Research Article

Lower Bound for the Class Number of $\mathbb{Q}\left(\sqrt{n^2 + 4}\right)$

Hasan Sankari and Ahmad Issa

Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria

Correspondence should be addressed to Ahmad Issa; ahmad.issa@tishreen.edu.sy

Received 31 October 2019; Revised 21 December 2019; Accepted 8 January 2020; Published 30 January 2020

Academic Editor: Attila Gilányi

Copyright © 2020 Hasan Sankari and Ahmad Issa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we give an explicit lower bound for the class number of real quadratic field $\mathbb{Q}(\sqrt{d})$, where $d = n^2 + 4$ is a square-free integer, using $\omega(n)$ which is the number of odd prime divisors of n.

1. Introduction

Let d be a positive square-free integer and let $h(d)$ and C_k denote the class number and the class group of a real quadratic field $k = \mathbb{Q}(\sqrt{d})$, respectively.

The class number problem of quadratic fields is one of the most intriguing unsolved problems in Algebraic Number Theory and has for a long time inspired the study of lower bounds of $h(d)$.

Many fruitful research studies have been conducted in this direction. Hasse [1] and Yokoi [2, 3] studied lower bounds for class numbers of certain real quadratic fields. Mollin [4, 5] generalized their results for certain real quadratic and biquadratic fields.

In this work, we give a lower bound for $h(n^2 + 4)$, and also we find a necessary and sufficient condition for $k = \mathbb{Q}(\sqrt{n^2 + 4})$ to have class number $\omega(n) + 1$.

2. Notation and Preliminaries

Let k be a real quadratic field and $\zeta_k(s)$ be its Dedekind zeta function. Siegel [6] developed a method of computing $\zeta_k(1 - 2n)$, where n is a positive integer. By specializing Siegel’s formula for a real quadratic field, we obtain the following result.

Theorem 1 (Zagier [7]). Let k be a real quadratic field with discriminant D. Then

$$\zeta_k(-1) = \frac{1}{60} \sum_{|r| = |D|^{1/2}} \sigma_1\left(\frac{D - r^2}{4}\right),$$

where $\sigma_1(r)$ denotes the sum of divisors of r.

However, there is another method, according to Lang, of computing special values of $\zeta_k(s)$ if k is a real quadratic field.

Let $k = \mathbb{Q}(\sqrt{d})$ be a real quadratic field of discriminant D and H an ideal class of k. Let I be any integral ideal belonging to H^{-1} with an integral basis $\{r_1, r_2\}$. We put

$$\delta(I) = r_1 r_2' - r'_1 r_2,$$

where r'_1 and r'_2 are the conjugates of r_1 and r_2 respectively.

Let ϵ be the fundamental unit of k. Then, $\{\epsilon r_1, \epsilon r_2\}$ is also integral basis of I, and thus we can find a matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with integer entries satisfying

$$\begin{pmatrix} r_1' \\ r_2' \end{pmatrix} = M \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}.$$
Now, we can state Lang’s formula.

Theorem 2 (Lang [8]). By keeping the abovementioned notation, we have

\[
\zeta_k(-1, H) = \frac{\text{sgn}(I) r_r r'_r}{360N(I)c^3} \left((a + d)^3 - 6(a + d)N(\epsilon) \right)
\]

\[
- 240c^3 (\text{sgn} c) S^3(a, c) + 180ac^3 (\text{sgn} c) S^2(a, c)
\]

\[
- 240c^3 (\text{sgn} c) S^3(d, c) + 180 dc^2 (\text{sgn} c) S^2(d, c)
\]

(4)

where \(N(I) \) denotes the norm of an ideal \(I \), \(N(\epsilon) \) is the norm of \(\epsilon \), and \(S'(-, -) \) denotes the generalized Dedekind sum as defined in [9].

To use Lang’s formula, we need to determine the values of \(a, b, c, d, \) and generalized Dedekind sum.

Lemma 1 (see ref [10]). The entries of \(M \) are given by

\[
a = \text{tr} \left(\frac{r_r r'_r}{\delta(I)} \right),
\]

\[
b = \text{tr} \left(\frac{r_r r'_r}{\delta(I)} \right),
\]

\[
c = \text{tr} \left(\frac{r_r r'_r}{\delta(I)} \right),
\]

\[
d = \text{tr} \left(\frac{r_r r'_r}{\delta(I)} \right).
\]

Moreover, \(\det M = N(\epsilon) \) and \(bc \neq 0 \).

Kim [11] obtained the following expressions for generalized Dedekind sum. These expressions are also needed to compute the values of zeta functions for ideal classes of the respective real quadratic fields.

Lemma 2 (Kim [11]). Let \(m \) be a positive integer. Then, we have

(i) \(S^3(\pm 1, m) = \pm ((-m^4 + 5m^2 - 4)/(120m^3)) \)

(ii) \(S^2(\pm 1, m) = ((m^4 + 10m^2 - 6)/(180m^3)) \)

3. Main Results

Let \(n \) be a positive integer and let \(d = n^2 + 4 \) is a square-free integer. Clearly, \(d \equiv 5 \) (mod 8) and \(n \) is odd. In this case, the fundamental unit of \(k \) is \(\epsilon = (n + \sqrt{d})/2 \) and \(N(\epsilon) = -1 \). If \(p \mid n \), then \(p \) splits in \(k = \mathbb{Q}(\sqrt{d}) \) as

\[
\langle p \rangle = \left(\frac{p + 2 + \sqrt{d}}{2}, \frac{p + 2 - \sqrt{d}}{2} \right).
\]

By [12], Theorem 2.4, we know that

\[
\zeta_k(-1, A) = \frac{n^3 + 11n}{360},
\]

(7)

where \(A \) will always denote the principal ideal class in \(k \).

In this section, we will prove our main results. As a start, we record the following proposition.

Proposition 1. Let \(k = \mathbb{Q}(\sqrt{d}) \), where \(d = n^2 + 4 \) is a square-free integer. Let \(p \) be an odd prime divisor of \(n \), and let \(C \) be the ideal class containing \(\langle p, ((p + 2 + \sqrt{d})/2) \rangle \) or \(\langle p, ((p + 2 - \sqrt{d})/2) \rangle \). Then

\[
\zeta_k(-1, C) = \frac{n^3 + n(p^4 + 10p^2)}{360p^2}.
\]

(8)

Proof. Let us assume \(I = \langle p, ((p + 2 + \sqrt{d})/2) \rangle \in C^{-1} \). Then, \(\{r_1 = ((p + 2 + \sqrt{d})/2), r_2 = p \} \) is an integral basis for \(I \), and thus \(\delta(I) = p\sqrt{d} \). By Lemma 1, we get

\[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} = \begin{pmatrix}
 n + p + 1 & d - (p + 2)^2 \\
 4p & n - p - 1
\end{pmatrix}.
\]

(9)

Since \(p \mid n \), \(((n \pm p)/2) \pm 1 \equiv 1 \pmod{p} \). Hence, by Lemma 2, we obtain

\[
240c^3 (\text{sgn} c) S^3(a, c) = 240 \times p^3 S^3(1, p)
\]

\[
= 2(-p^4 + 5p^2 - 4),
\]

\[
240c^3 (\text{sgn} c) S^3(d, c) = 240 \times p^3 S^3(-1, p)
\]

\[
= -2(-p^4 + 5p^2 - 4),
\]

\[
180ac^3 (\text{sgn} c) S^2(a, c) = 180 \left(\frac{n + p}{2} + 1 \right)^3 S^3(1, p)
\]

\[
= \frac{(p^4 + 10p^2 - 6)(n + p + 2)}{2},
\]

\[
180 dc^3 (\text{sgn} c) S^2(d, c) = 180 \left(\frac{n - p}{2} - 1 \right)^3 S^3(-1, p)
\]

\[
= \frac{(p^4 + 10p^2 - 6)(n - p - 2)}{2}.
\]

(10)

By Theorem 2, we get

\[
\zeta_k(-1, C) = \frac{n^3 + n(p^4 + 10p^2)}{360p^2}.
\]

(11)

\[
\square
\]

We use Proposition 1 in order to prove the following theorem, which gives a lower bound for \(h(n^2 + 4) \).

Theorem 3. Let \(n \) be a positive integer, \(\omega(n) \geq 3 \) and let \(d = n^2 + 4 \) is a square-free integer. Then
By keeping the abovementioned notation, we obtain:

\[
\zeta_k(-1,C_i) = \frac{n^3 + n(p_i^4 + 10p_i^2)}{360p_i^2}
\]

(13)

By computing \(\zeta_k(-1, C_i) = \zeta_k(-1, A) \), we arrive at \(n = p_i \). This contradicts the fact that \(\omega(n) \geq 3 \). Similarly, \(\zeta_k(-1, C_i) = \zeta_k(-1, C_j) \) for \(i \neq j \), and then \(n = p_i p_j \). This again contradicts the fact that \(\omega(n) \geq 3 \).

We notice \(\{C_1, \ldots, C_{\omega(n)}\} \) are distinct nonprincipal ideal class in \(k \). This completes the proof. \(\square \)

Now, we give a necessary and sufficient condition for \(k = \mathbb{Q}(\sqrt{n^2 + 4}) \) to have class number \(\omega(n) + 1 \).

Theorem 4. By keeping the abovementioned notation, we have \(h(d) = \omega(n) + 1 \) if and only if

\[
\sum_{m=0}^{(n-1)/2} \sigma_1(1 + mn - m^2) = \frac{n^3 + 11n}{12} + \sum_{i=1}^{\omega(n)} n_i^2 + n(p_i^4 + 10p_i^2) \cdot \frac{12p_i^2}{360}.
\]

(14)

Proof. Now, by Theorem 1,

\[
\zeta_k(-1) = \frac{1}{60} \sum_{|t| < \sqrt{n^2 + 4}} \sigma_1 \left(\frac{n^2 + 4 - t^2}{4} \right),
\]

\[
= \frac{1}{60} \sum_{t \equiv n \mod 4 \text{ and } t \text{ is odd}} \sigma_1 \left(\frac{n^2 - t^2}{4} \right),
\]

\[
= \frac{1}{30} \sum_{t \equiv n \mod 4 \text{ and } t \text{ is odd}} \sigma_1 \left(\frac{(n-t)(n+t)}{4} \right).
\]

(15)

If we replace \(t \) by \(n-r \), where \(r \) is even, then

\[
\zeta_k(-1) = \frac{1}{30} \sum_{0 \leq r \leq n-1 \text{ and } r \text{ is even}} \sigma_1 \left(1 + \frac{r(2n-r)}{4} \right).
\]

(16)

Now, we replace \(r \) by \(2m \), and then we have

\[
\zeta_k(-1) = \frac{1}{30} \sum_{m=0}^{(n-1)/2} \sigma_1 \left(1 + \frac{mn-m^2}{4} \right).
\]

(17)

Necessary: let \(h(d) = \omega(n) + 1 \). Then, the class group of \(k \) is \(C_k = \{A, C_1, \ldots, C_{\omega(n)}\} \). Now, by definition, we have

\[
\zeta_k(-1) = \sum_{j \in C_k} \zeta_k(-1, J),
\]

\[
\zeta_k(-1) = \zeta_k(-1, A) + \sum_{j \in C_k} \zeta_k(-1, C_i).
\]

(18)

This implies

\[
\zeta_k(-1) = \frac{n^3 + 11n}{12} + \sum_{i=1}^{\omega(n)} n_i^3 + n(p_i^4 + 10p_i^2) \cdot \frac{12p_i^2}{360}.
\]

(19)

Finally, by (17), we obtain

\[
\sum_{m=0}^{(n-1)/2} \sigma_1(1 + mn - m^2) = \frac{n^3 + 11n}{12} + \sum_{i=1}^{\omega(n)} n_i^3 + n(p_i^4 + 10p_i^2) \cdot \frac{12p_i^2}{360}.
\]

(20)

Sufficiency: let

\[
\sum_{m=0}^{(n-1)/2} \sigma_1(1 + mn - m^2) = \frac{n^3 + 11n}{12} + \sum_{i=1}^{\omega(n)} n_i^3 + n(p_i^4 + 10p_i^2) \cdot \frac{12p_i^2}{360}.
\]

(21)

Hence, by (17), we find

\[
\zeta_k(-1) = \frac{n^3 + 11n}{360} + \sum_{i=1}^{\omega(n)} n_i^3 + n(p_i^4 + 10p_i^2) \cdot \frac{12p_i^2}{360}.
\]

(22)

By Theorem 3, we get \(h(d) \geq \omega(n) + 1 \).

Suppose \(h(d) > \omega(n) + 1 \). Then, there exist at least \(\omega(n) + 2 \) ideal classes in \(k \).

Since for any ideal class \(E \), \(\zeta_k(-1, E) > 0 \); thus,

\[
\zeta_k(-1) > \zeta_k(-1, A) + \sum_{j \in C_k} \zeta_k(-1, C_i).
\]

(23)

It is a contradiction. \(\square \)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Tishreen University.

References

