optimality conditions of the following problem  with , where  is the set of admissible forms obtained by diffeomorphism, the cost function  is the compliance defined byto reach a target displacement  where the function  is solution of the boundary problem posed (resp., Dirichlet or Neumann boundary conditions).
We consider the following boundary value problems.
Dirichlet Boundary Conditionwhere .
Neumann Boundary Conditionwhere  and .
The problems admit a unique solution .
Theorem 13.  Let  be a regular bounded open set. The cost function  is differentiable and its derivative is is the Lagrangian derivative and also solution ofwith .
Proof.  By applying Proposition 4 for the compliance we obtainwhere  is the Lagrangian derivative, solution of the PDE.
Remark 14.  From extensive literature which deals with optimum condition calculus for problems as  we can cite(i)(ii)
 So, to calculate the gradient of each compliance we use the same argument by the propositions [13].
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