A Subclass of Bi-Univalent Functions Defined by Generalized Sâlãgean Operator Related to Shell-Like Curves Connected with Fibonacci Numbers

Gurmeet Singh, Gurcharanjit Singh, and Gagandeep Singh

1Patel Memorial National College, Rajpura, Punjab, India
2Department of Mathematics, Punjabi University, Patiala, Punjab, India
3Department of Mathematics, Majha College for Women, Tarn-Taran, Punjab, India

Correspondence should be addressed to Gagandeep Singh; kamboj.gagandeep@yahoo.in

Received 13 January 2019; Accepted 25 February 2019; Published 13 March 2019

The aim of this paper is to study certain subclasses of bi-univalent functions defined by generalized Sâlãgean differential operator related to shell-like curves connected with Fibonacci numbers. We find estimates of the initial coefficients and upper bounds for the Fekete-Szegő functional for the functions in this class. The results proved by various authors follow as particular cases.

1. Introduction and Preliminaries

Let A be the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the unit disc $U = \{ z : |z| < 1 \}$ with normalization $f(0) = f'(0) - 1 = 0$. By S, we denote the class of functions $f(z) \in A$ and univalent in U.

Let us denote by B the class of bounded or Schwarz functions $w(z)$ satisfying $w(0) = 0$ and $|w(z)| \leq 1$ which are analytic in the open unit disc U and of the form

$$w(z) = \sum_{n=1}^{\infty} c_n z^n, \quad z \in U.$$ (2)

Consider two functions f and g analytic in U. We say that f is subordinate to g (symbolically $f \prec g$) if there exists a bounded function $u(z) \in B$ for which $f(z) = g(u(z))$. This result is known as principle of subordination.

By S^*, we denote the class of starlike functions $f \in S$ which satisfies the following condition:

$$\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > 0$$

or

$$\frac{zf'(z)}{f(z)} < \frac{1+z}{1-z}, \quad (z \in U).$$ (3)

By K, we denote the class of convex functions $f \in S$ which satisfies the following condition:

$$\text{Re} \left(\frac{zf''(z)}{f'(z)} \right) > 0$$

or

$$\frac{zf''(z)}{f'(z)} < \frac{1+z}{1-z}, \quad (z \in U).$$ (4)
A function \(f \in S \) is said to be \(\alpha \)-convex if it satisfies the inequality
\[
\text{Re} \left((1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)} \right) > 0 \quad (0 \leq \alpha \leq 1, \ z \in U).
\]

The class of \(\alpha \)-convex functions is denoted by \(M(\alpha) \) and was introduced by Mocanu [1]. In particular \(M(0) \equiv S^* \) and \(M(1) \equiv K \).

For \(\delta \geq 1 \) and \(f \in A \), Al-Oboudi [2] introduced the following differential operator:
\[
D^\delta_0 f(z) = f(z),
\]
\[
D^\delta_1 f(z) = (1-\delta) f(z) + \delta zf'(z),
\]
and in general,
\[
D^n\delta f(z) = D \left(D^{n-1}\delta f(z) \right)
\]
\[
= (1-\delta) D^{n-1}\delta f(z) + \delta z \left(D^{n-1}\delta f(z) \right)',
\]
\[
n \in \mathbb{N}
\]
or equivalent to
\[
D^n\delta f(z) = z + \sum_{k=2}^{\infty} \left[1 + (k-1)\delta \right] a_k z^k,
\]
\[
n \in N_0 = \mathbb{N} \cup \{0\}
\]
with \(D^n\delta f(0) = 0 \). It is obvious that, for \(\delta = 1 \), the operator \(D^n\delta f(z) \) is equivalent to the Sălăgean operator introduced in [3]. So the operator \(D^n\delta f(z) \) is named as the Generalized Sălăgean operator.

The inverse functions of the functions in the class \(S \) may not be defined on the entire unit disc \(U \) although the functions in the class \(S \) are invertible. However using Koebe’s one quarter theorem [4] it is obvious that the image of \(S \) under every function \(f \in S \) contains a disc of radius \(1/4 \). Hence every univalent function \(f \) has an inverse \(f^{-1} \), defined by
\[
f^{-1}(f(z)) = z (z \in U)
\]
and
\[
f(f^{-1}(w)) = w \left(|w| < r_0(f) : r_0(f) \geq \frac{1}{4} \right)
\]
where
\[
g(w) = f^{-1}(w)
\]
\[
= w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 + \cdots
\]

A function \(f \in A \) is said to be bi-univalent in \(U \) if both \(f \) and \(f^{-1} \) are univalent in \(U \).

By \(\Sigma \), we denote the class of bi-univalent functions in \(U \) defined by (1).

Lewin [5] discussed the class \(\Sigma \) of bi-univalent functions and obtained the bound for the second coefficient. Brannan and Taha [6] investigated certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike, starlike and convex functions. They introduced bi-starlike functions and bi-convex functions and obtained estimates on the initial coefficients.

Sokol [7] introduced the class \(SL \) of shell-like functions \(f \in A \) defined as below.

Definition 1. A function \(f \in A \) given by (1) is said to be in the class \(SL \) of starlike shell-like functions if it satisfies the following condition:
\[
\frac{zf'(z)}{f(z)} \prec \tilde{p}(z) = 1 + \tau z^2
\]
where \(\tau = (1 - \sqrt{5})/2 = -0.618 \).

It should be observed that \(SL \) is a subclass of the class \(S^* \) of starlike functions.

Later Dziok et al. [8] introduced the class \(KSL \) of convex functions related to a shell-like curve as below.

Definition 2. A function \(f \in A \) given by (1) is said to be in the class \(KSL \) of convex shell-like functions if it satisfies the condition that
\[
1 + \frac{zf''(z)}{f'(z)} \prec \tilde{p}(z) = 1 + \tau^2 z^2
\]
where \(\tau = (1 - \sqrt{5})/2 = -0.618 \).

Again Dziok et al. [9] defined the following class of \(\alpha \)-convex shell-like functions.

Definition 3. A function \(f \in A \) given by (1) is said to be in the class \(SLM_\alpha \) of \(\alpha \)-convex shell-like functions if it satisfies the condition that
\[
(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec \tilde{p}(z)
\]
\[
= \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}
\]
where \(\tau = (1 - \sqrt{5})/2 = -0.618 \).

Obviously \(SLM_0 \equiv SL \) and \(SLM_1 \equiv KSL \).

The function \(\tilde{p} \) is not univalent in \(U \), but it is univalent in the disc \(|z| < (3 - \sqrt{5})/2 \approx 0.38 \). For example, \(\tilde{p}(0) = \tilde{p}(-1/2 \tau) = 1 \) and \(\tilde{p}(e^{i\arccos(1/4)}) = \sqrt{5}/5 \), and it may also be noticed that
\[
\frac{1}{|r|} = \frac{|r|}{1 - |r|}
\]
which shows that the number \(|r|\) divides \([0, 1]\) such that it fulfills the golden section. The image of the unit circle \(|z| = 1\) under \(\bar{p}\) is a curve described by the equation given by

\[
(10x - \sqrt{5})^y = (\sqrt{5} - 2x)(\sqrt{5}x - 1)^2,
\]

which is translated and revolved trisectrix of Maclaurin. The curve \(\bar{r}(\tau)\) is a closed curve without any loops for \(0 < r \leq r_0 = (3 - \sqrt{5})/2 \approx 0.38\). For \(r_0 < r < 1\), it has a loop, and for \(r = 1\), it has a vertical asymptote. Since \(\tau\) satisfies the equation \(\tau^2 = 1 + \tau\), this expression can be used to obtain higher powers \(\tau^n\) as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of \(r\) and \(1\). The resulting recurrence relationships yield Fibonacci numbers \(u_i\):

\[
\tau^n = u_n,\tau + u_{n-1}.
\]

Also the subclasses of bi-univalent functions related to shell-like curves were studied by various authors [10–12].

The earlier work on bi-univalent functions related to shell-like curves connected with Fibonacci numbers motivated us to define the following subclass.

To avoid repetition, throughout the paper we assume that \(0 \leq \alpha \leq 1\), \(\tau = (1 - \sqrt{5})/2 \approx -0.618\) and \(z \in U\).

Definition 4. A function \(f \in \Sigma\) given by \((1)\) is said to be in the class \(S_L M_{\alpha, \Sigma}(n, \bar{p}(z))\) if it satisfies the following conditions:

\[
(1 - \alpha) \left(D_{\delta}^{n+1} f (z) \right) + \alpha \left(D_{\delta}^{n+1} f (z) \right)' < \bar{p}(z)
\]

\[
= \frac{1 + r^2 \tau^2 z^2}{1 - \tau z - \tau^2 z^2}
\]

\[
|a_2| \leq \frac{|r|}{\sqrt{\delta^2 (1 + \delta)^2 (1 + \alpha)^2 (1 - 3 \tau) + \tau \delta \left[2 (1 + 2 \alpha) (1 + 2 \delta)^n - (1 + 3 \alpha) (1 + \delta)^n \right]}}.
\]

\[
|a_3| \leq \frac{|r| (1 + \delta)^2 \left[\delta^2 (1 + \alpha)^2 (1 - 3 \tau) - \tau \delta (1 + 3 \alpha) \right]}{2 (1 + 2 \alpha) \delta (1 + 2 \delta)^n \left[\delta^2 (1 + \delta)^2 (1 + \alpha)^2 (1 - 3 \tau) + \tau \delta \left(2 (1 + 2 \alpha) (1 + 2 \delta)^n - (1 + 3 \alpha) (1 + \delta)^n \right) \right]}
\]

Proof. As \(f \in S_L M_{\alpha, \Sigma}(n, \bar{p}(z))\), so by Definition 4 and using the principle of subordination, there exist Schwarz functions \(r(z)\) and \(s(z)\) such that

\[
(1 - \alpha) \left(D_{\delta}^{n+1} g (w) \right) + \alpha \left(D_{\delta}^{n+1} g (w) \right)' < \bar{p}(s(w))
\]

and

\[
(1 - \alpha) \left(D_{\delta}^{n+1} g (w) \right) + \alpha \left(D_{\delta}^{n+1} g (w) \right)' = \bar{p}(s(w))
\]

where \(r(z) = 1 + r_1 z + r_2 z^2 + \cdots\) and \(s(w) = 1 + s_1 w + s_2 w^2 + \cdots\).
On expanding, it yields
\[
(1 - \alpha) D^{n+1}_\delta f(z) + \alpha \left(D^{n+1}_\delta f(z) \right)' = 1 + (1 + \alpha) \delta \]
\[
\cdot \delta (1 + \delta)^n a_2 z + \delta \left[2 (1 + 2\alpha)(1 + 2\delta)^n a_3
- (1 + 3\alpha)(1 + \delta)^{2n} a_5^2 \right] z^2 + \cdots
\]
(24)
and
\[
(1 - \alpha) D^{n+1}_\delta g(w) + \alpha \left(D^{n+1}_\delta g(w) \right)' = 1 - (1 + \alpha) \delta \]
\[
\cdot \delta (1 + \delta)^n a_2 w + \delta \left[4 (1 + 2\alpha)(1 + 2\delta)^n a_3
+ (4 (1 + 2\alpha)(1 + 2\delta)^n - (1 + 3\alpha)(1 + \delta)^{2n} a_5^2 \right] a_2^2 \]
\[
\cdot w^2 + \cdots
\]
Again
\[
\tilde{p}(r(z)) = 1 + \frac{\tilde{p}_1 c_1 z}{2} + \frac{1}{2} \left(c_2 - \frac{c_1^2}{2} + \frac{c_1^2}{4} \tilde{p}_2 \right) z^2
\]
\[
+ \cdots
\]
(26)
and
\[
\tilde{p}(s(z)) = 1 + \frac{\tilde{p}_1 d_1 w}{2} + \frac{1}{2} \left(d_2 - \frac{d_1^2}{2} + \frac{d_1^2}{4} \tilde{p}_2 \right) w^2
\]
\[
+ \cdots
\]
(27)
Using (24) and (26) in (22) and equating the coefficients of \(z \) and \(z^2 \), we get
\[
(1 + \alpha) \delta (1 + \delta)^n a_2 = \frac{c_1 \tau}{2}
\]
(28)
and
\[
\delta \left[2 (1 + 2\alpha)(1 + 2\delta)^n a_3 - (1 + 3\alpha)(1 + \delta)^{2n} a_5^2 \right]
= \frac{1}{2} \left(c_2 - \frac{c_1^2}{2} \right) \tau + \frac{c_1^3}{4} \tau^2.
\]
(29)
Again using (25) and (27) in (23) and equating the coefficients of \(w \) and \(w^2 \), we get
\[
-(1 + \alpha) \delta (1 + \delta)^n a_2 = \frac{d_1 \tau}{2}
\]
(30)
and
\[
\delta \left[-2 (1 + 2\alpha)(1 + 2\delta)^n a_3
+ (4 (1 + 2\alpha)(1 + 2\delta)^n - (1 + 3\alpha)(1 + \delta)^{2n}) a_5^2 \right]
= \frac{1}{2} \left(d_2 - \frac{d_1^2}{2} \right) \tau + \frac{d_1^3}{4} \tau^2.
\]
(31)
From (28) and (30), it is clear that
\[
c_1 = -d_1
\]
(32)
and
\[
2a_2^2 = \frac{(c_1^2 + d_1^2) \tau^2}{4\delta^2 (1 + \delta)^{2n} (1 + \alpha)^2}.
\]
(33)
Adding (29) and (31), it yields
\[
\delta \left[4 (1 + 2\alpha)(1 + 2\delta)^n - 2 (1 + 3\alpha)(1 + \delta)^{2n} \right] a_2^2
= \frac{1}{2} (c_2 + d_2) \tau - \frac{1}{4} (c_1^2 + d_1^2) \tau + \frac{3}{4} (c_1^2 + d_1^2) \tau^2.
\]
(34)
Putting (33) in (34), we get
\[
[\delta \tau \left(4 (1 + 2\alpha)(1 + 2\delta)^n - 2 (1 + 3\alpha)(1 + \delta)^{2n} \right)
+ 2 (1 - 3\tau) \delta^2 (1 + \delta)^{2n} (1 + \alpha)^2] a_2^2
= \frac{1}{2} (c_2 + d_2) \tau.
\]
(35)
Using Lemma 5 and on applying triangle inequality in (35), (20) can be easily obtained.

Now subtracting (31) from (29), we obtain
\[
4\delta (1 + 2\alpha)(1 + 2\delta)^n a_3 - 4\delta (1 + 2\alpha)(1 + 2\delta)^n a_2^2
= \frac{1}{2} (c_2 - d_2) \tau.
\]
(36)
Applying triangle inequality and using Lemma 5 and (35) in (36), it yields
\[
4\delta (1 + 2\alpha)(1 + 2\delta)^n |a_3|
\leq 2 |\tau| + 4\delta (1 + 2\alpha)(1 + 2\delta)^n |a_2|.
\]
(37)
From (37), result (21) is obvious.

For \(\delta = 1 \), Theorem 6 gives the following result.

Corollary 7. If \(f \in SLM_{\alpha, \pm}(n, \tilde{p}(z)) \), then
\[
|a_2|
\leq \frac{|\tau|}{\sqrt{4^n (1 + \alpha)^2 + [2 (1 + 2\alpha) 3^n - (3\alpha^2 + 9\alpha + 4) 4^n] \tau}}.
\]
(38)
\[|a_3| \leq \frac{|r| 4^n \left[(1 + \alpha)^2 - (3\alpha^2 + 9\alpha + 4) r \right]}{2 (1 + 3\alpha) 3^n [4^n (1 + \alpha)^2 + (2 (1 + 2\alpha) 3^n - (3\alpha^2 + 9\alpha + 4) 4^n) r]} \]

(39)

For \(\delta = 1, n = 0 \), Theorem 6 gives the following result due to Güney et al. [13].

Corollary 8. If \(f(z) \in SLM_{\alpha,\Sigma}(\bar{p}(z)) \), then

\[|a_2| \leq \frac{|r|}{\sqrt{(1 + \alpha)^2 - (1 + \alpha)(2 + 3\alpha) r}} \]

(40)

and

\[|a_3| \leq \frac{|r| \left[(1 + \alpha)^2 - (3\alpha^2 + 9\alpha + 4) (2 + 3\alpha) r \right]}{2 (1 + 2\alpha) (1 + \alpha) [(1 + \alpha) - (2 + 3\alpha) r]} \]

(41)

For \(\delta = 1, n = 0, \alpha = 0 \), Theorem 6 agrees with the following result proved by Güney et al. [13] (Corollary 1).

Corollary 9. If \(f(z) \in SL_{\Sigma}(\bar{p}(z)) \), then

\[|a_2| \leq \frac{|r|}{\sqrt{1 - 2r}} \]

(42)

\[|a_3| \leq \frac{|r| 4^n \left[(1 + \alpha)^2 - (3\alpha^2 + 9\alpha + 4) r \right]}{2 \delta (1 + 2\alpha) (1 + \delta) [2 (1 + 2\alpha) 3^n - (1 + 3\alpha) (1 + \delta) 2^n (1 - 3r)] + \delta (1 + \alpha) \delta (1 + \delta) 2^n (1 - 3r)} \]

(46)

Proof. From (35) and (36), it yields

\[a_3 - \mu a_2^2 = (1 - \mu) \frac{\tau^2 (c_2 + d_2)}{4 \delta (1 + 2\alpha) (1 + 2\delta) 4^n} + \frac{\tau (c_2 - d_2)}{8 \delta (1 + 2\alpha) (1 + 2\delta)^n} \]

(47)

Equation (47) can be expressed as

\[a_3 - \mu a_2^2 = \left[h(\mu) + \frac{\tau}{8 \delta (1 + 2\alpha) (1 + 2\delta)^n} \right] c_2 \]

(48)
where
\[
h(\mu) = \frac{(1-\mu)\tau^2}{4\tau\delta\left[2(1+2\alpha)(1+2\delta)^n - (1+3\alpha)(1+\delta)^6n\right] + 4\delta^2(1+\delta)^2n(1+\alpha)^2(1-3\tau)}. \tag{49}
\]

Taking modulus, we obtain
\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{|r|}{2(1+2\alpha)(1+2\delta)^n}
& 0 \leq |h(\mu)| \leq \frac{|r|}{8\delta(1+2\alpha)(1+2\delta)^n}, \\
\frac{|1-\mu|\tau^2}{(2(1+2\alpha)(1+\delta)^6n)(1+2\tau)^2n}
& |h(\mu)| \geq \frac{|r|}{8\delta(1+2\alpha)(1+2\delta)^n}.
\end{cases} \tag{50}
\]

So (46) can be easily obtained from (50).

For \(\delta = 1, n = 0\), Theorem 11 gives the following result due to Güney et al. [13].

Corollary 12. Let \(f(z) \in SLM_{\alpha,\Sigma}(\tilde{p}(z))\), then
\[
|\mu - 1| \leq \frac{(2(1+2\alpha)^3n - (3\alpha^2 + 9\alpha + 4)^4n)\tau + (1+\alpha)^24^n}{2|r|(1+2\alpha)3^n}, \\
|\mu - 1| \geq \frac{(2(1+2\alpha)^3n - (3\alpha^2 + 9\alpha + 4)^4n)\tau + (1+\alpha)^24^n}{2|r|(1+2\alpha)3^n}. \tag{51}
\]

For \(\delta = 1, n = 0, \alpha = 0\), Theorem 11 agrees with the following result proved by Güney et al. [13] (Corollary 4).

Corollary 13. If \(f(z) \in SL_{\Sigma}(\tilde{\bar{p}}(z))\), then
\[
|\mu - 1| \leq \frac{(1+\alpha)[(1+\alpha) - (2+3\alpha)\tau]}{2|r|(1+2\alpha)}; \\
|\mu - 1| \geq \frac{(1+\alpha)[(1+\alpha) - (2+3\alpha)\tau]}{2|r|(1+2\alpha)}. \tag{52}
\]

For \(\delta = 1, n = 0, \alpha = 1\), Theorem 11 agrees with the following result proved by Güney et al. [13] (Corollary 5).

Corollary 14. If \(f(z) \in KSL_{\Sigma}(\tilde{\bar{p}}(z))\), then
\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{|r|}{2(1+2\alpha)},
& 0 \leq |h(\mu)| \leq \frac{|r|}{2|r|(1+2\alpha)}, \\
\frac{|1-\mu|\tau^2}{(1+\alpha)[(1+\alpha) - (2+3\alpha)\tau]}
& |h(\mu)| \geq \frac{|r|}{2|r|(1+2\alpha)}.
\end{cases} \tag{53}
\]

For \(\delta = 1, n = 0, \alpha = 0\), Theorem 11 agrees with the following result proved by Güney et al. [13] (Corollary 5).

Corollary 15. If \(f(z) \in KSL_{\Sigma}(\tilde{\bar{p}}(z))\), then
\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{|r|}{6},
& 0 \leq |h(\mu)| \leq \frac{|r|}{3|r|}, \\
\frac{|1-\mu|\tau^2}{2(2-5\tau)}
& |h(\mu)| \geq \frac{|r|}{3|r|}.
\end{cases} \tag{54}
\]

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

