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Abstract. 
The automorphism group  of the unitary group  has a maximal subgroup  of the form  of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group  to construct its character table. Also, class fusion from  into the parent group  is determined.

1. Introduction
The unitary simple group  has outer automorphisms of orders 2, 3, and 6 and hence automorphism groups of the forms , , and  exist for  (see the ATLAS [1]). The reader is referred to [2] for more information about the construction of matrix representations for the covering and automorphism groups of . Recently in [3], a 3-local identification is given for the group  and its automorphism groups , , and . Also, we found in the ATLAS that one of the 16 maximal subgroups of  is a split extension group  of the type  of index 891 and has order 10321920. The group  has automorphism groups of the form , , and  which sit maximally inside the groups , , and , respectively.
The character table of  is stored in the GAP Library [4], whereas the character table of  and  are not yet uploaded in GAP. In this paper, the unknown Fischer-Clifford matrices [5] of  and its associated character table will be constructed. Readers are referred to [6] on a survey of Fischer-Clifford theory. It is interesting to note that our group  is the stabilizer  of a singular vector , where  is the irreducible module of dimension 20 over the field  for  (see [3]). The method of coset analysis as discussed in [7–9] will be used in the computation of the conjugacy classes of elements of the group . The Fischer-Clifford matrices and character table of  were determined in [10].
2. Group 
In this section, using a suitable permutation representation of , we identify our group  as a split extension  by  with the aid of GAP [4] and MAGMA [11]. Then with the help of MAGMA we represent  as a matrix group  of degree 9 over the Galois field . Since  acts absolutely irreducibly on its natural module , a split extension  of the form  exists. Then we create  as a subgroup of  and show with the help of MAGMA that  is indeed an isomorphic copy of .
We construct  within GAP, using its smallest permutation representation of degree 672 found in the online ATLAS of Finite Group Representations [12]. Next, we use the GAP commands “MS≔ ConjugacyClassesMaximalSubgroups ()”, “A1≔MS”, and “Size(A1)” to represent  as a permutation group on 672 points and then use this permutation representation to construct  within MAGMA. Using the sequence of MAGMA commands “a,b≔ChiefSeries(A1)”, “N≔ ”, “NormalSubgroups(A1)”, “IsNormal(A1,a)”, “IsElementaryAbelian(N)”, “C≔ Complements(A1,N)”, “Order(C)”, “C meet N”, and “IsIsomorphic(C, )”, we verified that .
Having  as a permutation group on 672 points, we use the MAGMA commands “M≔GModule(A1,N)” and "‘M:Maximal” to represent  as a matrix group  of degree 9 over the Galois field . Thus we obtain the matrix group  having 14 conjugacy classes of elements, where  and . The generators  and  of  are as follows:
The MAGMA command “IsAbsolutelyIrreducible(G)” tells us that the action of the matrix group  on its natural module  is absolutely irreducible. Thus a split extension of the type  does exist. Hence we can construct  as a subgroup  of  such that  and , where , , and . The generators of the matrix group  of degree 10 over  are as follows:
Since we can represent  and  as a matrix and permutation group, respectively, we use the MAGMA command “IsIsomorphic ()’’ to confirm that . Hence we can regard  as the split extension .
3. The Conjugacy Classes of 
In this section, the conjugacy classes of  are computed using the technique of coset analysis and readers are encouraged to consult [8, 9] for a sound theoretical background on this technique.
Throughout the remainder of this chapter, let  be a split extension of  by , where  is the vector space  of dimension 9 over  on which the linear group  acts. Since  is represented as a matrix group, we used the MAGMA commands “O≔ Orbits()”, “O”, “O”, “O”,O”, and “O” to compute the orbit lengths of the action of  on . We obtain 4 orbits of lengths 1, 21, 210, and 280 and using the MAGMA commands “P1≔ Stabilizer(,O)”, “P2≔ Stabilizer(,O)”, “P3≔ Stabilizer(,O)”, and “P4≔ Stabilizer(,O)”, we are able to compute the corresponding point stabilizers , , which are subgroups of . With the aid of MAGMA and also checking the indices of the maximal subgroups of  in the ATLAS, the structures of the stabilizers  are identified as , , , and , where  and  are maximal subgroups of . We should note here that the group  has two nonconjugate isomorphic maximal subgroups  and , having the same structure . The stabilizer  sits maximally in . Alternatively, we can use [13] to identify the structures of the groups . Since the action of  on  does not fix any nontrivial subspace of , we have that  is an irreducible module for . We can readily verify this fact by using the MAGMA command “IsIrreducible()”.
Let  be the permutation character of  on the classes of . Then, from methods that were developed by Mpono [14], we obtain that  =  +++ = , where , , , and  are the identity characters of the point stabilizers , , induced to . Note that the identity characters  are identified with the permutation characters  of  acting on the classes of the point stabilizers . We found that  = ,  = ,  = , and  = . The permutation characters  are written in terms of the ordinary irreducible characters of . Since we have the generators  and  for , we compute the character tables of  and the ’s directly in MAGMA and use these tables together with the fusion maps of the stabilizers into , to compute  and . The values of  on the different classes of  determine the number  of fixed points of each  in . The values of  are listed in Table 1.
Table 1: The values of  on the different classes of .
	

															
	

															
															
															
															
	

															
	



The values of  enabled us to determine the number  of orbits ’s, , which have fused together under the action of , for each class representative , to form one orbit . Mpono in [14] used the technique of coset analysis to develop Programmes A and B in CAYLEY [15] for the computation of the conjucacy classes of a split extension , where  is an elementary abelian -group for a prime  on which a linear group  acts. Ali [16] adapted Programmes A and B to be used in MAGMA. Programme A computes the values of the , whereas Programme B determines the order of the elements for each conjugacy class  in . We obtain that  has exactly 49 conjugacy classes. The parameters  and  are defined in [14]. The centralizer order of each class  of  is computed using the formula . All the information involving the conjugacy classes of  are listed in Table 2.
Table 2: The conjugacy classes of elements of .
	

	 							
	

								
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	 	 						
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	 	 						
	 	 						
	

								
	 	 						
	

								
	 	 						
	 	 						
	 	 						
	

								
	

								
	

								
	 	 						
	 	 						
	 	 						
	

								
	

								
	



4. The Inertia Groups of 
Since  has four orbits on , then by Brauer’s Theorem [17] acts on  with the same number of orbits. The lengths of the 4 orbits will be 1,, , and  where  +  +  = 511, with corresponding point stabilizers , , , and  as subgroups of  such that  =1,  =, = , and  = . We generate  as a permutation group on a set of cardinality 672 within MAGMA. Then the maximal and submaximal subgroups of  are computed. Now, considering the indices of these subgroups in , the number of the classes of these subgroups, and also the fact that  has 49 conjugacy classes, we deduce that the action of  on  has orbits of lengths 1, , , and  with respective point stabilizers , , , and . Thus we obtain four inertia groups  = , , for  on Irr(). Alternatively, we can also determine the inertia factor groups if we let  be the matrix group of dimension 9 over  formed by the transpose of the generators of . Then the action of  on the classes of  is the equivalent of  acting on . Then with the help of MAGMA or GAP, we can easily verify that the action of  on  has orbits of lengths 1, 21, 210, and 280 with corresponding point stabilizers , , , and . The structures of  and  have been identified by checking the indices of the maximal subgroups of  in the ATLAS. The structure of  was determined by direct computations in MAGMA. The groups , , and  are constructed from elements within  and the generators are as follows:(i) =, , and  where(ii) =, , and  where(iii) =, , adn  where
For the purpose of constructing the character table of , we use the above generators of the ’s to compute their character tables.
5. The Fusion of , , and  into 
We obtain the fusions of the inertia factors , , and  into  by using direct matrix conjugation in  and their permutation characters in  of degrees 21, 210, and 280, respectively. MAGMA was used for the various computations. The fusion maps of , , and  into  are shown in Tables 3, 4, and 5.
Table 3: The fusion of  into .
	

												
	

		 			 			 			 	
		 			 			 			 	
		 			 			 			 	
	



Table 4: The fusion of  into .
	

	 											
	

		 			 			 			 	
		 			 			 			 	
		 			 			 		 	 	 
		 			 			 		 	 	 
	



Table 5: The fusion of  into .
	

	 			 			 		
	

		 			 			 	
		 			 			 	
		 			 			 	
	



6. The Fischer-Clifford Matrices of 
Having obtained the fusions of the inertia factors into  and the conjugacy classes of  displayed in the format of Table 2, we can proceed to use the theory and properties discussed in [9] or [14] to help us in the construction of the Fischer-Clifford matrices of . Note that all the relations hold since  is an elementary abelian group.
For example, consider the conjugacy class  of . Then we obtain that  has the following form with corresponding weights attached to the rows and columns:
We have , , , and  by using Theorem 5.2.4 and property (e) of the Fischer-Clifford matrix  (both found in [14]). Thus we obtain the following form:
By the orthogonality relations for columns and rows and remaining properties of the matrix  found in Chapter 5 of [14], we obtain the desired Fischer-Clifford matrix  of  given below: 
For each class representative , we construct a Fischer-Clifford matrix . These are listed in Table 6.
Table 6: The Fischer-Clifford matrices of .
	

		
	

	 	  
	

	 	  
	

	 	  
	

		
	

		
	

		  
	

		  
	



7. Character Table of 
Having obtained the Fischer-Clifford matrices, the fusion maps of the ’s into , and the character tables of the inertia factors , we construct the character table of  following the methodology discussed in Section 5.2 of [14]. For example, we calculate the partial character table of  corresponding to the coset of . From the Fischer-Clifford matrix  we obtain that
Let , , , and  be the partial character tables of the inertia factors for the classes which fuse to . Then the partial character table of  on the classes  is given by
Similarly, the partial character table associated with each coset  is computed. If necessary, we will restrict some characters of  to , to ensure that each partial character table corresponding to a coset  will give rise to the desired set .
The character table of  will be partitioned row-wise into 4 blocks , , , and  where each block corresponds to an inertia group  = . Therefore , where , , , and . The character table of  is shown in Table 7. The consistency and accuracy of the character table of  have been tested by using the GAP code labelled as Programme E in [18].
Table 7: The character table of .
	

	 	 	 	1A	 	 	 	2A	 	 	 	2B	 	 
	

	 													 
	

		1	1	1	1	1	1	1	1	1	1	1	1	 
		1	1	1	1	-1	-1	-1	-1	-1	1	1	1	 
		20	20	20	20	-6	-6	-6	-6	-6	4	4	4	 
		20	20	20	20	6	6	6	6	6	4	4	4	 
		35	35	35	35	-7	-7	-7	-7	-7	3	3	3	 
		35	35	35	35	7	7	7	7	7	3	3	3	 
		45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	 
		45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	 
		45	45	45	45	3	3	3	3	3	-3	-3	-3	 
		45	45	45	45	3	3	3	3	3	-3	-3	-3	 
		64	64	64	64	8	8	8	8	8	0	0	0	 
		64	64	64	64	-8	-8	-8	-8	-8	0	0	0	 
		70	70	70	70	0	0	0	0	0	6	6	6	 
		126	126	126	126	0	0	0	0	0	-2	-2	-2	 
	

		21	-11	5	-3	7	-1	-5	3	-1	5	-3	5	 
		21	-11	5	-3	-7	1	5	-3	1	5	-3	5	 
		84	-44	20	-12	14	-2	-10	6	-2	4	4	4	 
		84	-44	20	-12	-14	2	10	-6	2	4	4	4	 
		105	-55	25	-15	-7	1	5	-3	1	9	1	9	 
		105	-55	25	-15	7	-1	-5	3	-1	9	1	9	 
		126	-66	30	-18	0	0	0	0	0	-2	14	-2	 
		315	-165	75	-45	-21	3	15	-9	3	11	-13	11	 
		315	-165	75	-45	-21	3	15	-9	3	-5	3	-5	 
		315	-165	75	-45	21	-3	-15	9	-3	11	-13	11	 
		315	-165	75	-45	21	-3	-15	9	-3	-5	3	-5	 
		630	-330	150	-90	0	0	0	0	0	-10	6	-10	 
	

		210	50	2	-6	28	4	8	0	-4	18	10	2	 
		210	50	2	-6	-28	-4	-8	0	4	18	10	2	 
		210	50	2	-6	-14	10	-10	-2	2	2	-6	18	 
		210	50	2	-6	14	-10	10	2	-2	2	-6	18	 
		420	100	4	-12	-14	-14	2	2	2	20	4	20	 
		420	100	4	-12	14	14	-2	-2	-2	20	4	20	 
		630	150	6	-18	0	24	-12	-4	0	-10	-2	6	 
		630	150	6	-18	-42	-18	-6	2	6	6	14	-10	 
		630	150	6	-18	42	18	6	-2	-6	6	14	-10	 
		630	150	6	-18	0	-24	12	4	0	-10	-2	6	 
		1260	300	12	-36	0	0	0	0	0	-20	-4	12	 
		1260	300	12	-36	0	0	0	0	0	12	28	-20	 
		1260	300	12	-36	-42	6	-18	-2	6	-4	-20	-4	 
		1260	300	12	-36	42	-6	18	2	-6	-4	-20	-4	 
	

		280	-40	-8	8	28	-4	-4	-4	4	8	-8	-8	 
		280	-40	-8	8	-28	4	4	4	-4	8	-8	-8	 
		280	-40	-8	8	-28	4	4	4	-4	8	-8	-8	 
		280	-40	-8	8	28	-4	-4	-4	4	8	-8	-8	 
		560	-80	-16	16	0	0	0	0	0	16	-16	-16	 
		560	-80	-16	16	0	0	0	0	0	-16	16	16	 
		560	-80	-16	16	0	0	0	0	0	-16	16	16	 
		2240	-320	-64	64	-56	8	8	8	-8	0	0	0	 
		2240	-320	-64	64	56	-8	-8	-8	8	0	0	0	 
	

	 	 	 		 	 	 	 		 	 	 		 
	

	 													
	

	 	1	1	1	1	1	1	1	1	1	1	1	1	1
		1	1	1	1	1	1	1	1	1	1	1	1	1
	 	4	4	4	4	4	2	2	2	2	0	0	0	0
	 	4	4	4	4	4	2	2	2	2	0	0	0	0
	 	3	3	3	3	3	-1	-1	-1	-1	3	3	3	3
	 	3	3	3	3	3	-1	-1	-1	-1	3	3	3	3
	 	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
	 	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
	 	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
	 	-3	-3	-3	-3	-3	0	0	0	0	1	1	1	1
	 	0	0	0	0	0	1	1	1	1	0	0	0	0
	 	0	0	0	0	0	1	1	1	1	0	0	0	0
	 	6	6	6	6	6	-2	-2	-2	-2	-2	-2	-2	-2
	 	-2	-2	-2	-2	-2	0	0	0	0	-2	-2	-2	-2
	

	 	-3	1	-3	1	1	3	-3	1	-1	1	1	1	-1
	 	-3	1	-3	1	1	3	-3	1	-1	1	1	1	-1
	 	4	4	-4	-4	4	3	-3	1	-1	0	0	0	0
	 	4	4	-4	-4	4	3	-3	1	-1	0	0	0	0
	 	1	5	-7	-3	5	-3	3	-1	1	1	1	1	-1
	 	1	5	-7	-3	5	-3	3	-1	1	1	1	1	-1
	 	14	6	-2	-10	6	0	0	0	0	-2	-2	-2	2
	 	-13	-1	-5	7	-1	0	0	0	0	-1	-1	-1	1
	 	3	-1	3	-1	-1	0	0	0	0	3	3	3	-3
	 	-13	-1	-5	7	-1	0	0	0	0	-1	-1	-1	1
	 	3	-1	3	-1	-1	0	0	0	0	3	3	3	-3
	 	6	-2	6	-2	-2	0	0	0	0	-2	-2	-2	2
	

	 	-6	-2	2	-2	-2	3	3	-1	-1	2	2	-2	0
	 	-6	-2	2	-2	-2	3	3	-1	-1	2	2	-2	0
	 	10	-2	2	-2	-2	3	3	-1	-1	-2	-2	2	0
	 	10	-2	2	-2	-2	3	3	-1	-1	-2	-2	2	0
	 	4	-4	4	-4	-4	-3	-3	1	1	0	0	0	0
	 	4	-4	4	-4	-4	-3	-3	1	1	0	0	0	0
	 	14	10	-2	2	-6	0	0	0	0	-2	-2	2	0
	 	-2	10	-2	2	-6	0	0	0	0	2	2	-2	0
	 	-2	10	-2	2	-6	0	0	0	0	2	2	-2	0
	 	14	10	-2	2	-6	0	0	0	0	-2	-2	2	0
	 	28	-12	-4	4	4	0	0	0	0	4	4	-4	0
	 	-4	-12	-4	4	4	0	0	0	0	-4	-4	4	0
	 	-20	4	4	-4	4	0	0	0	0	0	0	0	0
	 	-20	4	4	-4	4	0	0	0	0	0	0	0	0
	

	 	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
	 	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
	 	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
	 	8	0	0	0	0	1	-1	-1	1	4	-4	0	0
	 	16	0	0	0	0	2	-2	-2	2	-8	8	0	0
	 	-16	0	0	0	0	2	-2	-2	2	0	0	0	0
	 	-16	0	0	0	0	2	-2	-2	2	0	0	0	0
	 	0	0	0	0	0	-1	1	1	-1	0	0	0	0
	 	0	0	0	0	0	-1	1	1	-1	0	0	0	0
	

	 	 	 		 	 	 	 		 	 	 		 
	

	 													 
	

		1	1	1	1	1	1	1	1	1	1	1	1	 
		1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	 
		0	0	0	0	-2	-2	-2	-2	-2	-2	0	0	 
		0	0	0	0	2	2	2	2	2	2	0	0	 
		-1	-1	-1	-1	1	1	1	1	1	1	0	0	 
		-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	 
		1	1	1	1	1	1	1	1	1	1	0	0	 
		1	1	1	1	1	1	1	1	1	1	0	0	 
		1	1	1	1	-1	-1	-1	-1	-1	-1	0	0	 
		1	1	1	1	-1	-1	-1	-1	-1	-1	0	0	 
		0	0	0	0	0	0	0	0	0	0	-1	-1	 
		0	0	0	0	0	0	0	0	0	0	-1	-1	 
		2	2	2	2	0	0	0	0	0	0	0	0	 
		-2	-2	-2	-2	0	0	0	0	0	0	1	1	 
	

		1	1	1	-1	3	-1	1	-3	-1	1	1	-1	 
		1	1	1	-1	-3	1	-1	3	1	-1	1	-1	 
		0	0	0	0	2	2	-2	-2	-2	2	-1	1	 
		0	0	0	0	-2	-2	2	2	2	-2	-1	1	 
		1	1	1	-1	1	-3	3	-1	1	-1	0	0	 
		1	1	1	-1	-1	3	-3	1	-1	1	0	0	 
		-2	-2	-2	2	0	0	0	0	0	0	1	-1	 
		-1	-1	-1	1	-1	3	-3	1	-1	1	0	0	 
		-1	-1	-1	1	3	-1	1	-3	-1	1	0	0	 
		-1	-1	-1	1	1	-3	3	-1	1	-1	0	0	 
		-1	-1	-1	1	-3	1	-1	3	1	-1	0	0	 
		2	2	2	-2	0	0	0	0	0	0	0	0	 
	

		2	2	-2	0	4	0	-2	2	0	-2	0	0	 
		2	2	-2	0	-4	0	2	-2	0	2	0	0	 
		-2	-2	2	0	-2	2	0	-4	2	0	0	0	 
		-2	-2	2	0	2	-2	0	4	-2	0	0	0	 
		0	0	0	0	-2	-2	2	2	-2	2	0	0	 
		0	0	0	0	2	2	-2	-2	2	-2	0	0	 
		2	2	-2	0	0	-4	-2	2	0	2	0	0	 
		-2	-2	2	0	2	-2	-4	0	2	0	0	0	 
		-2	-2	2	0	-2	2	4	0	-2	0	0	0	 
		2	2	-2	0	0	4	2	-2	0	-2	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	2	2	2	2	-2	-2	0	0	 
		0	0	0	0	-2	-2	-2	-2	2	2	0	0	 
	

		4	-4	0	0	0	0	0	0	0	0	0	0	 
		-4	4	0	0	0	0	0	0	0	0	0	0	 
		4	-4	0	0	0	0	0	0	0	0	0	0	 
		-4	4	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
	

	 	 	 		 			 	 		 			 
	

	 													 
	

		1	1	1	1	1	1	1	1	1	1	1	1	 
		-1	-1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	 
		0	0	0	0	-1	-1	0	0	0	0	1	1	 
		0	0	0	0	-1	-1	0	0	0	0	-1	-1	 
		-1	-1	-1	-1	0	0	1	1	1	1	0	0	 
		1	1	1	1	0	0	-1	-1	-1	-1	0	0	 
		0	0	0	0			-1	-1	-1	-1			 
		0	0	0	0			-1	-1	-1	-1			 
		0	0	0	0			1	1	1	1			 
		0	0	0	0			1	1	1	1			 
		-1	-1	-1	-1	1	1	0	0	0	0	1	1	 
		1	1	1	1	1	1	0	0	0	0	-1	-1	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
	

		1	-1	-1	1	0	0	1	1	-1	-1	0	0	 
		-1	1	1	-1	0	0	-1	-1	1	1	0	0	 
		-1	1	1	-1	0	0	0	0	0	0	0	0	 
		1	-1	-1	1	0	0	0	0	0	0	0	0	 
		-1	1	1	-1	0	0	1	1	-1	-1	0	0	 
		1	-1	-1	1	0	0	-1	-1	1	1	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	1	1	-1	-1	0	0	 
		0	0	0	0	0	0	-1	-1	1	1	0	0	 
		0	0	0	0	0	0	-1	-1	1	1	0	0	 
		0	0	0	0	0	0	1	1	-1	-1	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
	

		1	1	-1	-1	0	0	0	0	0	0	0	0	 
		-1	-1	1	1	0	0	0	0	0	0	0	0	 
		1	1	-1	-1	0	0	0	0	0	0	0	0	 
		-1	-1	1	1	0	0	0	0	0	0	0	0	 
		1	1	-1	-1	0	0	0	0	0	0	0	0	 
		-1	-1	1	1	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
	

		1	-1	1	-1	0	0	2	-2	0	0	0	0	 
		-1	1	-1	1	0	0	2	-2	0	0	0	0	 
		-1	1	-1	1	0	0	-2	2	0	0	0	0	 
		1	-1	1	-1	0	0	-2	2	0	0	0	0	 
		0	0	0	0	0	0	0	0	0	0	0	0	 
		0	0	0	0	0	0	0	0			0	0	 
		0	0	0	0	0	0	0	0			0	0	 
		1	-1	1	-1	0	0	0	0	0	0	0	0	 
		-1	1	-1	1	0	0	0	0	0	0	0	0	 
	


, , and .


The information about the conjugacy classes found in Table 2 can be used to compute the power maps for the elements of  and then with the aid of Programme E in [18] we can verify that we obtained the unique -power maps listed in Table 8 for our Table 7.
Table 8: The power maps of the elements of .
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8. The Fusion of  into 
Since  is a maximal subgroup of  of index 891, then the action of  on the cosets of  gives rise to a permutation character  of degree 891. We deduce from the character table of  found in GAP that , where , , , and  are irreducible characters of  of degrees 1, 22, 252, and 616, respectively.
We are able to obtain the partial fusion of  into , using the information provided by the values of  on the classes of  and the power maps of  and . Then, the technique of set intersections for characters (see [9, 14, 19]) is applied to restrict some ordinary irreducible characters of  of small degrees to , to determine fully the fusion of the classes of  into .
Let  be the character afforded by the regular representation of . We obtain that  = , where  and . Then  can be regarded as a character of  which contains  in its kernel such that  If  is a character of  than we have that  Here  is the identity character of  and  is the restriction of  to . We obtain that where  and  are the sums of the irreducible characters of  which are in the same orbit under the action of  on , for . Let , where . Then we obtain that
Hence and thereforewhere = .
We apply the above results to some of the irreducible characters of  of small degrees, which in this case are  = ,  = ,  = ,  = ,  = , and  = . Their respective degrees are 22, 22, 231, 231, 440, and 440. For  we calculate that Now  + 21 + 210 + 280 = 22, since  = 22. Since  = 1, we must have that  = 1 and  = = 0. Note that  does not have irreducible characters of degree 22. We obtain that  =  +  if the partial fusion of  into  is taken into consideration. Similarly, for  and  we calculate that and Since the respective degrees of  and  are 231 and 440, we have to solve the equations (i)  + 21 + 210 + 280 = 231 and (ii)  + 21 + 210 + 280 = 440, separately. If we are taking into account the fact that the set  (see Table 7) does not have any irreducible characters of degrees 231 and 440 and also that  and , we deduce that the two sets of values  and  are the only possibilities that satisfy equation (i) and (ii), respectively, hence we obtained that  =  +  and  =  + . Similar computations were carried out to restrict the characters , , and  to  and we found that  = ,  = , and =  + .
By making use of the values of , , , , , and  on the classes of  and the values of , , , , , and  on the classes of  together with the partial fusion, the complete fusion map of  into  is given in Table 9.
Table 9: The fusion of  into .
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