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Abstract. 
Hyperbolic metamaterials can manipulate electromagnetic waves by converting evanescent waves into propagating waves and thus support light propagation without diffraction limit. In this paper, deep subwavelength focusing (or power concentration) is demonstrated both numerically and experimentally using hyperbolic metamaterials. The results verify that hyperbolic metamaterials can focus a broad collimated beam to spot size of ~λ 0/6 using wired medium design for both normal and oblique incidence. The nonmagnetic design, no-cut-off operation, and preferred direction of propagation in these materials significantly reduce the attenuation in electromagnetic waves.



			In conventional materials, focusing is diffraction limited due to the loss of evanescent waves which carry subwavelength information. Therefore, projecting a subdiffraction-limited image would require the recovery of the evanescent waves. The negative index material (NIM), which simultaneously has negative permittivity and negative permeability, was first theoretically studied by Veselago in 1968 [1]. Many years later, Pendry theoretically investigated that a slab of NIM can be used to make a “perfect lens” [2]. Since then, various designs have been explored, and negative refraction has been demonstrated from microwave to optical frequencies [3–9]. The realization of a lens using NIM in practice is rather difficult as negative values of 
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 are very sensitive to frequency, and ideal condition can only be satisfied at carefully selected frequencies. Some properties of the NIM are based on the resonance of the magnetic component of electromagnetic (EM) wave and thus suffer from energy loss due to the dissipation at the resonances, which reduces the resolution of an imaging system significantly [10–12]. Recently, negative refraction effect and imaging by negative refraction were proposed and demonstrated in indefinite metamaterials [13–22]. Indefinite metamaterials are anisotropic material, in which one or more components of the permittivity tensor have negative sign while others are positive, which results in hyperbolic dispersion relation. These materials are therefore also called hyperbolic metamaterials (HMMs). In a two-dimensional imaging system (assuming that the material is nonmagnetic), the dispersion relation can be expressed as 
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			where ω is angular frequency, and c is the speed of light in free space while 
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 are the wavenumbers (or spatial frequencies) in the transverse direction x, propagation direction z, and free space, respectively. Compared with the circular dispersion relation in a conventional isotropic material (Figure 1(a)) and elliptical relation (Figure 1(b)) in anisotropic material with finite permittivity (
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), the dispersion curve for an indefinite metamaterial (
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) is hyperbolic as shown in Figure 1(c). From (1), we have
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			For an elliptically dispersive material there is a theoretical cutoff on the spatial frequency vector while on the other hand there is no limit in dispersion relation of a hyperbolically dispersive material. Assuming that the optical axis is along the z direction, the transfer function for such a system is given by 
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. This means that the HMM can convert the evanescent waves in conventional media into propagating waves. The losses in the HMM also play an important role in the performance as different k components may have different propagation lengths in a HMM; thus the k vectors attenuate differently.
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(c)
Figure 1:  (a) Equifrequency surface diagram for an isotropic medium (
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). (b) Equifrequency surface diagram for an anisotropic medium (
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). (c) Equifrequency surface diagram for an indefinite medium (hyperbolic) with (
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Furthermore, light inside a HMM propagates along some preferred directions [13]. From the dispersion diagram of a HMM (Figure 1(c)), the angle of propagation to z-axis can be calculated as 
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