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-e dynamical systems of trigonometric functions are explored, with a focus on t(z) � tan(z) and the fractal image created by
iterating the Newtonmap, Ft(z), of t(z). -e basins of attraction created from iterating Ft(z) are analyzed, and some bounds are
determined for the primary basins of attraction. We further prove x- and y-axis symmetry of the Newton map and explore the
nature of the fractal images.

1. Introduction

Newton’s method is a very well-known iterative procedure
for finding roots. Rather than applying Newton’s method to
one point at a time, we can instead consider the Newton
map:

Ff(z) � z–
f(z)
f ′(z)

, (1)

of the function f(z). Iterating Ff(z) from a given starting
value yields the familiar sequence produced by Newton’s
method. Iterating the function Ff(z) yields a sequence of
maps with fascinating dynamics.

-e dynamics of the Newton map have been studied for
the cases when the original function f is a polynomial or
rational function (see Dwyer et al. [1]; Dwyer et al. [2]). In
this paper, we consider the case f(z) � tan(z).

We first present an outline of the primary definitions and
theorems, with an emphasis on the concepts used in this
paper. Next, we describe the Newton maps of sin(z) and
cos(z) before moving to the much more complex case of
tan(z). We illustrate the symmetries of the Newton map for
tan(z) and provide bounds for the basins of attraction.

1.1. Preliminaries in Complex Analysis. An expression of the
form z � x + iy, where x and y are real numbers, is a
complex number and C is the set of all complex numbers.
We call x the real part, denoted as Re(z), and y the
imaginary part, denoted as Im(z). -emodulus (or absolute
value) of z, |z|2 � x2 + y2, is a real number which mea-
sures the distance from the origin, and z � x − iy is the
complex conjugate of z.

Each complex number z in C can be identified with the
unique point (Re(z), Im(z)) in the plane R2. We can
establish polar coordinates, r and θ, for z � x +

iyby notingx � r cosθ, y � r sinθ, r �
���������
(x2 + y2)

􏽰
, and θ

is the angle between the positive real axis and the line
segment from 0 to z in the counterclockwise direction.
Hence, the complex number z � x + iy can be written in
the polar form z � reiθ, and using Euler’s equation we
obtain z � r(cos θ + i sin θ).

A complex-valued function f(z) � f(x + iy) assigns to
each z in the domain exactly one complex number
w � f(z). Just as z decomposes into real and imaginary
parts, each complex-valued function can be written as
f(z) � u(x, y) + iv(x, y), where u and v are each real-
valued functions. In essence, f(z) is a pair of real functions
of two real variables that maps regions from its domain in
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the complex plane onto its range in another copy of the
complex plane.

-e derivative of a complex function is defined by an
extension of the definition of the real case. If G is an open set
in the complex plane and f: G⟶ C, then f is differen-
tiable at a point z0 ∈ C if limz⟶z0

(f(z) − f(z0))/(z − z0)

exists.-e value of this limit is denoted asf′(z) and is called
the derivative of f at z0.

It is possible for a complex function to be differentiable
solely at isolated points, thus analyticity, a property defined
over open sets, is a stronger condition. A complex-valued
function f(z) is said to be analytic on an open set G if it has
a derivative at every point of G. If f(z) is analytic on C, then
it is said to be entire.

-e complex number z is a zero (or root) of the function
f(z) if it is a solution to the equation f(z) � 0.

Singularities of functions can result in particularly
interesting fractal images. Let Br(a) denote the ball of
radius r about a. -en, we have the following: a function f

has an isolated singularity at z � a if there exists r> 0 such
that f is defined and analytic in Br(a)\ a{ } but not inBr(a).
-at is, f is an analytic in some neighborhood of a but not
at a itself. In addition, if limz⟶a|f(z)| �∞, then a is
called a pole of f. -e point a is called a removable sin-
gularity if there is an analytic function g: Br(a)⟶ C such
that g(z) � f(z) for 0< |z − a|< r. If an isolated singularity
is neither a pole nor a removable singularity, it is called an
essential singularity.

A function f is said to be meromorphic in a domain G if
at every point of G it is either analytic or has a pole. In
particular, we regard analytic functions on G as being special
cases of meromorphic functions, and in this paper, we
consider only analytic and meromorphic functions.

1.2. Preliminaries in Complex Dynamical Systems. For an
analytic function f and given z0 in C, the orbit of z0 is the
sequence of iterates z0, f(z0), f2(z0), . . . , fn(z0), . . .􏼈 􏼉

where f2(z0) means f(f(z0) and fn(z0) is the nth ap-
plication of the function f to the value z0. -e initial value
z0 is called the seed value, and dynamics is interested in the
fate of orbits, that is, the behavior of fn(z0)􏼈 􏼉 as n⟶∞.
Do they converge, diverge, cycle, or behave chaotically? A
fixed point occurs when f(z) � z. If fn(z) � z for some
n ∈ Z, and z, f(z), . . . , fn− 1(z) are distinct points, then z

is a periodic point with period n, defined as the smallest n for
which fn(z) � z. -e set z, f(z), . . . , fn− 1(z)􏼈 􏼉 is called a
n-cycle for f. If the orbit of z contains preliminary values
before settling at either a fixed point (fn+1(z) � f(z) for
some n> 1) or a periodic orbit (fn+p(z) � fn(z) for some
n> 1, where p is the period of the periodic orbit), then z is
called an eventually fixed point or eventually periodic,
respectively.

For example, consider the complex function f(z) � z2.
Fixed points of f occur when z2 � z, and thus the fixed
points are 0 and 1. Seed values − 1, i, and − i have orbits
− 1, 1{ }, i, − 1, 1{ }, and − i, − 1, 1{ }, respectively. Since each
orbit lands on the fixed point 1 after several iterations, these
are all eventually fixed points. Similarly

z0 � e2πi/3 and z0 � e4πi/3 are periodic fixed points of
period two. If |z0|> 1, then fn(z0)􏼈 􏼉⟶∞ as n⟶∞,
and if |z0|< 1, then fn(z0)􏼈 􏼉⟶ 0 as n⟶∞.

Theorem 1. Letf be a (real or complex) continuous function
from its domain set to itself. Suppose a and z0 are both in the
domain set and fn(z0)􏼈 􏼉⟶ a, then f(a) � a.

Proof. Since the sequence fn(z0)􏼈 􏼉⟶ a and f is con-
tinuous, we must have

f(a) � f lim
n⟶∞

f
n

z0( 􏼁􏼒 􏼓 � lim
n⟶∞

f
n+1

z0( 􏼁 � a. (2)
□

1.3. Newton’s Method. For a real-valued function f(x),
x ∈ R, with root a, we define the Newton map of f as

Ff(x) � x–
f(x)

f ′(x)
. (3)

-e sequence of iterates Fn
f(x0)􏼚 􏼛 converges to the

sought-after root, a, for an initial guess x0 “close enough” to
a. Note that when f(x) � 0, F(x) � x; therefore, the

convergence of Fn
f􏼚 􏼛 to a root of f(x) can be thought of as a

convergence to a fixed point of F(x). Henceforth, we will be

concerned with the orbits Fn
f(z0)􏼚 􏼛 for various analytic or

meromorphic functions f and seed values z0 and explore the
fractal nature of the images created by these iterations.

Example 1. Consider the function f(z) � (z − 2)(z − 3),
which has zeros at z � 2 and z � 3, andNewtonmapFf(z) �

z − ((z2 − 5z + 6)/(2z − 5)) � (z2 − 6)/(2z − 5). For seed
valuez0 � 1/2, the iterates are z0 � 0.5, z1 � 1.4375, z2 �

1.8511, z3 � 1.9829, z4 � 1.9997, z5 � 1.9999, . . . which are
clearly converging to root z � 2. Experiments with different
values of z0 will reveal that seed values which are closer to the
root 2 will produce orbits that converge to 2, and likewise,
points closer to 3 will iterate to 3 under Ff. Note that if we
choose z0 � 5/2 , Newton’s method will fail. Analytically, we
can see this because 5/2 leads to a zero in the denominator of F

and informally we see that the point 5/2 lies directly halfway
between roots 2 and 3 and is thus pulled equally in both
directions by each root. -at is, 5/2 separates those points on
the real line which will iterate to 2 and those which will iterate
to 3, so it seems our method should fail at this point. Figure 1
shows the dynamics for Ff. Iterates of seed values from the
green region will converge to 2, whereas seed values from the
blue region will iterate to 3.

For any real or complex function f and any real or
complex number w, we define Af(w), the attracting basin of
w, under the function f, to be the set of all starting points
whose iterates limit to the point w. -at is,

Af(w) � z ∈ G: f
n
(z)⟶ w􏼈 􏼉. (4)

For any real or complex function f and any real or
complex number w, we define A∗f (w), the primary (or
immediate) basin of attraction of w under f, to be the largest
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set containing w that lies in the basin of attraction of w.
Equivalently, the primary basin of attraction is the con-
nected component of the basin of attraction containing w.

Theorem 2 (attracting property of Newton’s method). Given
any real or complex analytic function f with root a, there
exists r> 0 such that all points within a distance r of a are
necessarily in the set AF(a), where F is the Newton map of f.
;at is, for all initial values z0 that are “close enough” to a, the
orbit Fn(z0) converges to a. An outline of the proof is dis-
cussed by Brilleslyper et al. [3].

Note that A∗F (w)⊆AF(w) and there is no universal
value for r, as it depends heavily on the function f.-e value
r gives a lower bound on how close a seed value must be in
order for guaranteed convergence under Newton’s method.
Furthermore, as f becomes more complicated, so do the
dynamics of F, and it may not simply be the case that all seed
values close to a certain root converge to that root. Consider
Figure 2, where the picture of the dynamics for f(z) �

z3 − 1 is shown.

1.4. Classification of Fixed Points. -e behavior of a function
near its fixed points can vary, and we use this to classify fixed
points. In general, if the action of f is to move points closer
to the fixed point, we call it attracting. Conversely, a fixed
point may be repelling, in which case, no matter how close
the seed is to the point, iterates of the seed will diverge from
the fixed point. Formally, we have the following definition.

Definition 1. Let f be a map from its domain set G (a subset
of either R or C) into itself.

(a) A finite fixed point a in C is an attracting fixed point
(of f ) if there exists a neighborhood U of a such that
for any point z ∈G∩U \ a{ }, we have |f(z)−

a|< |z − a|.

(b) We call∞ an attracting fixed point of f if there exists
a neighborhood U of ∞ such that for any point
z ∈G∩U \ ∞{ }, we have |f(z)|> |z|. -at is, the
action of f is to move each point in G∩U \ ∞{ }

closer to ∞ (as measured by the spherical metric).
(c) A finite fixed point a in C is called a repelling fixed

point (of f ) if there exists a neighborhood U of a

such that for any point z ∈G∩U \ a{ }, we
have |f(z) − a|> |z − a|.

(d) We call∞ a repelling fixed point of f if there exists a
neighborhood U of ∞ such that for any point
z ∈G∩U \ ∞{ }, we have |f(z)|< |z|.

Observe that in the case of (a) and (b) in Definition 1,
UA∗F (a)⊆ AF(a). -us, if a fixed point is attracting, the it-
erates of any seed value in the neighborhood U converge
monotonically to the fixed point, while points in AF(a)\U will
eventually converge to a. -e following theorem is helpful in
determining the classification of a given fixed point.

Theorem 3. Let f(z) be an analytic map on a domain G⊂C
such that f(a) � a for some a in G. ;en, we have the
following:

(a )a is an attracting fixed point if and only if
|f′(a)| < 1,

(b) a is a repelling fixed point if and only if |f′(a)|> 1.

We note that if |f′(a)| � 0, a is called a superattracting
fixed point, and if |f′(a)| � 1, a is a neutral fixed point. -e
behavior of neutral fixed points is complicated: sometimes
they can exhibit both a partial attracting nature and a partial
repelling nature. For example, for the complex function
f(z) � sin(z), we have a neutral fixed point at a � 0. For
real-valued seeds, a has attracting properties, but for purely
imaginary-valued seeds, a � 0 has a repelling nature. Indeed,
for z � bi, b ∈ R, sin(bi) � isinh(b). Now, since sinh(b) is
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Figure 1: -e dynamics of the Newton map of
f(z) � (z − 2)(z − 3), as discussed in Example 1.

Figure 2: -e global dynamics of F(z) � (− z3 + 3z2 + 1)/3z , the
Newtonmap for f(z) � z3 − 1.-e blue region represents AF(1),
green represents AF(e2πi/3), and yellow represents AF(e− 2πi/3).
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an increasing function, for all b ∈ R+, sinn(bi){ }⟶∞ as
n⟶∞, and for all b ∈ R− , sinn(bi){ }⟶ − ∞ as
n⟶∞. Similarly, neutral fixed points can act in neither an
attracting nor repelling fashion.

We can see that periodic points correspond exactly to
fixed points of higher iterates fn of f, so the subsequent
classifications follow from -eorem 3.

Definition 2. Suppose z0, f(z0), . . . , fn− 1(z0)􏼈 􏼉 forms a
p-cycle for the map f. -at is, fn(z0) � z0. Let
λ � d/dzfn(z)|z�z0

, then the p-cycle of f is called

(a) Superattracting if λ � 0,
(b) Attracting if 0< |λ|< 1,
(c) Repelling if |λ|> 1,
(d) Neutral if |λ| � 1.

2. Newton’s Method and
Trigonometric Functions

As discussed by Alexander et al. [4], the beginning of the
study of complex dynamics dates back to 1870 where Ernst
Schröder studied iterative equation solving algorithms in the
complex plane and hence the nature of the infinite sequence
z, f(z), f2(z), . . . , fn(z), . . .􏼈 􏼉 from a theoretical view-
point. Schröder’s interest in iterations led to the corner-
stones of complex dynamics: Schröder’s fixed-point theorem
and fixed point classifications. Schröder used a heuristic
approach in his proof of the fixed-point theorem that relied
on the Taylor series expansion of f about an attracting fixed
point and led to an explanation as to why Newton’s method
works. He also studied convergence rates. Namely, for
simple roots, a, of a polynomial, Newton’s method con-
verges quadratically in a neighborhood U of a. For roots of
multiplicity greater than 1, Schröder modified Newton’s
method to maintain this desirable convergence, and later,
developed a family of similar root-solving algorithms which
would either increase the rate of convergence, or have
convergence of an arbitrary order.

Schröder was successful in developing fundamental
tools of complex dynamics and applying them to the
Newton map of q(z) � z2 − 1: “Schröder observed, first,
that there were periodic points of Fq(z) of every order on
the imaginary axis.His second observation was that if z was
on the imaginary axis, but not eventually periodic, then
Fk

q(z) takes on infinitely many values” [4]. In other words,
the forward orbit of z consists of infinitely many distinct
points. Yet, his work raised an unanswered fundamental
question: how far away can an arbitrary point z be from an
attracting fixed point a of a function f, such that
fn(z)⟶ a? It was not until the emergence of indepen-
dent work by Pierre Fatou and Gaston Julia near the end of
WWI that solutions to this query were explored. Fur-
thermore, Schröder was unable to extend his results to
higher-degree polynomials, in particular, he failed in an
attempt to understand Newton’s method for the cubic
c(z) � z3 − 1 and it took more than 45 years before the
dynamics of Fc(z) were well understood [4].

-e 1918 Grand Prix des Sciences Mathematiques
competition was devoted to the study of the iteration of
complex functions and hence sparked a flurry of papers
published by Fatou and Julia on the global behavior of it-
erates of complex rational functions. During this time, they
were able to bring about a substantial global theory of ra-
tional dynamics, but little was known about the global it-
erative behavior of other kinds of complex functions [4].
Unfortunately, it was not until the onset of the personal
computer that complex dynamics received considerable
public attention again, and in the early 1980s the field ex-
ploded as computer-generated images of the Mandelbrot set
and Newton’s method on cubic polynomials circulated
widely.

As shown later, the main focus of this paper will be the
iteration of the function z − sin(z)cos(z), so a look at lit-
erature concerning the dynamics of trigonometric functions
will be of use. Unfortunately, this particular set of research is
more limited than that of polynomials and rational func-
tions. Schubert [5] proves that the area of the Fatou (or
stable) set of the sine function in a vertical strip of width 2π is
finite. He also references the dynamical work, both historical
and recent, carried out with functions such as
sin(z), cos(z), h sin(z) + a for 0 < h < 1 real, sin(az + b)

for a ≠ 0, and λ sin(z).
Devaney [6] discusses the special class of meromorphic

functions f(z) whose Schwarzian derivative:

S(f(z)) �
f‴(z)

f′(z)
−
3
2

f″(z)

f′(z)
􏼠 􏼡

2

, (5)

is a polynomial including the family of functions λtan(z). As
we know, the fate of asymptotic and critical values under
iteration plays a crucial role in determining dynamics, and
the main property of maps with polynomial Schwarzian
derivatives is that they have a finite number of asymptotic
values (all of which are isolated) and no critical values. In
particular, for Tλ(z) � λ tan(z) � (λ/i)(eiz − e− iz)/(eiz+

e− iz), where λ> 0, we have S(Tλ(z)) � 2, Tλ has asymptotic
values at λi and –λi, and Tλ preserves the real axis.

-e Julia set J(Tλ) is the closure of the set of repelling
periodic points, or equivalently, J(Tλ) is the closure of the
set which consists of the union of all of the preimages of the
poles of Tλ. Furthermore, all the poles and their preimages
are dense in the Julia set. Devaney shows that J(Tλ) is not a
fractal set, indeed, it is a smooth manifold ofC. If λ � 1, then
J(Tλ) � R, and all points z � x + iy such that y ≠ 0 tend
asymptotically to the neutral fixed point 0. When λ< − 1, Tλ
has an attracting periodic cycle of period two, and points in
the upper and lower half planes hop back and forth as they
are attracted to the cycle. And, since |Tλ′(x)|> 1 for all
x ∈ R, J(Tλ) � R for λ< − 1 [6].

Devaney’s results show that for 0< |λ|< 1, zero is an
attracting fixed point for Tλ and J(Tλ) breaks up into a
Cantor set. In fact, the basin of zero is infinitely connected,
contrasting the situation for polynomial or entire maps
(such as z − sin(z)cos(z)) in which finite attracting fixed
points always have a simply connected immediate basin of
attraction (Devaney [6]). A full picture of the parameter
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plane for the tangent family is presented by Keen and Kotus
[7]; however, an extensive literature search has failed to find
work on the dynamics of Newton’s method applied to
trigonometric functions.

2.1. Introduction to the Dynamics of Trig Functions. -is
paper focuses on the dynamics of the Newton map of
t(z) � tan(z), so as a means of comparison, we first look at
some of the basic properties and dynamics of the entire
functions s(z) � sin(z) and c(z) � cos(z).

First, s(z) has a Newton map:

Fs(z) � z −
sin(z)

cos(z)
�

zcos(z) − sin(z)

cos(z)
. (6)

For all n ∈ Z, the fixed points of Fs are zn : � nπ and
|Fs
′(zn)| � |tan2(nπ)| � 0 thus, zn is a superattracting fixed

point of Fs.
Similarly, c(z) has a Newton map:

Fc(z) � z +
cos(z)

sin(z)
�

zsin(z) + cos(z)

sin(z)
, (7)

which has fixed points at 􏽥zn : � (π/2) + nπ and
|Fc
′(􏽥zn)| � |cot2((π/2) + nπ)| � 0. -us, 􏽥zn is a super-

attracting fixed point of Fc.
-e images produced from the iteration of Fs and Fc

look as one might expect: with strips of width π about each
fixed point, where points within this strip will converge
(under iterations of the Newtonmap) to each respective root
(see Figure 3(a)). However, we can see fractal properties
about the boundaries and the dynamics are far from trivial.
Notice that the Newton maps of sin(z) and cos(z) have
singularities at (π/2) + nπ and nπ, respectively, which leads
to the boundary behavior shown in Figure 3(b).

Now, consider the meromorphic function t(z) � tan(z)

which yields the corresponding Newton map:

Ft(z) � z −
tan(z)

tan′(z)
. (8)

Note that tan′(z) � 1/cos2(z) is never zero, so Ft(z) �

z − sin(z)cos(z) for all z ∈ C and Ft is an entire function.
Furthermore, the roots of t(z) are the roots of
sin(z), zn � nπ for all n ∈ N; however, the fixed points of
Ft occur at both zn � nπ and 􏽥zn � π/2 + nπ. Taking the
derivative of the Newton map:

Ft
′ (z) � 1 − cos2(z) − sin2(z)( 􏼁 � 2sin2(z), (9)

we see that Ft
′(zn) � 0 and Ft

′(􏽥zn) � 2> 1; thus, by -eorem
3, for all n ∈ Z, zn is a superattracting fixed point of Ft and 􏽥zn

is a repelling fixed point of Ft. Figure 4 shows the computer-
generated global dynamics of Ft(z). Each root zn lies at the
center of one of the main colored bulbs. Seed values found
outside of this strip of bulbs fail to iterate to any root under
Ft.

Recall that for Ft(z) � z − sin(z)cos(z), we have

AF zn( 􏼁 � z ∈ C | F
k
t (z)⟶ zn, fork � 1, 2, . . .􏽮 􏽯, (10)

and A∗F (zn) is the largest connected component of AF(zn)

containing the root zn.
A closer inspection of any one primary basin of at-

traction gives greater insight into what is happening.
Continuously zooming in on the boundary of each A∗F (zn)

reveals the seemingly infinite nature of the fractal image.
Each bulb consists of a boundary of bulbs, and it appears that
there are an infinite number of them, each consisting of seed
values which converge to a different root under iterations of
Ft. Figure 5(a) shows a closer view of the dynamics about
z0 � 0. Every seed value from A∗F (0) will iterate to 0.
Furthermore, notice that from this distance, we see no more
subsets of AF(z0) about the boundary of A∗F (z0). Indeed, it
seems that none of the bulbs that touch A∗F (zn) contain seed
values that converge to zn.

Figure 5(b) displays a close-up of the largest bulbs
stemming from A∗F (z0) in the first quadrant. Notice that this
close-up imitates the broader picture of Figure 5(a) in shape
and bulb placement. Namely, the hexagonal-like shape of
this bulb, while slightly distorted, resembles that of A∗F (z0)

with the positioning of boundary bulbs in the same general
area. Moreover, these loose properties can be observed in
any bulb one chooses to zoom in on.

2.2. Symmetry of Ft(z). Our first exploration into the dy-
namics seen in Figure 5(a) is in the symmetry of the Newton
map. We employ the following standard properties for all
complex numbers z:

(i) sin(− z) � − sin(z) and cos(− z) � cos(z),
(ii) sin(z ) � sin(z) and cos(z ) � cos(z).

We first show that Ft(z) is symmetric about the x− axis
for all z ∈ C. Let Ft(z) � z − sin(z)cos(z) � z1. -en,

Ft(z) � z − sin(z)cos(z) � z − sin(z)cos(z)

� z − sin(z)cos(z) � z1 � Ft(z),
(11)

that is, for any z � x + iy, if Ft takes z to z1 � x1 + iy1, then
it takes z � x − iy to z1 � x1 − iy1.

In a similar manner, it can be shown that if Ft takes
z � x + iy to z1 � x1 + iy1, then it takes − z � − x + iy to
− z1 � − x1 + iy1. Hence, Ft is symmetric about the y− axis.

-e symmetry of Ft means that an exploration of the
dynamics which occur in the first quadrant is sufficient to
understand the global dynamics of tan(z) under Newton’s
method (see Figure 6).

2.3.Bounding thePrimaryBasins. What can we say about the
basins of attraction these images present us with? We would
like to, in some way, bound the different sets of seed values
converging to distinct roots, and in this section, we will focus
on the primary basins about roots zn. Recall that the function
being iterated is Ft(z) � z − sin(z)cos(z),
sin(z) � (eiz − e− iz)/2i, and cos(z) � (eiz + e− iz)/2. So, for
purely imaginary seed values z � bi, b ∈ R, we have
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Ft(bi) � bi– sin(bi)cos(bi)

� bi −
1
4i

e
− b

− e
b

􏼐 􏼑 e
− b

+ e
− b

􏼐 􏼑 � bi

+
i

4
e

− 2b
− e

2b
� i b +

1
4e2b

− e
2b

􏼒 􏼓􏼒 ,

(12)

that is, points on the imaginary axis remain on the imaginary
axis under iteration. Similarly, points on the real axis remain
on the real axis since for z � x ∈ R,
Ft(x) � x − sin(x)cos(x) is in R.

Now, according to Definition 1, for each attracting fixed
point zn, there exists a neighborhood U about zn such that all
points in U converge monotonically to zn. We will first

examine sets of real points and points of the form
z � zn + iy.

Proposition 1. Along the real axis, U � (− (π/2)+

zn, (π/2) + zn). ;at is, for all z ∈ R ∩ (− (π/2) +

zn, (π/2) + zn)\ zn􏼈 􏼉, n ∈ Z, we have
Ft(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (13)

Proof. Before proving this result, note the following:

(i) For a, z ∈ R, if 0< a< z, then z − a< z hence
|z − a| < |z|,

(ii) For a, z ∈ R, if z < a< 0, then z − a> z hence
|z − a|< |z|,

(iii) For z ∈ R, if 0< z< π, then z> sin(z)cos(z), and if
− π < z< 0, then z< sin(z)cos(z),

(iv) For z ∈ R, sin(z)cos(z) has period π.

Now, we first prove the result for n � 0. -at is, we will
show that for all

z ∈ R∩ −
π
2

,
π
2

􏼒 􏼓\ 0{ },

Ft(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<|z|.

(14)

Suppose that z ∈ (0, π/2) . -en, z> 0, sin(z)cos(z)> 0,
and z> sin(z)cos(z), so by (28a), |z − sin(z)cos(z)|< |z|.
Suppose z ∈ (− π/2, 0). -en, z< 0, sin(z)cos(z)< 0, and
z< sin(z)cos(z). Hence, by (28b), |z − sin(z)cos(z)|< |z|.
-us, for all z ∈ U � (− π/2, π/2) , we have
|z − sin(z)cos(z)|< |z|, that is, |Ft(z)|< |z|.

Let us now consider the general case. For
z ∈ (zn, (π/2) + zn), let w � z − zn � z – nπ. -en,
0<w< π/2 implies w > sin(w)cos(w) and
sin(w)cos(w) > 0. -us, by the above remarks, we have
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Figure 3: (a) Global dynamics of Fs(z) and (b) the fractal boundary of Fs(z) at z � π/2 + iy.
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Figure 4: Global dynamics of Ft(z).
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|w − sin(w)cos(w)| <|w||w − (− sin(w))(− cos(w))| <|w|

⟺|w − sin(w + nπ)cos(w + nπ)|<|w| z − zn

􏼌􏼌􏼌􏼌

− sin(z)cos(z)|< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⟺ Ft(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(15)

Similarly, for z ∈ (− π/2 + zn, zn), let w � z − zn. -en,
− π/2<w < 0 and by the same reasoning, we have

|w − sin(w)cos(w)| <|w|⟺ Ft(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (16)

-erefore, for all z ∈ R ∩ (− (π/2) + zn, (π/2)+

zn)\ zn􏼈 􏼉, n ∈ Z, we have

Ft(z)–zn
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (17)

To place similar bounds along the imaginary axis, we
define the set:

βn : zn + bi : b ∈ R, b≠ 0, and|sinh(2b)|<|4b|􏼈 􏼉, (18)

and we have the following result. □

Proposition 2. For all z ∈ C∩ βn\ zn􏼈 􏼉, we have |Ft(z)−

zn| < |z − zn|.

Proof. We will first prove the result for the attracting fixed
point z0 � 0, and then extend it to the general case zn � nπ.
For all z ∈ C∩ β0\ z0􏼈 􏼉, we have

sin(z)cos(z) � sin(bi)cos(bi) �
1
4i

e
− b

− e
b

􏼐 􏼑 e
− b

+ e
− b

􏼐 􏼑

�
− i

4
e

− 2b
− e

2b
􏼐 􏼑.

(19)

-us,

z − sin(z)cos(z) − z0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< z − z0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟺|bi − sin(bi)cos(bi)| <|bi|

⟺ bi +
i

4
e

− 2b
− e

2b
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<|bi| b +

1
4

e
− 2b

− e
2b

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<|b|

⟺b +
1
4

e
− 2b

− e
2b

􏼐 􏼑<|b|andb +
1
4

e
− 2b

− e
2b

􏼐 􏼑> − |b|.

(20)

We first consider the case where b> 0:

2

1

0

–1

–2

–1 0 1 2–2
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(a) (b)

Figure 5: (a) Primary basin of attraction of Ft about z0 � 0. (b) -e largest bulb attached to A∗F (z0) in quadrant I.
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Figure 6: x- and y-axis symmetry of Ft(z).
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b +
1
4

e
− 2b

− e
2b

􏼐 􏼑< b⟺
1
4

e
− 2b

− e
2b

􏼐 􏼑< 0e
− 2b < e

2b
, b ∈ (0,∞),

b +
1
4

e
− 2b

− e
2b

􏼐 􏼑> − b −
1
4

e
− 2b

− e
2b

􏼐 􏼑< 2b
1
4

e
2b

− e
− 2b

􏼐 􏼑< 2b,

⟺sinh(2b)< 4b.

(21)

Hence, the set b : sinh(2b)< 4b{ } satisfies the desired
inequality.

Now, suppose that b< 0 and let b � − a, where a> 0.
-en, we have

b +
1
4

e
− 2b

− e
2b

􏼐 􏼑<|b| − a +
1
4

e
2a

− e
− 2a

􏼐 􏼑<| − a| � a

⟺sinh(2a)< 4a − sinh(2b)< − 4bsinh(2b)> 4b,

b +
1
4

e
− 2b

− e
2b

􏼐 􏼑> − |b| − a +
1
4

e
2a

− e
− 2a

􏼐 􏼑> − | − a| � − a

⟺
1
4

e
2a

− e
− 2a

􏼐 􏼑> 0e
2a > e

− 2a
e

− 2b > e
2b

, b ∈ (− ∞, 0).

(22)

-erefore, for the attracting fixed point z0, for all
z ∈ C∩ β0 \ z0􏼈 􏼉, we have

Ft(z) − z0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< z − z0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (23)

We now extend this result to the general case. Let
z ∈ C∩ βn zn􏼈 􏼉 and let w � z − zn. Since z � zn + bi, we
havew � bi for all b such that |sinh(2b)|< |4b|, hence by the
first part we have

|w − sin(w)cos(w)| <|w||w − sin(w + nπ)cos(w + nπ)|<|w|

⟺ z − sin(z)cos(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(24)

-us, for the attracting fixed point zn, for all
z ∈ C∩ βn\ zn􏼈 􏼉, we have

Ft(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (25)

-e proof of the last result of this section makes use of
both Schwarz’s lemma and the maximum modulus
principle. □

Lemma 1 (Schwarz). Let D � z : |z|< 1{ }, and suppose f is
an analytic on D with

(a) |f(z)|≤ 1 for z ∈D,
(b) f(0) � 0.

-en, |f’(0)|≤ 1 and |f(z)|≤ |z| for all z in the open
disk D. Moreover, if |f’(0)| � 1 or if |f(z)| � |z| for some

z≠ 0, then there is a constant c, |c| � 1, such that f(w) � cw

∀w ∈D.

Theorem 4 (Maximum modulus). Let G be a bounded open
set in C and suppose f is a continuous function on the closure
of G, G, and analytic in G. ;en,

max |f(z)|: z ∈ G􏼈 􏼉 � max |f(z)|: z ∈zG􏼈 􏼉, (26)

where zG is the boundary of G.

-emaximummodulus principle says that in a bounded
domain, an analytic function that has a continuous exten-
sion to the boundary attains its maximum modulus on the
boundary. Equivalently, if the modulus of an analytic
function achieves its maximum value at some point inside
the domain G, then the function is constant in G.

We can now show that the unit disk is contained in the
primary basin of attraction.

Theorem 5. For all z ∈ C∩Dn\ zn􏼈 􏼉, where Dn ≔
z : |z − zn|< 1􏼈 􏼉, we have

Ft(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (27)

Proof. -is proof will make use of the following equiva-
lencies for all z ∈ C :

sin(z)cos(z) �
1
2
sin(2z), (28a)

sin(2z) � sin(2x)cos(2iy) − cos(2x)sin(2iy)

� sin(2x)cosh(2y) − i cos(2x)sinh(2y),
(28b)

Re(z sin(z)) � x sin(2x)cosh(2y) + y cos(2x)sinh(2y),

(28c)

|sin(2z)|
2

�
1
4

sin2(2x) e
2y

+ e
− 2y

􏼐 􏼑
2

􏼔

+ cos2(2x) e
2y

− e
− 2y

􏼐 􏼑
2
􏼕

�
1
4

e
4y

+ e
− 4y

+ 2 − 4cos2(2x)􏽨 􏽩

�
1
2

cosh(4y) + 1 − 2cos2(2x)􏼐 􏼑􏽨 􏽩

�
1
2

(cosh(4y) − cos(4x)).

(28d)

We will first prove this result for the n � 0 case, i.e., we
consider z0 � 0 and the open unit disk D0.

Ft(z) � z − sin(z)cos(z) is analytic and continuous on
all ofC, in particular, Ft is continuous on D0 and analytic on
D0. -us, by the maximum modulus principle, ∀ z ∈ D0,
|Ft(z)| � |z − sin(z)cos(z)| attains its maximum value
when |z| � 1⟺y � ±

�����
1 − x2

√
. -us, we have
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|z − sin(z)cos(z)|
2

� |z|
2

− 2Re(z sin(z)cos(z)) +|sin(z)cos(z)|
2

� |z|
2

− Re(z sin(2z)) +
1
4
|sin(2z)|

2

� |z|
2

− x sin(2x)cosh(2y) − y cos(2x)sinh(2y) +
1
8

(cosh(4y) − cos(4x))

≤ 1 − x sin(2x)cosh 2
�����
1 − x2

√
􏼐 􏼑 −

�����
1 − x2

√
cos(2x)sinh 2

�����
1 − x2

√
􏼐 􏼑 +

1
8

cosh 4
�����
1 − x2

√
􏼐 􏼑 − cos(4x)􏼐 􏼑,

for − 1≤x≤ 1.

(29)

Now, let us define g(x) : � 1 − x sin(2x)

cosh(2
�����
1 − x2

√
) −

�����
1 − x2

√
cos(2x)sinh(2

�����
1 − x2

√
) + (1/8)

(cosh(4
�����
1 − x2

√
) − cos(4x)). A direct computation shows

that on the interval [− 1, 1], g′(x) � 0 if and only if x � 0.
-is can also be seen informally by graphing either g(x) or
g′(x). -erefore, g takes on its maximum value at x � 0 and
we have

|z − sin(z)cos(z)|
2 ≤g(x)≤g(0) � 1 − sinh(2)

+
1
8

(cosh(4) − 1), for all< 1 − 1≤ x≤ 1.

(30)

-us, the maximum of |Ft(z)| is less than 1 for all
z ∈ D0, so certainly |Ft(z)|< 1 for all z ∈ D0. Furthermore,
F(0) � 0, thus by Schwarz’s lemma, for all z ∈ D0,
|Ft(z)|≤ |z|. Note that the only point for which |Ft(z)| �

|z − sin(z)cos(z)| � |z| is when z � z0, so excluding z0 from
the domain will yield a strict inequality. -at is, for all
z ∈ C∩D0\ z0􏼈 􏼉, we have |Ft(z)|< |z| , i.e.,
|Ft(z) − z0|< |z − z0|.

We now extend this to the general case
where zn � nπ ∀ n ∈ Z. Consider Dn � z : |z − zn|< 1􏼈 􏼉 and
let w � z − zn for z ∈ Dn. -en, we have |w|≤ 1, Ft(0) � 0
and |Ft(w)| � |w − sin(w)cos(w)| < 1 by the same reasoning
as above, and thus by Schwarz’s lemma,

Ft(w)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ |w| z − zn − sin z − zn( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⟺ z − sin(z)cos(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌for all z ∈ Dn.

(31)

Hence,

Ft(z) − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< z − zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∀z ∈ C∩Dn\ zn􏼈 􏼉. (32)

Based on Figure 4, further exploration could entail an
attempt to bound monotonically converging seed values in
A∗F (0) within the ellipse (x/π/2)2 + (y/β)2 < 1, where
β : � |x| : sinh(2x) � 4x{ }, or equivalently,
|z + c| + |z − c|< π where

c �

�������

π
2

􏼒 􏼓
2
–β2

􏽳

. (33)

□

3. Conclusion

-e fractal image created from iterating the Newton map of
t(z) � tan(z) is symmetric about both the x- and y− axis as
well as with respect to each attracting fixed point. In general,
that which can be said about the dynamics surrounding z0 �

0 can be said about the dynamics about zn � nπ. Indeed, as
was shown, monotonically convergent seed values are
bounded inside each primary basin of attraction by a circle
of radius at least one centered at zn. -ese bounds can be
extended along the real axes to − π/2 + zn and π/2 + zn, and
along the line z � zn + iy to |sinh(2b)|< |4b| for b ∈ R. -is
leads one to conjecture that the unit circle is a minimal
bound which could be extended to the ellipse: |z − c| + |z −

c|< π where c �

���������

(π/2)2 – β2
􏽱

. Furthermore, one could
possibly show that each connected component of AF(nπ) is
bounded by a scaled version of this ellipse.

Indeed, as we have highlighted by the exploration of the
Newton maps of two (seemingly) simple functions (sin(z)

and tan(z)), complex dynamical systems have numerous
interesting properties available for study.
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