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Abstract. 
In this note we present a new special function that behaves like the error function and we provide an approximated accurate closed form for its CDF in terms of both Chèbyshev polynomials of the first kind and the error function. Also we provide its series representation using Padé approximant. We show a convincing numerical evidence about an accuracy of  for the approximants in the sense of the quadratic mean norm. A similar approach may be applied to other probability distributions, for example, Maxwell–Boltzmann distribution and normal distribution, such that we show its application using both of those distributions.



1. Introduction
Integrals of the error function, see (1), occur in a great variety of applications usually in problems involving multiple integration where the integrand contains exponentials of the squares of the argument; an example of applications can be cited from atomic physics astrophysics and statistical analysis. It comes into our mind to seek for the integration of such functions  power its antiderivative . We have got example (1) where it is the power of two distributions related to normal distribution [1] as shown below such that  and with  is called error function and it is defined in (24).
1.1. Numerical Approximation of  in Some Ranges Values
Now, if we really need a simple expression for  in some range of values, there are ways to get various approximations.
The function is very nice. It goes to its limit at  very fast. Figure 1 shows the plot of  for .






	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1: The plot of  for .


Therefore (depending on the accuracy we need) we can easily take  for  with  around  or .
Mathematica gives the following for the first  digits.
Now, what can we do for small ?
The function is so nice; we can just use the Taylor expansion around . The first term is as follows.
The plot for  is shown in Figure 2. The proof is simple. The Taylor series look like the following.We may see the following.






	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 2: Approximation of  for  using Taylor expansion.


Now let us find a better approximation by computing the higher derivatives.
We use Mathematica as a shortcut, but it is easy to do it by hand, if we remember that 
so our next approximation is as follows.
The plot with both approximations (orange, green) and the function itself (blue) is given in Figure 3 and we can continue in the same way for higher derivatives. Now we admit that it is possible that we need the values of  for all the possible  and with high precision, so the approximations will not do that. Then we need to turn to numerical integration (as Mathematica did for me to plot the function). Another way to approximate the function [2] is using its derivative:






	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 3: Plot of I(a) with both approximations.


but this is an ordinary differential equation, which can be solved numerically.
As an illustration, here is a simple explicit Euler scheme for the step size .
We can use an initial value .
For , we have the following result (red dots) compared to the exact function (blue line) as shown in Figure 4.






	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 4: A simple explicit Euler scheme for the step size .


For  see Figure 5.






	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 5: A simple explicit Euler scheme for the step size .


This way can serve as a good alternative to numerical integration [3] (depending on the context and the application of course). Let us now show the relationship between this function and other standard special functions (integral of error function) [4] as error function and cumulative distribution function for normal distribution in the context of its use. Function (1) could be used to find values of complicated integral which are not available in any references of standard special functions and also it is not available to get their values in Wolfram Alpha, for example,with  It is CDF (cumulative distribution function for normal distribution); if someone was asked to find the value of this integral, he would be confused because it is very complicated; probably he cannot show whether it is convergent or not; even Wolfram Alpha as a best means of computation cannot recognize at a least that  is a cumulative normal distribution, so no result would be obtained about the value of this integral. Let us compute (25) using (1) and we will conclude that they have the same value and both are identical function and identical integral.
The well-known formula which expresses the relationship between error function and cumulative density function, see (2), is defined as
And it is easy to check that it always holds for every real number by the following short proof.
Proof.  By definition, the error functionWriting  implies  (because  is not negative), whence . The endpoints  and  become  and . To convert the resulting integral into something that looks like a cumulative distribution function (CDF), it must be expressed in terms of integrals that have lower limits of ; thusThose integrals on the right hand size are both values of the CDF of the standard normal distribution:Specifically,Now since the LHS of (18) has a known value which is , then the right hand side also equals ; hence we came up with the following identity:Now we shall call the function defined in (1)  since it does not refer to anyone and it has unknown analytic representation as elementary function using standard special functions and the RHS of (18) presents another representation of  function using CDF of the normal distribution.
Lemma 1.   cannot be expressed in terms of elementary function.
Proof.  It is a theorem of Liouville [5], reproven later with purely algebraic methods, that for rational functions  and ,  is nonconstant, the antiderivativecan be expressed in terms of elementary functions if and only if there exists some rational function  such that it is a solution to the differential equation:Now if we apply Liouville theorem we can come up with the following ODE:  with  and . It is first ordinary differential equation. The computation we made with Wolfram Alpha gives the following solution: with . Really the function  can be written follows.Now it is clear that  is a transcendental function and the defined integral in the right hand side of the  expression is also transcendental function because we have derivatives of rational functions being rational functions. Therefore, if the antiderivative is rational, then the original function was rational. The function  is rational only at , and since , then the sum of two transcendental functions is always transcendental function. According to definition of the rational function,  cannot be called a rational function; then we are done.
2. A Possible Approach Formula for 
We may give here a possible approach formula for T( which is defined as follows.The inverse symbolic calculator is unable to give us the representation of  using standard special functions, but we have tried to give its representation using error function representation as hypergeometric function [6]; we have with  being the Kummer confluent hypergeometric function [6]. Now we have from (24) the following.The RHS of (25) using (24) gives . Hence we may choose  and we can get finally the following.Mathematica gives the nice approximation of (25) as shown in Figure 6.




	
	
		
			
		
	


Figure 6: Error approximation for T().


3. Series Representation of  Function
We may try to find a series expansion in powers of  ofThe coefficients  follow from the series expansion , resulting inThe series  seems to converge. See Figure 7: The value of  agrees with  to three decimal places. For  the agreement is up to six decimal places, but this did not give us the power series closed form for th term. We should use some approximations using approximation of error function and Padé approximant as shown in the following sections.




	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 7: Convergence of  as a function of  up to .


4. Series Expansion of the -th Derivative of 
Lemma 2.  Series expansion of  is defined by this identity:wherewhich is the key idea to get.
Proof.  Suppose that we have the Taylor expansions:andThen we have the standard result:where  are the partial Bell polynomials, which are defined by the following formula.The key idea to get series expansion of the n-th derivative of  which is defined in (29) is to use Taylor expansion of  and  coming up for using one of the important formulas in mathematics called Bruno-Fadi formula such as that defined above in (33) using (34). It is well known that the Taylor expansion of  is given by the following.Probably the interesting here for readers to know is Taylor expansion of ; we give a simple proof about its expansion series using Hermite polynomial.
Lemma 3.  Taylor expansion of  at each point a is given by this identity:with  is Hermite polynomial of degree .
Proof.   can be written in terms of Hermite polynomials .We may recognize that , which gives the power series for  at .After multiplying by , this integrates toSince , one can do a Taylor Series for every .Then we are done.
Now by composition of (40) with (35) after multiplying (40) by the term , we come up to Bruno-Fadi formula which is defined aswhereIntegrating this equation term by term giveswhich gives the series expansion for the new special function. Using Mathematica as a shortcut, it shows that (44) holds and also it shows the incrementation of  as shown in Figure 8. We may add also the series expansion of , the new special function, using Mathematica code as shown in Figure 9.




	
	
		
			
		
	


Figure 8: n-th derivative of new special function .






	
	
		
			
		
	


Figure 9: Series expansion of new special function  around .


5. Series Representation of  Using Error Function Approximation
We have the power series ofand then from (45) we have the following.Now it is hard so much to evaluate the integral in RHS of (46) using error function expression; then we should use the following nice approximation. Here we can give a short proof to show that the error function squared was approximated as well with the value of .
Proof.  We fully agree thatis minimum for . According to , this number seems to be much closer tothan to  even if this does make very large difference (the maximum error is reduced from  to  and the value of the integral  changes from  to ). If we look for a still better approximation, we could consider  (which, for sure, introduces a bias in the problem), establish a Padé approximant, and finally arrive towhereThe value of the corresponding error function is , that is to say, almost  times smaller than that with the initial formulation; the maximum error is .
Now we are ready to approximatefor which the binomial expansion would be required (easy). This would give you things like the following.Now it is easy to get recurrence relation for  in (53); we take  and we come up to  which gives the following general formula.We produce in Table 1 a short table for comparison; we reused for this problem our approach with the same Padé approximants and obtained the following as approximations.Really we are ready to give the series representation of  over  using error function approximation and Padé approximant.
Table 1: Short table for approximation comparison.
	

	n 	 approximation 	 exact 
	

	1	 0.591506	 0.596751
	2	 0.279674	 0.283168
	3	 0.151067	 0.153256
	4	 0.0870954	 0.0884650
	5	 0.0522216	 0.0530855
	6	 0.0321485	 0.0326982
	7	 0.0201718	 0.0205243
	8	 0.0128409	 0.0130686
	9	 0.00826756	 0.00841548
	10	 0.00537202	 0.00546863
	



6. Series Representation of  Function over  Using Error Function Approximation and Padé Approximant
Recallis  if  is odd. Thus, we need to focus onwhich could be approximated, as we showed above in Section 3 to get (57) usingmakingto be developed using the binomial expansion. Therefore, in practice, we face the problem ofand the antiderivativewhere the exponential integral function appears. Using the bounds, this reduces toand leads to “reasonable” approximation as shown in Table 2. Another approximation could be obtained using the simplest Padé approximant [7] of the error functionwhich would lead toslightly less accurate than the previous one. Continuing with Padé approximantwe should getwhere the Appell hypergeometric function of two variables appears. Finally we conclude the series representation as follows.
Table 2: Reasonable approximation using bounds.
	

	k 	 approximation 	 exact 
	

	1	 0.22870436048	 0.22959937502
	2	 0.08960938943	 0.08997882179
	3	 0.04400808083	 0.04418398568
	4	 0.02389675159	 0.02398719298
	5	 0.01374034121	 0.01378897319
	6	 0.00819869354	 0.00822557475
	7	 0.00502074798	 0.00503586007
	8	 0.00313428854	 0.00314286515
	9	 0.00198581489	 0.00199069974
	10	 0.00127304507	 0.00127582211
	



7. Approximation of  Function by Means of a Polynomial
Lemma 4.  The function  which is defined ascould be approximated by means of Chebytchev polynomial.
Proof.  We may approximate the function  on the interval  by using Chèbyshev polynomials [8] of the first kind. To this end, we choose some positive integer  and we define the coefficients  by the formulaThen the polynomialapproximates  in the best possible way. Sincewe see that the polynomial  is an approximant to  function on . Calculations giveandFor both approximations the error is less than . Indeed, numerical integration givesandThus, we may evaluate the  function with high accuracy on the interval . For  we may use the following approximation formula in terms of the error function:The quadratic mean error on  isNow we are ready to present application of  in probability and thermodynamics using one of the most important distributions which is called Maxwell–Boltzmann distribution
8. Application of  in Probability
Let
Defineand letThe function  is the new special function we have studied in this paper. This function defines a cumulative probability distribution function (CDF) with probability distribution function (PDF).Indeed, we haveThe ODE for this function not involving the error function erf may be obtained by differentiating (84) twice and eliminating the expression containing that error function. This gives us the following ODE.Letting  gives the ODEwhose general solution is as follows.If we compare (89) withwe must haveso thatWe showed that in the case when  our function  coincides with the error function  with the value . When  we cannot obtain the solution to the ODE (87) in closed form. We may try a numerical procedure or another method to solve it. Our aim is to show how we may apply the new special function  in probability and physics.
8.1. Example
We look for  and  in order to adjust the error function by means of the function  To this end, we impose the following conditions.Solving this system givesThe function  converts intoPlotting the two functions gives following picture as shown in Figure 10




	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 10: Adjusting the error function by means of the new special function.


9. Application of  in Thermodynamics
In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used for describing particle speeds in idealized gases, where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other or with their thermal environment. The term “particle” in this context refers to gaseous particles (atoms or molecules), and the system of particles is assumed to have reached thermodynamic equilibrium. The energies of such particles follow what is known as Maxwell–Boltzmann statistics, and the statistical distribution of speeds is derived by equating particle energies with kinetic energy. Mathematically, the Maxwell–Boltzmann distribution is the chi distribution with three degrees of freedom (the components of the velocity vector in Euclidean space), with a scale parameter measuring speeds in units proportional to the square root of  (the ratio of temperature and particle mass); see Figure 10. The CDF for the Boltzmann distribution may be approximated by means of the new special function  as follows:where  is an approximation to  for some parameters  and  depending on  This approximation may be obtained in a similar way to what we illustrated in Example 1, Figure 11. On the other hand, in the case when  we may approximate the CDF for the Maxwell–Boltzmann distribution as shown in Figure 12 for the value .




	
	
		
			
		
	


Figure 11: Maxwell–Boltzmann distribution.








	
	
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 12: Approximation of the CDF for the Maxwell–Boltzmann distribution for .


Finally this approximation by new special function showed that it may also be applied in thermodynamics to evaluate the average energy per particle in the circumstance where there is no energy-dependent density of states to skew the distribution, and the representation of probability for a given energy must be normalized to a probability of 1 which holds using our new special function with two parameters as shown in (86).
10. Conclusion
We have studied A new probability distribution defined on  and we gave series representations for  function using Padé approximant. Really we approximated the CDF for that distribution by means of Chèbyshev polynomials and the error function. The methods we applied are suitable for approximating other CDF for probability distributions, since their CDF are bounded and they take values from 0 to 1. And it is well known that Chèbyshev polynomials are the optimal ones for approximating continuous functions. On the other hand, it is also possible to approximate such functions by means of rational Chèbyshev approximants. This technique may be used in future works.
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1. In mathematics, the error function (also called the Gauss error function) is a special function (nonelementary) of sigmoid shape that occurs in probability, statistics, and partial differential equations describing diffusion. It is defined as  Of course, it is closely related to the normal CDF  (where  is a standard normal) by the expression .2. Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF, also cumulative density function) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that  will take a value less than or equal to .If we have a quantity  that takes some value at random, the cumulative density function  gives the probability that  is less than or equal to ; that is, In the case of a continuous distribution, it gives the area under the probability density function from minus infinity to . Cumulative distribution functions are also used to specify the distribution of multivariate random variables.References
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