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Abstract. 
Anomalous beam propagation in low index-contrast metamaterials has been analyzed. The condition for a well-collimated beam is found to be depending on the beam width and the pertinent Fourier component of the dielectric function. Guided by this condition, an ultra-compact metamaterial structure is designed to deflect a light beam at a wide angle. The structure is tolerant to structural parameter deviation and has a wide bandwidth.


1. Introduction
Metamaterials have aroused wide spread interest in recent years [1–12]. Many metamaterial structures involve metallic and dielectric components with a large refractive index-contrast between two material components. Such a large index-contrast results in the capability of confining and maneuvering light path in a very small scale. On the other hand, it is possible to construct metamaterials with relatively low index-contrast. It would be helpful to understand the capability and limit of metamaterials in the low index-contrast case. In this work, we will study a low index-contrast metamaterial system composed of polymer and air components in such a context. Negative refraction is a topic of wide interest in metamaterials research [1]. Negative refraction can be considered as one aspect of the anomalous characteristics of an optical beam in metamaterials. We will analyze low index-contrast metamaterials that can produce certain anomalous propagation characteristics. This can be utilized to maneuver light beams of sufficiently large widths with potential applications in polymer photonic integrated circuits [13]. Note that the low index-contrast metamaterials discussed here differ from the low-index (or epsilon-near-zero) metamaterials, whose constitutive components have relatively large indices.
Anomalous beam propagation in metamaterials can be traced back to early studies of photonic crystals in 1998 [14]. Note that photonic crystals can be considered as one category of metamaterials whose refractive indices are usually real. The abnormalities include negative refraction, unusually large refraction/deflection angle, and unusual wavelength sensitivity [14]. The proposed applications of these effects include beam deflectors [15], wavelength-division multiplexers [14, 15]. To utilize such anomalous propagation in compact devices, it is generally preferred to use a narrow beam at the entrance so that the device lateral width can be minimized. However, the anomalous propagation is usually accompanied by greater angular dispersion, which significantly exacerbates the angular divergence of a narrow beam in a metamaterial. For high index-contrast systems such as silicon-air photonic crystals, this problem can be solved through engineering the dispersion surface [16]. However, this angular divergence problem has not been analyzed in a general manner, especially for metamaterials of small index-contrasts. Note that many low-index materials such as polymers are attractive in a wide range of photonics applications because of their low fabrication/processing cost and flexible form [13]. In this work, we will start from analyzing the beam collimation condition in low index-contrast metamaterials in Section 2. Then Section 3 will present a design of a beam deflection device and address some other practical issues of low index-contrast metamaterials. Lastly, conclusions will be presented in Section 4.
2. Beam Collimation Condition in Low Index-Contrast Metamaterials
The anomalous propagation characteristics observed in these metamaterials originate from the underlying subwavelength structures. Related problems have been studied in various scenarios in other fields. Particularly, in X-ray diffraction study, a “dynamic theory” has been developed [17] to understand the beam divergence related issue for X-ray propagation in a crystal. Of particular value is the spherical wave part of the dynamic theory of X-ray diffraction. In the limit of zero beam width, the entering beam becomes a completely diverging spherical wave (a cylindrical wave in two dimensional problems), which represents the worst beam divergence scenario. This spherical wave formulation can be easily adapted to help understand the beam divergence issue in a low index-contrast metamaterial. Considering an entering beam with center wavevector 
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 and have hook-shaped interference patterns. For polymer photonic integrated circuits applications, such a triangular spread leads to significant beam divergence, which may increase device lateral dimensions and optical loss. In addition, an additional beam focuser or waveguide taper becomes necessary to couple light into an output waveguide. This increases the device complexity and size.
To overcome these issues originated from beam divergence, it is necessary to quantitatively study the beam divergence with varying structure parameters and seek approaches to minimize the beam divergence under the constraints of small index-contrast. To start, we note that in the X-ray theory, the beam is assumed to originate from a point source with a uniform angular intensity spectrum. Such an ideal simplification is not applicable to integrated optics applications where the input beam has a finite width. We have introduced a wavevector distribution function 
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Figure 1: (a) 
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3. Potential Device Application: A Beam  Deflector
A closer look of Figure 1(c) reveals an alternation of two different wave components, whose (center) wavevectors are different from the beam direction. When the beam is collimated as Figure 1(c), this can be utilized to realize low-loss wide angle beam deflection. Figure 2 presents the 2D FDTD simulation result of a wide-angle (47.3°) deflector, which essentially has the functionality of a wide-angle waveguide bend. The incident beam is a waveguide mode matched to a typical fiber mode, which has a mode width around 10 μm. The 2D square lattice metamaterial has a lattice constant 
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. The lattice constant and hole radius are relatively large to facilitate fabrication. More discussion on practical implementation and fabrication will be presented at the end of this section. High transmission and excellent mode match (see the inset of Figure 2) are achieved at the output end, giving an insertion loss less than 0.5 dB. Note that for the noncollimated case shown in Figure 1(b), because of widely spread beam (whose profile quickly deviates from Gaussian after a short propagation length) inside the metamaterial, it is very difficult to achieve a collimated deflected beam at the output and the loss is usually significantly higher. Note that for the case shown in Figure 2, the beam profile quickly stabilizes after exiting the metamaterial region. The bottom layer of the structure is intentionally designed to be incomplete. Our simulation indicates that such an incomplete layer enhances the transmission. One possible explanation is that when the beam is making a left turn, the right portion of the beam is on the “outer track” and travels a longer distance. Thus, the right portion of the beam also needs a longer interaction length in the metamaterial to complete the turn on the “outer track.” Therefore, the right portion of the metamaterial shall be relatively thicker. It is worth noting that at the output surface of the metamaterial region in Figure 2, the beam experiences a second negative refraction. The negative refractions at the front and back surfaces both contribute substantially to producing a large total beam deflection angle.



Figure 2: An ultra-compact 47.3° beam deflector (effectively a wide-angle waveguide bend). Inset indicates the output beam profile (solid curve) is well matched to the waveguide mode profile (dotted line).


Figure 3 shows the transmission loss variation with respect to two essential parameters (
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Figure 3: Loss variation with (a) wavelength and (b) polymer index.


For practical implementation of this structure, each waveguide will be a channel waveguide composed of higher index polymer core and lower index polymer cladding, as shown in Figure 4. In the metamaterial region, the core layer will be etched away; thus, the conformal nature of the top polymer cladding will likely lower the top cladding surface to the same height as the top surface of the core layer. To ensure the functionality of the metamaterial, the metamaterial region will be etched to a depth that is greater than the depth the polymer core. Note that polymer waveguides generally have fairly small refractive index-contrasts 
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 between core and cladding, and relatively large cross-sections. Here we assume a core thickness of 3 μm and a top cladding thickness of 2 μm. As such, it is estimated that we need to etch ~3 μm deep into the polymer in the metamaterial region. Although there is no vertical confinement mechanism in the metamaterial region, optical loss due to beam divergence in the vertical direction is expected to be insignificant due to the short length of the metamaterial region (~5 μm long) through which the beam travels.



Figure 4: Schematic of an example device structure (side view, not drawn to scale).


4. Conclusions
In summary, the condition for achieving well-collimated beams in a metamaterial has been analyzed. Guided by this analysis, we have designed ultra-compact, wide-angle beam deflection devices that are significantly smaller than conventional polymer integrated photonic devices. The simulations also show that these devices have a wide bandwidth and are insensitive to fabrication tolerances. A wide range of polymers can be chosen to fabricate these structures. Such polymer photonic devices are attractive for their compact size, low cost and flexible form.
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