New Branch of Intuitionistic Fuzzification in Algebras with Their Applications

Samaher Adnan Abdul-Ghani, Shuker Mahmood Khalil, Mayadah Abd Ulrazaq, and Abu Firas Muhammad Jawad Al-Musawi

Department of Mathematics, College of Science, Basrah University, Basrah 61004, Iraq

Correspondence should be addressed to Shuker Mahmood Khalil; shuker.alsalem@gmail.com

Received 28 February 2018; Revised 22 May 2018; Accepted 11 June 2018; Published 10 July 2018

Academic Editor: Susana Montes

Copyright © 2018 Samaher Adnan Abdul-Ghani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The intuitionistic fuzzification in $\rho-$algebras about the concepts of ideals and subalgebras given with several related characterizations is considered. Some new concepts like intuitionistic fuzzy $\rho-$ideal ($IF_{\rho}i$), intuitionistic fuzzy $\rho-$subalgebra ($IF_{\rho}s$), $\rho-$homomorphism, and intuitionistic fuzzy $\bar{\rho}-$ideal ($IF_{\bar{\rho}}i$) are introduced and some of their descriptions are given in this work. Further, we show some applications on the family of all intuitionistic fuzzy $\rho-$subalgebras $IF_{\rho}(\mathcal{R})$ in $\rho-$algebra like the binary relations $\approx_{\mu_{\rho}}$ and Γ_{ρ} on $IF_{\rho}(\mathcal{R})$. Also, their equivalence classes are given and studied.

1. Introduction

The fuzzy set (FS) as suggested by Zadeh [1] in 1965 is a regulation to vagueness and encounter uncertainty. A FS maps each element of the universe of discourse to the interval $[0, 1]$. After the introduction of fuzzy sets theory by him, many mathematicians were conducted on the generalizations of the this concept and studied in the groups, algebras, and soft spaces (see [2–5]). By including a fuzzy set the degree of nonmembership, Atanassov [6] in 1986 suggested the intuitionistic fuzzy set (IFS), which seems more precise for provides opportunities and uncertainty quantification to accurately model a problem based on existing knowledge and monitoring. Also, this notion is discussed in different fields (see [7–11]).

$BCK-$algebra, class of algebra of logic, was investigated by Imai and Iseki [12]. After that, the notion of $d-$algebras was investigated by Neggers and Kim [13]. In 2017, the concepts of $\rho-$algebra, $\bar{\rho}-$ideal, $\rho-$ideal, $\rho-$subalgebra, and permutation topological $\rho-$algebra were first proposed by Mahmood and Abud Alradha [14]. Next, they showed the notion of the soft $\rho-$algebra and soft edge $\rho-$algebra [15].

In the present work, the notions of intuitionistic fuzzy $\rho-$ideal ($IF_{\rho}i$), intuitionistic fuzzy $\rho-$subalgebra ($IF_{\rho}s$), $\rho-$homomorphism, and intuitionistic fuzzy $\bar{\rho}-$ideal ($IF_{\bar{\rho}}i$) are introduced. Further, we show some applications on the family of all intuitionistic fuzzy $\rho-$subalgebras $IF_{\rho}(\mathcal{R})$ in $\rho-$algebra like the binary relations $\approx_{\mu_{\rho}}$ and Γ_{ρ} on $IF_{\rho}(\mathcal{R})$. Also, their equivalence classes are given and studied.

2. Preliminaries and Notations

We will recall basic definitions and results to obtain properties developed in this work.

Definition 1 (see [16]). An intuitionistic fuzzy set α (IFS, in short) over the universe \mathcal{R} is defined by $\alpha = \{< a, \mu_{\alpha}(a), \nu_{\alpha}(a) > | a \in \mathcal{R} \}$, where $\mu_{\alpha}(a): \mathcal{R} \rightarrow [0, 1]$, $\nu_{\alpha}(a): \mathcal{R} \rightarrow [0, 1]$ with $0 \leq \mu_{\alpha}(a) + \nu_{\alpha}(a) \leq 1, \forall a \in \mathcal{R}$. $\mu_{\alpha}(a)$ and $\nu_{\alpha}(a)$ are real numbers and their values represent the degree of membership and nonmembership of a to α, respectively.

Definition 2 (see [6]). The IF whole and empty sets of \mathcal{R} are defined by $\overline{\mathcal{R}} = \{< a, (1, 0) > | a \in \mathcal{R} \}$ and $\overline{\emptyset} = \{< a, (0, 1) > | a \in \mathcal{R} \}$, respectively.
2.1. Basic Relations and Operations on Intuitionistic Fuzzy Sets

Assume \(\alpha = \{ < a, (\mu_\alpha(a), \nu_\alpha(a)) > | a \in \mathbb{R} \} \) and \(\beta = \{ < a, (\mu_\beta(a), \nu_\beta(a)) > | a \in \mathbb{R} \} \) are two IFSs of \(\mathbb{R} \). We deduced the following relations:

1. [inclusion] \(\alpha \subseteq \beta \) iff \(\mu_\alpha(a) \leq \mu_\beta(a) \) and \(\nu_\alpha(a) \geq \nu_\beta(a) \), \(\forall a \in \mathbb{R} \).
2. [equality] \(\alpha = \beta \) iff \(\alpha \subseteq \beta \) and \(\beta \subseteq \alpha \).
3. [intersection] \(\alpha \cap \beta = \{ (a, \min\{\mu_\alpha(a), \mu_\beta(a)\}, \min\{\nu_\alpha(a), \nu_\beta(a)\}) : a \in \mathbb{R} \} \).
4. [union] \(\alpha \cup \beta = \{ (a, \max\{\mu_\alpha(a), \mu_\beta(a)\}, \max\{\nu_\alpha(a), \nu_\beta(a)\}) : a \in \mathbb{R} \} \).
5. [complement] \(\alpha^c = \{ (a, \nu_\alpha(a), \mu_\alpha(a)) : a \in \mathbb{R} \} \).

Definition 3 (see [14]). We say \((\mathbb{R}, \cdot, 0)\) is \(\rho\)-algebra if \(\cdot\) is a binary operation on \(\mathbb{R}\) with a constant \(0 \in \mathbb{R}\) and such that

1. \(a \cdot a = 0\),
2. \(0 \cdot a = 0\),
3. \(a \cdot b = 0 \Rightarrow b \cdot a = 0\) imply that \(a = b\),
4. For all \(a \neq b \in \mathbb{R} - \{0\}\) imply that \(a \cdot b = b \cdot a \neq 0\).

Definition 4 (see [14]). Assume \((\mathbb{R}, \cdot, 0)\) is a \(\rho\)-algebra and \(\phi \neq K \subseteq \mathbb{R}\). We say \(K\) is a \(\rho\)-subalgebra of \(\mathbb{R}\) if \(a \cdot b \in K, \forall a, b \in K\).

Definition 5 (see [14]). Assume \((\mathbb{R}, \cdot, 0)\) is a \(\rho\)-algebra and \(\phi \neq K \subseteq \mathbb{R}\). We say \(K\) is a \(\rho\)-ideal of \(\mathbb{R}\) if

1. \(a \cdot b \in K\) imply \(a \cdot b \in K\),
2. \(a \cdot b \in K\) and \(b \cdot K\) imply \(a \in K, \forall a, b \in \mathbb{R}\).

Definition 6 (see [14]). Assume \((\mathbb{R}, \cdot, 0)\) is a \(\rho\)-algebra and \(K\) subset of \(\mathbb{R}\). We say \(K\) is a \(\rho\)-ideal of \(\mathbb{R}\) if

1. \(0 \in K\),
2. \(a \in K\) and \(a \cdot b \in \mathbb{R}\), \(a \cdot b \in K, \forall a, b \in \mathbb{R}\).

Definition 7 (see [11]). Assume that \(\alpha = \{ < a, (\mu_\alpha(a), \nu_\alpha(a)) > | a \in \mathbb{R} \}\) is an IFS in \(\mathbb{R}\) and \(r \in [0,1]\). The set \(W(\mu_\alpha, r) = \{ a \in \mathbb{R} | \mu_\alpha(a) \geq r \}\) (resp., \(L(\nu_\alpha, r) = \{ a \in \mathbb{R} | \nu_\alpha(a) \leq r \}\)) is said to be \(\mu\)-level \(r\)-cut (resp., \(\nu\)-level \(r\)-cut) of \(\alpha\).

3. Intuitionistic Fuzzy

\(\rho\)-Subalgebras in \(\rho\)-Algebras

In this section, we introduce some new concepts, such as (IFPs), (IFpi), (IFp\(\bar{\rho}\)), and \(\rho\)-homomorphism which are introduced and discussed. Further, some binary relations \(\preceq\), \(\succeq\), and \(\Gamma\), on IFSs of \(\mathbb{R}\) are given, and some basic properties are shown.

Definition 8. Assume \((\mathbb{R}, \cdot, 0)\) is a \(\rho\)-algebra and \(\alpha = \{ < a, (\mu_\alpha(a), \nu_\alpha(a)) > | a \in \mathbb{R} \}\) is IFS of \(\mathbb{R}\). We say \(\alpha\) is an (IFPs) of \(\mathbb{R}\) if \(\mu_\alpha(a \cdot b) \geq \min\{\mu_\alpha(a), \mu_\beta(b)\}\) and \(\nu_\alpha(a \cdot b) \leq \max\{\nu_\alpha(a), \nu_\beta(b)\}, \forall a, b \in \mathbb{R}\).
Let \(\mu \) be a function from a set \(A \) to \([0,1]\). We define \(\mu(A) = \sum_{a \in A} \mu(a) \).

\[\int \mu \leq \sum_{a \in A} \mu(a) \leq 1 \]

Proof. Let \(a, b \in \mathcal{R} \). Thus we consider that
\[
\min\{\mu_a(a \cdot b), \mu_b(a \cdot b)\} \leq \max\{\mu_a(a), \mu_b(a)\} \leq \min\{\mu_a(a \cdot b), \mu_b(a \cdot b)\}.
\]

Thus \(\int \mu \leq \mu \). Hence we consider that
\[
\min\{\mu_a(a \cdot b), \mu_b(a \cdot b)\} \leq \max\{\mu_a(a), \mu_b(a)\} \leq \min\{\mu_a(a \cdot b), \mu_b(a \cdot b)\}.
\]

Therefore \(\mu \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \).

Theorem 17. If \(\alpha = \{< a, (\mu_a(a), \nu_a(a)) | a \in \mathcal{A} \} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \), then \(\mathcal{K} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \).

Proof. We need only to show that \(1 - \mu(a) \) satisfies the first condition in Definition 10. Assume \(a, b \in \mathcal{R} \).

Then \(1 - \mu(a \cdot b) \leq 1 - \min\{\mu_a(a), \mu_b(b)\} = \max\{1 - \mu_a(a), 1 - \mu_b(b)\} \).

Furthermore, \(1 - \mu(a \cdot b) \leq 1 - \min\{\mu_a(a), \mu_b(b)\} = \max\{1 - \mu_a(a), 1 - \mu_b(b)\} \).

Therefore \(\mu \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \).

Theorem 22. If \(\alpha = \{< a, (\mu_a(a), \nu_a(a)) | a \in \mathcal{A} \} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \), then \(\mathcal{K} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \).

Proof. Suppose there are two members \(t_1 \) and \(t_2 \) in \(\mathcal{R} \) with \(\mu_a(t_1 \cdot t_2) < \min\{\mu_a(t_1), \mu_a(t_2)\}/2 \). Hence \(\mu_a(t_1 \cdot t_2) < \min\{\mu_a(t_1), \mu_a(t_2)\} \) and so \(t_1 \cdot t_2 \neq W(\mu_a, t) \) but \(t_1, t_2 \in W(\mu_a, t) \). This is a contradiction, and therefore \(\mu_a(a \cdot b) \geq \min\{\mu_a(a), \mu_b(b)\} \).

Now assume that \(\nu_b(t_1 \cdot t_2) > k \max\{\nu_a(t_1), \nu_a(t_2)\} \) for some \(t_1, t_2 \in \mathcal{R} \). Taking \(k = \nu_a(t_1 \cdot t_2) + \min\{\nu_a(t_1), \nu_a(t_2)\}/2 \), then we consider that \(\nu_b(t_1 \cdot t_2) > k \max\{\nu_a(t_1), \nu_a(t_2)\} \).

It follows that \(t_1, t_2 \in L(\nu_a, k) \) and \(t_1 \cdot t_2 \notin L(\nu_a, k) \). This is a contradiction. Therefore, we consider that \(\nu_b(a \cdot b) \leq \max\{\nu_a(a), \nu_b(b)\} \).

Theorem 23. If \(\mathcal{H} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \), then there exists \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \).

Proof. Assume \(\mathcal{H} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \) and let \(\mu_a \) and \(\nu_a \) be fuzzy sets in \(\mathcal{R} \) defined by

\[\mu_a(a) = \begin{cases} k, & \text{if } a \in H \\ 1, & \text{Otherwise} \end{cases} \]

and

\[\nu_a(a) = \begin{cases} m, & \text{if } a \in H \\ 1, & \text{Otherwise} \end{cases} \]

for all \(a \in \mathcal{A} \), where \(k, m \in (0, 1) \) are fixed real numbers with \(k + m < 1 \). Assume \(a, b \in \mathcal{A} \). Then \(a \cdot b \in H \) whenever \(a, b \in H \). This implies that \(\mu_a(a) = \mu_b(b) \).

If at least one of \(a \) or \(b \) does not belong to \(H \), then either \(\nu_a(a) = 0 \) or \(\nu_b(b) = 0 \) and hence \(\nu_a(a) = 1 \) or \(\nu_b(b) = 1 \). It follows that \(\mu_a(b) = \mu_b(a) = \mu_a(a) = \mu_b(b) \).

Hence \(\alpha = \{< a, (\mu_a(a), \nu_a(a)) | a \in \mathcal{A} \} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \).

Obviously, \(W(\mu_a, k) = H = L(\nu_a, k) \).

Definition 24. Assume \(\Theta : \mathcal{R} \rightarrow Y \) is a mapping of \(\mathcal{R} \)-algebras. We say \(\Theta \) is a \(\mathcal{R} \)-homomorphism if \(\Theta(a \cdot b) = \Theta(a) \cdot \Theta(b) \), \(\forall a, b \in \mathcal{R} \). And \(\Theta^{-1}(\beta) = \{< a, (\Theta^{-1}(\mu_a), \Theta^{-1}(\nu_a)) | a \in \mathcal{A} \} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \) for any \(\mathcal{R} \)-algebra \(\mathcal{B} \). Also, if \(\alpha = \{< a, (\mu_a(a), \nu_a(a)) | a \in \mathcal{A} \} \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \), then \(\Theta(\alpha) \) is \((\mathcal{R},\mathcal{R})\)-super-algebra of \(\mathcal{A} \) and defined by

\[\Theta(\alpha) = \{< c, (\Theta^{-1}(\mu_c), \Theta^{-1}(\nu_c)) | c \in Y \} \]
Theorem 25. Let \(\Theta \) be \(p \)-homomorphism of \(p \)-algebra \(R \) into \(p \)-algebra \(Y \) and \(K \) be \((IPf)\) of \(Y \). Then \(\Theta^{-1}(K) \) is \((IPf)\) of \(R \).

Proof. Assuming \(a, b \in R \), we have \(\mu_{\Theta^{-1}(K)}(a \cdot b) = \mu_{K}(\Theta(a) \cdot \Theta(b)) \geq \min\{\mu_{K}(\Theta(a)), \mu_{K}(\Theta(b))\} = \min\{\mu_{\Theta^{-1}(K)}(a), \mu_{\Theta^{-1}(K)}(b)\} \) and \(\nu_{\Theta^{-1}(K)}(a \cdot b) = \nu_{K}(\Theta(a) \cdot \Theta(b)) \leq \max\{\nu_{K}(\Theta(a)), \nu_{K}(\Theta(b))\} = \max\{\nu_{\Theta^{-1}(K)}(a), \nu_{\Theta^{-1}(K)}(b)\} \). Thus \(\Theta^{-1}(K) \) is \((IPf)\) of \(R \).

Theorem 26. Assume \(\Theta : R \rightarrow Y \) is \(p \)-homomorphism of \(p \)-algebra \(R \) into \(p \)-algebra \(Y \) and \(a = \{< a, (\mu_{\alpha}(a), \nu_{\alpha}(a)) | a \in R \} \) is \((IPf)\) of \(R \). Then \(\Theta(a) = \{< b, (\Theta_{sup}(\mu_{\alpha}), \Theta_{inf}(\nu_{\alpha})) | a \in R \} \) is \((IPf)\) of \(Y \).

Proof. Let \(\alpha = \{< a, (\mu_{\alpha}(a), \nu_{\alpha}(a)) | a \in R \} \) be \((IPf)\) of \(R \) and \(\alpha \), \(\beta \) be elements of \(\Theta^{-1}(\alpha) \). Noticing that \(\{a, a_1 | a_1 \in \Theta^{-1}(t_1) \} \subseteq \{a | a \in \Theta^{-1}(t_1) \} \) and \(\{a, a_2 | a_2 \in \Theta^{-1}(t_2) \} \subseteq \{a | a \in \Theta^{-1}(t_2) \} \), we have \(\Theta_{sup}(\mu_{\alpha}(a_1 \cdot t_1)) = \max\{\Theta_{sup}(\mu_{\alpha}(a_1)), \Theta_{sup}(\mu_{\alpha}(t_1))\} \) and \(\Theta_{inf}(\nu_{\alpha}(a_1 \cdot t_1)) = \min\{\Theta_{inf}(\nu_{\alpha}(a_1)), \Theta_{inf}(\nu_{\alpha}(t_1))\} \). Also, we consider that \(\Theta_{sup}(\mu_{\alpha}(a_1 \cdot t_1)) = \max\{\Theta_{sup}(\mu_{\alpha}(a_1)), \Theta_{sup}(\mu_{\alpha}(t_1))\} \) and \(\Theta_{inf}(\nu_{\alpha}(a_1 \cdot t_1)) = \min\{\Theta_{inf}(\nu_{\alpha}(a_1)), \Theta_{inf}(\nu_{\alpha}(t_1))\} \). Hence \(\Theta(\alpha) = \{< b, (\Theta_{sup}(\mu_{\alpha}), \Theta_{inf}(\nu_{\alpha})) | a \in R \} \) is \((IPf)\) of \(Y \).

Theorem 27. Assume \(\Theta : R \rightarrow Y \) is \(p \)-homomorphism of \(p \)-algebra \(R \) into \(p \)-algebra \(Y \) and \(a = \{< a, (\mu_{\alpha}(a), \nu_{\alpha}(a)) | a \in R \} \) is \((IPf)\) of \(R \). Then \(\Theta(a) = \{< b, (\Theta_{sup}(\mu_{\alpha}), \Theta_{inf}(\nu_{\alpha})) | a \in R \} \) is \((IPf)\) of \(Y \).

Proof. Since \(\alpha = \{< a, (\mu_{\alpha}(a), \nu_{\alpha}(a)) | a \in R \} \) is \((IPf)\) of \(R \), then by Theorem 26 and Remark 14 we have \(\Theta(a) = \{< b, (\Theta_{sup}(\mu_{\alpha}), \Theta_{inf}(\nu_{\alpha})) | a \in R \} \) is \((IPf)\) of \(Y \). Hence condition (1) in Definition 10 is satisfied. Since \(\Theta \) is surjective, then for any \(t_1, t_2 \in Y \), \(\exists a, a_1, a_2 \in R \) such that \(a_1 \in \Theta^{-1}(\Theta(a)) = \Theta^{-1}(t_1) \) and \(a_2 \in \Theta^{-1}(\Theta(a)) = \Theta^{-1}(t_2) \). Also, \(a, a_1 \in \Theta^{-1}(\Theta(a) \cdot t_1) \) and \(a, a_2 \in \Theta^{-1}(\Theta(a) \cdot t_2) \). Further, noticing that \(\mu_{\Theta(a)}(a_1) \geq \min\{\mu_{\Theta(a)}(a_1), \mu_{\Theta(a)}(a_2)\} \) and \(\nu_{\Theta(a)}(a_1) \leq \max\{\nu_{\Theta(a)}(a_1), \nu_{\Theta(a)}(a_2)\} \), for any \(t_1, t_2 \in Y \), we have \(\Theta_{sup}(\mu_{\Theta(a)}(a_1 \cdot t_1)) = \sup\{\mu_{\Theta(a)}(a_1 \cdot t_1) \} \) and \(\Theta_{inf}(\nu_{\Theta(a)}(a_1 \cdot t_1)) = \inf\{\nu_{\Theta(a)}(a_1 \cdot t_1) \} \). Also, \(\Theta_{sup}(\mu_{\Theta(a)}(a_1 \cdot t_1)) = \sup\{\mu_{\Theta(a)}(a_1 \cdot t_1) \} \) and \(\Theta_{inf}(\nu_{\Theta(a)}(a_1 \cdot t_1)) = \inf\{\nu_{\Theta(a)}(a_1 \cdot t_1) \} \). Hence \(\Theta(a) = \{< b, (\Theta_{sup}(\mu_{\alpha}), \Theta_{inf}(\nu_{\alpha})) | a \in R \} \) is \((IPf)\) of \(Y \).

4. Some Applications on \(IPf_{\mathcal{P}}(R) \)

In this section, some applications on \(IPf_{\mathcal{P}}(R) \) are shown like the binary relations \(= \) and \(\supseteq \) on \(IPf_{\mathcal{P}}(R) \). Also, in this section the equivalence classes for these binary relations are given, and some of their basic properties are studied.

4.1. Equivalence Classes Modulo \((=, \supseteq) \).

Denote the collection of all \((IPf_{\mathcal{P}}(R)) \) by \(IPf_{\mathcal{P}}(R) \) and let \(r \in [0, 1] \). Define binary relations \(= \) and \(\supseteq \) on \(IPf_{\mathcal{P}}(R) \) as follows.

\[\alpha = \beta \iff W(\mu_{\beta}, r) = W(\mu_{\beta}, r) \]
\[\alpha \supseteq \beta \iff L(\nu_{\beta}, r) = L(\nu_{\beta}, r) \]

for \(\alpha, \beta \in IPf_{\mathcal{P}}(R) \). Moreover, it is clear that \(= \) and \(\supseteq \) are equivalence relations on \(IPf_{\mathcal{P}}(R) \). If \(\alpha = \beta \), then we refer to the equivalence class of \(\alpha \) as \(\alpha \) and \(\beta \), respectively. For \(\alpha = {\alpha}_{\mu}, \nu_{\alpha} \in IPf_{\mathcal{P}}(R) \), then we refer to the family of all \(p \)-ideals of \(R \) by \(\rho_{\mathcal{P}}(R) \) and let \(r \in [0, 1] \).

Let \(\sigma, \eta, \) be maps from \(IPf_{\mathcal{P}}(R) \) to \(\rho_{\mathcal{P}}(R) \) and let \(\delta, \eta, \) be maps from \(IPf_{\mathcal{P}}(R) \) to \(\rho_{\mathcal{P}}(R) \). Then \(\sigma, \eta, \) are surjective, for each \(r \in (0, 1) \).
Proof. Let $r \in (0, 1)$. Then $\tilde{\alpha} = a, \tilde{\beta} >$ is in $IF_{\mathcal{P}}(\mathcal{R})$, where each one of $\tilde{\alpha}$ and $\tilde{\beta}$ is (FS) in \mathcal{R} defined by $\tilde{\alpha}(a) = 0$ and $\tilde{\beta}(a) = 1$, $\forall a \in \mathcal{R}$. Furthermore, $\tilde{\alpha}(a) = W(\tilde{\alpha}, r) = \phi = L(\tilde{\beta}, r) = \eta(\tilde{\beta})$. Also, $\eta(\hat{H}) = W(\mu(\hat{H}), r) = H = L(v(\hat{H}), r) = \eta(\hat{H})$. Therefore, we want to prove that $\hat{H} = x_\alpha, \mu(\hat{H}), v(\hat{H}) \in IF_{\mathcal{P}}(\mathcal{R})$. Since $H \in \rho_1(\mathcal{R})$, then by condition (i) in Definition 5 we have H as p-subalgebra of \mathcal{R} and this implies that $W(\mu(\hat{H}), r)$ and $L(v(\hat{H}), r)$ are p-subalgebras of \mathcal{R}. By Theorem 22 we consider $\tilde{\alpha} = a, \tilde{\beta} > \in IF_{\mathcal{P}}(\mathcal{R})$. Therefore, $\forall H \in \rho_1(\mathcal{R})$ we consider $\sigma(\hat{H}) = H$ and $\eta(\hat{H}) = H$ for some $H \in IF_{\mathcal{P}}(\mathcal{R})$. This completes the proof.

Theorem 30. Let $IF_{\mathcal{P}}(\mathcal{R})/\rho_1$ and $IF_{\mathcal{P}}(\mathcal{R})/\rho_2$ be quotient sets. Then they are equivalent to $\rho_1(\mathcal{R}) \cup \{\phi\}$, $\forall r \in (0, 1)$.

Proof. Assume $r \in (0, 1)$ and let $\alpha'(\rho_1(\mathcal{R}))$ be a map from $IF_{\mathcal{P}}(\mathcal{R})/\rho_1$ to $\rho_1(\mathcal{R}) \cup \{\phi\}$ and they are defined by $\alpha'(\tilde{\alpha}(\rho_1(\mathcal{R}))) = \sigma(\alpha)$, $\forall \alpha = \langle a, \mu(\alpha), v(\alpha) \rangle \in IF_{\mathcal{P}}(\mathcal{R})$. Hence, $\alpha = \beta$ and $\alpha = \beta$, $\forall \alpha = \langle a, \mu(\alpha), v(\alpha) \rangle$ and $\beta = \langle a, \mu(\beta), v(\beta) \rangle \in IF_{\mathcal{P}}(\mathcal{R})$, if $W(\mu(\alpha), r) = W(\mu(\beta), r)$ and $L(v(\alpha), r) = L(v(\beta), r)$. Then $\alpha(\tilde{\alpha}(\rho_1(\mathcal{R}))) = \beta(\tilde{\beta}(\rho_1(\mathcal{R})))$ and $(\alpha) = (\beta)$. This implies the maps α' and β' are injective. Moreover, let $\phi = H \in \rho_1(\mathcal{R})$ and $\forall r \in (0, 1)$, let

$$
\begin{align*}
\mu_H(a) = \begin{cases}
1, & \text{if } a \in H \\
0, & \text{if } a \notin H,
\end{cases}
\end{align*}
$$

and $\eta_H(a) = 1 - \mu_H(a)$ such that $\eta(H) = \sigma(\hat{H}) \cap \eta(\hat{H}) = W(\mu(\hat{H}), r) \cap L(v(\hat{H}), r) = H$. This completes the proof.

Theorem 32. For any $r \in (0, 1)$, the quotient set $IF_{\mathcal{P}}(\mathcal{R})/\Gamma_r$ is equivalent to $\rho_1(\mathcal{R}) \cup \{\phi\}$.

Proof. Assume $r \in (0, 1)$ and $\psi_1 : IF_{\mathcal{P}}(\mathcal{R})/\Gamma_r \to \rho_1(\mathcal{R}) \cup \{\phi\}$ is a map defined by $\psi_1((\alpha)) = \sigma(\alpha)$, $\forall (\alpha) \in IF_{\mathcal{P}}(\mathcal{R})/\Gamma_r$. Suppose that $\psi((\alpha)) = \psi((\beta))$ for any $(\alpha), (\beta) \in IF_{\mathcal{P}}(\mathcal{R})/\Gamma_r$. We consider that $\sigma(\alpha) \cap \eta(\tilde{\beta}) = \sigma(\beta) \cap \eta(\beta)$, $\forall (\alpha) \in IF_{\mathcal{P}}(\mathcal{R})/\Gamma_r$. Hence $\alpha = \beta$, $\forall (\alpha) \in IF_{\mathcal{P}}(\mathcal{R})/\Gamma_r$. Therefore ψ is injective. Furthermore, for $\phi = a, \tilde{\alpha} \in \rho_1(\mathcal{R})$ we get $\psi((\tilde{\alpha})) = \psi((\tilde{\beta})) = \phi$. Let $H = a, \tilde{\alpha} \in \rho_1(\mathcal{R})$, $\forall H \in IF_{\mathcal{P}}(\mathcal{R})$, be the same $(IF_{\mathcal{P}}(\mathcal{R}))$ of X that is defined in the proof of Theorem 22. Then we have $\psi((\tilde{\alpha})) = \psi((\tilde{\beta})) = \sigma(H) \cap \eta(\tilde{H}) = W(\mu(\tilde{H}), r) \cap L(v(\tilde{H}), r) = H$. Hence ψ is surjective. This completes the proof.

5. Conclusion

In this work, we introduce the notions of $(IF_{\mathcal{P}}(\mathcal{R}))$, $(IF_{\mathcal{P}}(\mathcal{R}))$, and others; then we proved that for any p-subalgebra of X can be considered as both p-level p-subalgebra and v-level p-subalgebra of some $(IF_{\mathcal{P}}(\mathcal{R}))$. At the same time, we proved that intersection of any family of $(IF_{\mathcal{P}}(\mathcal{R}))$ of $(IF_{\mathcal{P}}(\mathcal{R}))$ of X. Also, we show that if $\psi \in \rho_1(\mathcal{R})$, then $\psi \in \rho_1(\mathcal{R})$ and ψ and ψ are ρ-homomorphism are given. Finally, some binary relations \equiv, \approx and Γ_r on $IF_{\mathcal{P}}(\mathcal{R})$ are obtained, and some of their basic properties are discussed. In future work, we will investigate IF in new types of algebras like BCL^*-algebras, BCL^*-subalgebras, BCL^*-ideals and others. Next, we will study their characteristics.

Data Availability

Data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

Submit your manuscripts at
www.hindawi.com