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Abstract. 
By examining whether the individualistic assumptions used in social choice could be used in the aggregation of individual preferences, Arrow proved a key lemma that generalizes the famous Szpilrajn’s extension theorem and used it to demonstrate the impossibility theorem. In this paper, I provide a characterization of Arrow’s result for the case in which the binary relations I extend are not necessarily transitive and are defined on abelian groups. I also give a characterization of the existence of a realizer of a binary relation defined on an abelian group. These results also generalize the well-known extension theorems of Szpilrajn, Dushnik-Miller, and Fuchs.

1. Introduction
One of the most fundamental results on extensions of binary relations is due to Szpilrajn [1], who shows that any transitive and asymmetric binary relation has a transitive, asymmetric, and complete extension. The Szpilrajn extension theorem has applications in many areas, including mathematical logic, order theory, mathematical social sciences, computer sciences, computability theory, fuzzy mathematics, and other fields in pure and applied mathematics. This result remains true if asymmetry is replaced with reflexivity; that is, any quasi-ordering has an ordering extension. Fuchs [2] obtained a more general theorem on extending a partially ordered group  to a linear one. In fact, Szpilrajn’s theorem reduces to Fuchs’s theorem, when . Fuchs’ result has been thoroughly investigated (see [3–6]). In fact, It has been proven that a partially ordered abelian group  has a linear extension if and only if  is torsion-free. Arrow [7, Page 64] states a generalization of Szpilrajn’s theorem, which was the basis for his famous general impossibility theorem under the individualistic assumptions. This generalization may be stated as follows: Suppose that  is a quasi-ordering defined on a set of alternatives , and  is the set of alternatives that any two elements in  are incomparable according to  ( implies ). Then, given any ordering in , there exists an ordering in  which is compatible both with the given ordering in  and with . In other words, there exists an ordering of all the alternatives of  which is compatible with any ordering in . While the property of quasi-ordering satisfying the Arrow’s assumptions is sufficient for the existence of an ordering extension, this is not necessary. As shown by Suzumura [8], -consistency is a necessary and sufficient condition for a binary relation to have an extension satisfying Arrow’s assumptions. The extension theorems of Szpilrajn type have played an important role in social choice and economic and game theories. For example, one way of assessing whether a preference relation is rational is to check whether it can be extended to a transitive and complete relation (see [9, 10]). Another example is the problem of the existence of maximal elements of binary relations. If  is a binary relation which has a linear extension , then any maximal element of  is also a maximal element of . In a very general sense, if  is defined in a topological space, then the existence of a linear extension of  satisfying some continuity conditions is equivalent to the existence of a continuous utility function representing  (a binary relation  defined on  is represented by a utility function , if for all ) (see [11–14]). In the field of computer science, a topological sorting of a directed graph is a linear ordering of its vertices (it is well-known that directed graphs are useful in computer science because they serve as mathematical models of network structures) such that every edge between two vertices  and , the vertex  comes before vertex . That is, topological sorting can be used to convert a directed graph into a linear order such that if any event  requires that  be completed before  is initiated, then  will occur before  in the ordering. An elementary result in this direction says that a necessary and sufficient condition for a directed graph to have a topological sorting is acyclicity. The first implication is equivalent to the statement that every partial order has a linear order extension, which, as Knuth [15] noted, was proved by Szpilrajn 1930] for infinite as well as finite sets. Linearly ordered groups play an important role in many areas in pure and applied mathematics. For example, in economic and game theories, pairwise comparison matrices over a real linearly ordered group play a basic role in multicriteria decision-making methods such as the Analytic Hierarchy Process. (The Analytic Hierarchy Process provides a comprehensive and rational framework for structuring a decision problem, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions.) In utility theory, a major unsolved question is what can be said if a given preference relation cannot be represented by a utility function. In this case, one possibility is to seek utility functions with values in a suitable linearly ordered group (see [16]). In computer science, variants of duration calculus have been developed for discrete and abstract time (a system is said to be real-time if the total correctness of an operation depends not only on its logical correctness, but also on the time in which it is performed. In computer science, real-time computing describes hardware and software systems subject to a “real-time constraint”. Duration Calculus is an interval-based logic for the specification of real-time systems), where an arbitrary (commutative) linearly ordered group can be the model of time (see [17]).
Building on the original result of Szpilrajn’s Theorem, Dushnik and Miller [18] proved that any strict partial order is equal to the intersection of its linear ordering extensions and, based on this fact, defined the dimension of a partially ordered set as the smallest number of linear orderings the intersection of which is the partial order. Fuchs [2, Theorem 2] proved a more general Dushnik-Miller extension theorem on partially ordered groups. The extension theorems of Dushnik-Miller and Fuchs have many applications in pure and applied mathematics. Much of economic and social behaviour observed is either group behaviour or that of an individual acting for a group. Group preferences may be regarded as derived from individual preferences, by means of some process of aggregation. For example, if all voters agree that some alternative  is preferred to another alternative , then the majority rule will return this ranking. In this case, there is one simple condition that is nearly always assumed called the principle of unanimity or Pareto principle. This declares that the preference relation for a group of individuals should include the intersection of their individual preferences. Another example of the use of intersections is in the description of simple games which can be represented as the intersection of weighted majority games [19].
In this paper, I prove extension theorems for binary relations in a general framework allowing abelian groups, which generalize the well-known extension theorems of Arrow, Suzumura, Szpilrajn, Dushnik-Miller, and Fuchs.
2. Notations and Definitions
Let  be a nonempty set, and let  be a binary relation on . If  is any subset of , the restriction of  to  is the relation . If  and  are two binary relations on , then  denotes the set that results from removing the elements of  from . We denote  as . Let  be a binary relation on  and let . We say that  and  are -incomparable if  and . Let  and  denote, respectively, the asymmetric part of  and the symmetric part of , which are defined, respectively, by  and  and  and . We say that  on  is (i) reflexive if for each ; (ii) transitive if for all , [ and ] ; (iii) antisymmetric if for each , [ and ] ; (iv) complete if, for each , we have  or . The transitive closure of a relation  is denoted by , that is for all  if there exist  and  such that  for all  and . Clearly,  is transitive and because the case  is included, it follows that . Acyclicity says that  and  do not exist such that ,  for all  and . The relation  is -consistent, if, for all ,  implies  (see [20]). The following combination of properties is considered in the next theorems. A binary relation  on  is (i) partial order if  is reflexive, transitive, and antisymmetric and (ii) linear order if  is a complete partial order. We say that  is contradictory if any two of , , and  can not be satisfied simultaneously.
An abelian group is a set, , together with an operation + that combines any two elements  and  to form another element, denoted  and satisfy the following requirements: (i) for all , ; (ii) for all  and  in , ; (iii) there exists an element  in , such that, for every element , the equation  holds; (iv) for each , there exists an element  such that ; (v) for all , . We write  to mean . The sum  ( summands) is abbreviated as  (called a multiple of ), and  ( summands) as  with  (where  denotes the set of positive integers). A binary relation  defined on an abelian group  is homogeneous if it satisfies the following requirements: ()  is contradictory; () if  and  hold for some , then  holds. An ordered group  is an abelian group  equipped with a homogeneous binary relation . We say that  is normal, if  for some positive integer  implies . An ordered group  is cancellative if for all ,  implies . If an ordered group is cancellative, then  means that  and , which yields  and , and therefore . Every ordered group is automatically cancellative since  implies , and therefore . An ordered group  is called: (1) partially ordered group if  is reflexive and transitive and (2) linearly ordered group if  is reflexive, transitive, antisymmetric, and complete. If  is an ordered group, then we say that  has a linear ordering extension  if and only if  is a linearly ordered group such that  and . In fact,  subsumes all the pairwise information provided by  and possibly further information.
3. The Main Results
In the context of examining if the individualistic assumptions used in economics can be used in the aggregation of individual preferences ([7, Definition 5, Theorem 2], Arrow proved a key lemma that extends the famous Szpilrajn’s Theorem.
Arrow’s Lemma ([7, pp. 64-68]). Let  be a quasi-ordering on ,  a subset of  such that, if  and , then , and  an ordering on . Then, there exists an ordering extension  such that .
In fact, the lemma says that, if  is a binary relation defined on a set of alternatives , then given any ordering  to any subset  of -incomparable elements, there is a way of ordering all the alternatives which will be compatible both with  and with the given ordering  in . In this case, it is important that the linear extension of  inherits the relationship we put between the -incomparable elements of .
Definition 1.  A binary relation  is called -consistent if .
Clearly, -consistency implies -consistency. The following proposition is evident.
Proposition 2.  A binary relation  is -consistent if and only if  is acyclic.
In the following,  denotes the set of all natural numbers.
Theorem 3.  Let  be an ordered group,  be a subset of  such that, if  and  then , and let  be a linear ordering on . Then,  has a linear ordering extension  such that  if and only if  is a normal -consistent binary relation.
Proof.  To prove necessity, let  be an ordered group and let  be normal and -consistent. Suppose that  and  be two -incomparable elements of .
We putWe show that  is an ordered group with  being a normal, reflexive, and -consistent extension of  satisfying .
First of all, we note that  is never zero, because otherwise we should have  for some , whence by normality of  we have  against hypothesis.
To show that  is an ordered group, we show that  is contradictory and homogenous.
To prove that  is contradictory, we show that any two of the three relations , , and  cannot be satisfied simultaneously. We prove the case of  and ; the other cases are obvious. We have four cases to consider.
Case 1.  and . This is impossible because of the homogeneity of the relation .
Case 2.  as well as  for some . By adding  times the  in the second inequality, one obtains ; that is to say, . But then, by normality we are led to , a contradiction.
Case 3.  and  for some . This is impossible as in the preceding case.
Case 4. In this case we have , , and  for some . By adding  times the first,  times the second inequality, we have ; that is, . If , by normality we have , which is impossible. On the other hand, if , then since  we have . It follows that  and . Therefore, by normality we have  and . Since  is contradictory, we conclude that , an absurdity. Therefore,  is contradictory.
To prove homogeneity for , let  such that  and . We have four cases to consider: ()  and ; ()  and  for some ; ()  for some  and ; ()  and  for some . We only prove the fourth case, as the proof of the others is similar. In this case, we have that  and . Thus, .
We proceed now to prove that  is -consistent. Indeed, suppose to the contrary that there are  such that  and . Thus, there exists  such that and . Therefore, there exist nonnegative integers , , such that By adding  times the first, , times the second, times the n-th and by using the fact that , we have We have that  is nonzero. On the other hand, , because, otherwise,  implies that , an absurdity. It follows that , . But then, a contradiction to -consistency of . It follows that  is -consistent.
To prove normality, let  for some integer  and some . Then,  or there exist nonnegative integers  such that . If , then by the normality of  we have  which implies that . Otherwise,  which implies  as well.
It remains to prove that  is an extension of . Clearly, . On the other hand, if  for some , then  which implies that . It follows that .
Finally, since  and , we conclude that .
Suppose that  denotes the set of ordered groups such that, for each ,  is a normal, reflexive, and -consistent extension of  satisfying . Since  this set is nonempty. Let  be a chain in , and let . It is easy to check that  is an ordered group such that  is a normal, reflexive, and -consistent extension of  satisfying .
By Zorn’s lemma,  possesses an element, say , that is maximal with respect to set inclusion. It follows that  is an ordered group such that  is a normal, reflexive, and -consistent extension of  satisfying . Let  be the transitive closure of . Then,  is an ordered group such that  is a normal, reflexive, transitive, and -consistent extension of  satisfying . To prove it, we show only the normality for . All the other conditions are easily verified from the fact that they are also satisfied by . Indeed, let  for some integer  and some . Therefore, there exist  such that Since  and , by the homogeneity of  we conclude that . But then, by the cancellativity of  we have that  and, by an induction argument based on this logic, we obtain  which implies that . To prove that  is a linearly ordered group, it remains to show that  is complete and antisymmetric. Since antisymmetry of  is an immediate consequence of the -consistency of , we prove the completeness of . Suppose to the contrary that there exist  such that  and . We define Then, as in the case of  above, we can prove that  is an ordered group such that  is a normal, reflexive, and -consistent extension of  satisfying , a contradiction of maximality of . Therefore,  is complete.
To complete the necessity part we show that . Evidently, . To prove the converse, let  for some . Suppose to the contrary that . Since  is complete,  holds which implies  ( since ). Since  is a linear order extension of , we have that . But then,  and antisymmetry of  imply that , a contradiction. The last contradiction shows that .
Conversely, suppose that  is an ordered group and  has a linear order extension . Suppose to the contrary that  is non--consistent. Then, . Thus, there exists , such that  and , which contradicts with the fact that  is antisymmetric. It remains to prove that  is normal. Suppose to the contrary that  for some integer  and  and . Then, as in the case of  above, the homogeneity and cancellativity of  implies that . On the other hands,  implies that . It follows that , because otherwise  jointly to  implies that  which concludes that  ( is antisymmetric), a contradiction to . Then, as in the case of  above, for  ( and  are incomparable with respect to ) and  there exists a homogeneous extension  of  such that . It follows that . On the other hand,  ( and ) implies , a contradiction to the contradictory of . The last contradiction shows that  is normal.
The following result of Arrow [7] and Suzumura (see [1, Main Theorem]) is an immediate consequence of Theorem 3.
Corollary 4.  Let  be a binary relation on  and let  be a subset of  such that, if  and , then , and let  be a linear ordering on . Then,  has a linear ordering extension  such that  if and only if  is an -consistent binary relation.
Corollary 5 (Szpilrajn’s extension theorem [1]).  Every partial order  possesses a linear order extension . Moreover, if  and  are any two -incomparable elements of , then there exists a linear order extension  in which  and a linear order extension  in which .
A consequence of Theorem 3 is also the result of Fuchs for extending partial orders of abelian groups to linear orders. The following corollary shows this fact.
Corollary 6 ([2, theorem 1]).  Let  be an ordered group and  be two -incomparable elements. Then,  has a linear ordering extension  such that .
Proof.  The corollary is an immediate consequence of the necessity part of Theorem 3 for  being a partial order,  and .
Moreover, if such an extension  exists, then  is necessarily normal [2, Lemma §3].
Definition 7.  Let  be an ordered group and let  be a collection of linear order extensions of . Then  is a realizer of  if and only if the following conditions are satisfied: () the intersection of the members of  coincides with  and () for every pair of -incomparable elements , there exists a  with .
The following result generalizes the classical Dushnik-Miller’s type extension theorem for an ordered group (see [2, Theorem 2]).
Theorem 8.  Let  be an ordered group. Then,  has as realizer the set of its linear order extensions if and only if  is a normal -consistent binary relation.
Proof.  To prove necessity, let  be an ordered group and let  be a normal -consistent binary relation on . Suppose that  be the set of linear order extensions of . By Theorem 3,  is nonempty. We show that . Indeed, since , we have to show that . Assume by way of contradiction that there exists an  with . It follows that . On the other hand,  holds. Indeed, suppose to the contrary that . It follows that  for some  which jointly to  contradicts with the fact that  is -consistent. Therefore, . Then, as above (since  is homogeneous and cancellative) we conclude that  and . Define Clearly, . Then, as in the proof of Theorem 3, for  and , there exists a linear order extensions  of , , such that . Since  is -consistent and  we have that , a contradiction to . This contradiction confirms that  and thus . To finish the proof of necessity, it remains to show that  is a realizer. But, this is an immediate consequence of Theorem 3 for  and .
To prove sufficiency, let  be an ordered group and let  have as realizer the set  of all linear order extensions of . Then, . Since for each ,  is a linear order, we conclude that all the members of  are normal and -consistent binary relations. Since the intersection preserve the properties of normality and -consistency we conclude that  is a normal and -consistent binary relation.
The following corollary is an immediate consequence of the necessity part of Theorem 8 for  being a partial order and .
Corollary 9 (Dushnik-Miller’s extension theorem [18, theorem 2.32]).  If  is any partial order on af set , then there exists a collection  of linear orders on  which realize .
The following corollary generalizes a result due to Fuchs [2, Theorem 2]. In fact, it is the Dushnik-Miller’s type extension theorem for partially ordered groups.
Corollary 10 ([2, theorem 2]).  A partial order  defined on a group  has as realizer a certain set of linear orders if and only if  is normal.
Proof.  The sufficiency part is an immediate consequence of the fact that the intersection of linear orders is normal. The necessity part is obvious by Theorem 3, since a partial order is a -consistent binary relation.
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