Research Article

Synthesis, Characterization, and Photocatalytic Activity of TiO₂ Microspheres Functionalized with Porphyrin

Jin-Hua Cai,1,2 Jin-Wang Huang,2 Han-Cheng Yu,2 and Liang-Nian Ji2

1 College of Chemistry and Chemical Engineering, Jinggangshan University, Jian 343009, China
2 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, State Key Laboratory of Optoelectronic Material and Technologies, Sun Yat-Sen University, Guangzhou 510275, China

Correspondence should be addressed to Jin-Hua Cai, caijhua@mail3.sysu.edu.cn and Jin-Wang Huang, ceshjw@163.com

Received 3 January 2012; Accepted 2 February 2012

Academic Editor: Stéphane Jobic

Copyright © 2012 Jin-Hua Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to utilize visible light more efficiently in the photocatalytic reaction, TiO₂ microspheres sensitized by 5-(4-allyloxy)phenyl-10,15,20-tri(4-methylphenyl)porphyrin (APTMPP) were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and UV-vis diffuse reflectance spectroscopy, and so forth. The characterization results indicated that APTMPP-MPS-TiO₂ was composed of the anatase crystal phase. The morphology of the composite materials was spheriform with size of 0.3–0.7 μm and the porphyrin was chemisorbed on the surface of TiO₂ through a Si–O–Ti bond. The photooxidation of α-terpinene was employed as the model reaction to evaluate the photocatalytic activity of APTMPP-MPS-TiO₂ microspheres under visible light. The results indicated that the photodegradation of α-terpinene was significantly enhanced in the presence of the APTMPP-MPS-TiO₂ compared with the nonmodified TiO₂ under visible light.

1. Introduction

The application of semiconductors in heterogeneous photocatalysis to eliminate various pollutants in aqueous systems has gained significant attention in the last decade [1–3]. TiO₂ is considered a preferred and potential semiconductor photocatalytic material for applications requiring antimicrobial and sterilizing characteristics because some of its forms have reasonable photoactivity. Besides, it has many advantages such as inexpensiveness, easy production, (photo)chemical and biological stability, and innocuity to the environment and to human beings. It has been used for water remediation being effective for the photodegradation of many harmful organic pollutant to innocuous inorganic species [4–7]. However, some drawbacks limit its application especially in the large-scale industry. One important disadvantage of pure titania is characterized by low quantum efficiency because of high bandgap energy (≈3.2 eV) and high rate of e⁻ and h⁺ recombination. The light absorption region of anatase-type TiO₂ particles does not fit with the solar spectrum because the solar energy above 3.0 eV (λ ≤ 410 nm) only makes up less than 5% of whole sunlight. Therefore, the development of low-bandgap photoactive material, the so-called visible light photocatalyst, is strongly urged for solving environmental problems. To overcome this problem, different approaches have been proposed in the literature in which the response of the semiconductor was extended toward the visible region. Narrowing the bandgap is an effective way to enhance the photocatalytic performance of titania, and this can be done with metals and nonmetals ion doping [8–10], ion implantation, and photosensitization [11–15]. Among them, dye sensitization is considered to be an efficient method to modify the photoresponse properties of TiO₂ particles [16–18]. The dyes used are erythrosine B, rose bengal, porphyrin, and so forth. Similarly to other photosensitizers, porphyrins are recognized to be the most promising sensitizers. They not only can be involved in the reaction mechanism by transferring electrons to the conduction band of TiO₂ or to adsorbed O₂, but also they can cooperate with TiO₂ participating in photooxidation reactions by means of a direct activation of O₂ [19–24]. Recently, the photocatalytic activity of TiO₂ powders...
impregnated with copper porphyrins used as sensitizers for the decomposition of 4-nitrophenol has been investigated [25–28]. But some of them suffer from a reversible binding and the support is broken during the washing of the solvent under working conditions. A useful means to avoid these limitations is to establish the stable covalent binding between porphyrins and TiO$_2$ samples.

We recently reported efficient photooxidations using heterogeneous photosensitizers prepared by the covalent immobilization of metal-free porphyrins on silica microspheres [29]. To further study the photosensitization of metal-free porphyrins, one novel metal-free porphyrin derivatives, that is, 5-(4-allyloxy)phenyl-10,15,20-tri(4-chlorophenyl)porphyrin was synthesized and characterized. The catalytic activity of metal-free porphyrin complex covalent binding to TiO$_2$ is studied upon irradiation the sample with visible light. The oxidation of α-terpinene has been chosen as a model reaction. The purpose of this paper is to study the structural relationship between porphyrin complex and TiO$_2$ in the prepared composite by sol–gel processing. Furthermore, the stability of photocatalysts was also investigated and discussed.

2. Experimental Section

2.1. Materials and Chemicals. 5-(4-hydroxy)phenyl-10,15,20-tri(4-methylphenyl)porphyrin (HPTMPP) was synthesized in our laboratory according to [30, 31], 3-mercaptopropyltrimethoxysilane (MPS), and allyl bromide (96%) were purchased from Guangzhou Jun-ye Chemistry plant. α-terpinene was obtained from Aldrich without further purification. Silica gel used to purify porphyrin by chromatograph was obtained from Qingdao. Toluene and acetonitrile were dried with calcium hydride and redistilled. All other reagents and solvents were obtained from commercial sources and used without further purification.

2.2. Physical Measurements. The scanning electron microscopy (SEM) was performed with a JSM-6330F Field Emission Scanning Electron Microscope. The XRD curves were got from Rigaku D/max 2550 VB/PC (Japan). The surface property of samples was characterized by X-ray photoelectron spectroscopy (XPS) on a PerkinElmer PHI 1600 ESCA system. The specific surface areas of the samples were measured using nitrogen adsorption method at 77 K and the Brunauer-Emmett-Teller (BET) analysis using a Flow Sorb 2300 apparatus (Micromeritics International). The pore size distributions were calculated with the DFT Plus software (Micromeritics), applying the Barrett-Joyner-Halenda (BJH) model considering cylindrical geometry of the pores. Thermal analysis was performed with a Netzsch TG-209 Thermogravimetric Analyzer. UV-vis and IR spectra were recorded on a 300 MHz Bruker-AMX spectrophotometer with tetramethylsilane (TMS) as internal reference. Mass spectrometry analysis was performed on a Thermo LCQDECA-XP spectrometer. An iodine tungsten lamp (200W, Shanghai), ITL, was used as a light source. A distance of about 5 cm between the lamp and reactor was maintained.

2.3. Synthesis of TiO$_2$ Microspheres Functionalized with APTMPP (APTMPP-MPS-TiO$_2$). The strategy to prepare TiO$_2$ microspheres functionalized with APTMPP (APTMPP-MPS-TiO$_2$) is shown in Scheme 1.

2.3.1. Synthesis of APTMPP-MPS. APTMPP-MPS was synthesized by the reaction of 5-(4-hydroxy)phenyl-10,15,20-tri(4-methylphenyl)porphyrin (HPTMPP) with 3-Mercaptopropyltrimethoxysilane (MPS), and APTMPP was prepared by the method similar to a previously reported method [32]. A mixture of 5-(4-hydroxy)phenyl-10,15,20-tri(4-methylphenyl)porphyrin (HPTMPP) (0.6 mmol), allyl bromide (0.8 mmol), and anhydrous K$_2$CO$_3$ (1.5 g) in DMF (40 mL) was stirred for 12 h at room temperature. The reaction mixture was poured into water (150 mL) and filtered. The residue was submitted to column chromatography on silica gel using the chloroform as an eluent. The first band was collected and the solvent was evaporated. Purple solid was obtained in 80% yield. ES-MS [CHCl$_3$, m/z]: 713[M$^+$]. 1H NMR (300 MHz, CDCl$_3$), d: −2.68 (s, 2H, NH pyrrole), 8.88 (s, 8H, β-pyrroles), 8.11 (d, 8H, 2,6-phenyl), 7.61(d, 6H, 3,5-phenyl), 7.29 (d, 2H, 3,5-phenyl), 6.21–6.34 (t, 1H, H$_2$), 5.62 (d, 1H, H–C=C–), 5.45 (1H, H–C=C–), 4.81 (2H, =C–CH$_2$–O), 2.73 (s, 9H, –CH$_3$).

A mixture of MPS (40 mg, 0.2 mmol), APTMPP (143 mg, 0.2 mmol), toluene (15 mL), and 10 mg 2,2-azo-bis-isobutyronitrile (AIBN) was degassed and sealed under nitrogen. Then, the solution was stirred at 75°C. The progress of the reaction was monitored by TLC (chloroform as eluent). After completion of the reaction, the solution was removed in vacuo and the pasty residue was washed with cold hexane, then a purple oil of APTMPP-MPS was obtained. ES-MS [CHCl$_3$, m/z]: 908[M$^+$]. 1H NMR (300 MHz, CDCl$_3$), d: −2.71 (s, 2H, NH pyrrole), 8.87 (s, 8H, β-pyrroles), 8.10 (d, 8H, 2,6-phenyl), 7.55 (d, 6H, 3,5- phenyl), 7.28 (d, 2H, 3,5- phenyl), 4.35 (2H, H$_2$), 3.63 (9H, H$_3$), 2.89 (2H, H$_2$), 2.73 (s, 9H, –CH$_3$), 2.35 (2H, H$_4$), 2.27 (2H, H$_5$), 1.30 (2H, H$_3$), 0.89 (2H, H$_2$).

2.3.2. Synthesis of APTMPP-MPS-TiO$_2$. TiO$_2$ microspheres were prepared by sol–gel processes [33]. 10 mL of Ti(OBu)$_4$ is dissolved in 10 mL of anhydrous C$_2$H$_5$OH (99.7%) to produce Ti(OBu)$_4$-C$_2$H$_5$OH solution. Meanwhile, 5 mL of water and 3 mL ammonia were added to another 10 mL of anhydrous C$_2$H$_5$OH in turn to form an ethanol-NH$_3$-water solution. After the two resulting solutions are stirred for 30 min, respectively, the Ti(OBu)$_4$-C$_2$H$_5$OH solution is slowly added dropwise to the ethanol-NH$_3$-water solution under vigorously stirring to carry out a hydrolysis. Thus, a semitransparent sol is gained after continuously stirring for 1 h. Then, 2 mL ammonia was added into the mixture.
and then dried in a vacuum and white powder was obtained. To complete the surface modification with APTMPP-MPS, 40 mg APTMPP-MPS was dissolved in 30 mL of CHCl₃ and 1 g finely TiO₂ powder was transferred into a weighing bottle. Subsequently, After ultrasonication for 2 min and stirring for 20 min vigorously, the mixture bottle was kept at 80°C in the water bath to vaporize the liquid under stirring. The product was washed with CHCl₃ in a Soxhlet extractor overnight to remove unbound APTMPP. Finally, the solids were dried at 110°C for 12 h. Unbound APTDCPP was quantified through spectrophotometric measurement at 518 nm, by using a calibration curve obtained by using a suitably diluted solution. Thus, the amounts of bound porphyrins were determined by difference between the two measurements. APTMPP in APTMPP-MPS-TiO₂ was 0.0202 mmol/g obtained by this method.

2.4. Photocatalytic Activity Tests. Photooxidation experiments of α-terpinene were carried out in a 30 mL self-designed jacketed reactor maintained at a certain temperature by circulation of thermostated water [29, 34]. In a typical experiment, aqueous slurry were prepared by adding a certain amount of TiO₂ or APTMPP-MPS-TiO₂ to 20 mL solution containing α-terpinene at 3.7 × 10⁻⁴ M. Irradiations were performed with a 200 W iodine tungsten lamp in which the UV light was filtered by a 410 nm cut filter. The aqueous slurry were stirred and bubbled with humid oxygen for 10 min prior to the irradiation. At 10 min intervals, the dispersion was extracted and centrifuged to separate the photocatalyst particles. The concentration of α-terpinene was analyzed by UV-vis spectroscopy. The photodegradation percentage of α-terpinene can be calculated using the changes of the absorbance of α-terpinene at 265 nm. The reaction products were purified by extraction from the reaction mixtures. ESMS [CHCl₃, m/z]: 168 (M⁺). δ 0.98–1.00 (d, 6H CH₃), 1.36 (s, 3H, CH₃), 1.51–1.56 (2H, methylene, CH₂), 1.89–2.04 (2H, methylene, CH₂), 1.93 (H, isopropyl, CH), 6.37–6.49 (d, 4H, olefinic, CH) [35].

2.5. Approach of Calculation. The degradation rate of α-terpinene in the reaction process could be calculated by the following formula:

$$\text{decolorization rate} = \frac{(A_0 - A_t)}{A_0} \times 100\%,$$

where A_t is the absorbance of α-terpinene measured at 265 nm at time t, and A_0 is the initial absorbance prior to reaction. The residual concentrations of α-terpinene could be calculated by the following formula:

$$C_t = \frac{A_t}{A_0} \times C_0,$$

where C_t is residual concentration of α-terpinene at time t and C_0 is the initial concentration of α-terpinene.

3. Results and Discussion

3.1. Preparation and Characterization of APTMPP-MPS-TiO₂. The strategy used to prepare TiO₂ microspheres functionalized with porphyrin is shown in Scheme 1. The porphyrin was immobilized on the TiO₂ microspheres...
by the condensation reaction of APTMPP-MPS and TiO$_2$ microspheres.

The morphology of TiO$_2$ and APTMPP-MPS-TiO$_2$ was obtained by scanning electron micrograph as shown in Figure 1. The micrograph shows irregularly shaped spherical particles with loose and discrete structure. Distribution of particle size of TiO$_2$ and APTMPP-MPS-TiO$_2$ over a broad range was observed with the average size of 0.7 μm. No change has happened in the diameter of TiO$_2$ after APTMPP bonding on it.

The UV-vis DRS spectra of APTMPP-MPS-TiO$_2$ and pure TiO$_2$ are shown in Figure 2. It is worth noting that no shift of the bandgap edge of TiO$_2$ can be observed in loaded sample. APTMPP-MPS-TiO$_2$ exhibits typical porphyrin absorption features with a strong Soret band at 419 nm and moderate Q bands at 519, 552, 595, and 650 nm, the strong band appears at 419 nm arising from the transition of $a_{1u}(\pi)\rightarrow e_g(\pi)$, and the less intense bands in the 500–650 nm region corresponding to the $a_{2u}(\pi)\rightarrow e_g(\pi)$ transition attributed to porphyrin [36] while there is no absorption above 400 nm for pure TiO$_2$. It can be found that APTMPP-MPS-TiO$_2$ composites exhibit a broader absorption range than pure TiO$_2$.

Figure 3 shows the FT-IR spectra of APTMPP-MPS-TiO$_2$. The peak around 1630 cm$^{-1}$ is due to the bending vibration of the O–H bond of chemisorbed water, and the peak around 3400 cm$^{-1}$ is due to the stretching mode of the O–H bond of free water. The IR band at 400–850 cm$^{-1}$ corresponds to the Ti–O–Ti stretching vibration mode in crystal TiO$_2$. Unlike the pure TiO$_2$ [37], the modified TiO$_2$ samples have a new broad IR band at about 928 cm$^{-1}$ corresponding to the vibrations of Ti–O–Si bonds [38]. The existence of Ti–O–Si bond verifies the formation of chemical bonding between titania and organic component. That at around 1000 cm$^{-1}$ is assigned to symmetric and asymmetric Si–O–Si stretching vibrations in siloxane network. Some new bands between 1300 and 1400 cm$^{-1}$ attributed to the pyrrole C=N stretching also indicate that the presence of porphyrins in the hybrid materials.
Figure 4 shows the TG and DTG for APTMPP-MPS-TiO₂ sample. From the TG-DTG analysis of the APTMPP-MPS-TiO₂, the weight of particles sharply decreases up to 450 °C and slowly decreases from 450 to 800 °C. TG-DTG analysis of the sample also shows the endothermic peak at 100 °C and two exothermic peaks at 290 and 450 °C. It is thought that the peak at 100 °C is due to free adsorbed water, and the peak at 290 °C is due to the decomposition of the porphyrin and residual hydroxy group. In addition, the peak at 450 °C is ascribed to the crystallization of the amorphous phase into the anatase phase. Above 650 °C, it can be assumed that the product completely transforms into the anatase phase because there is no change in particle weight.

From the X-ray diffraction patterns of the samples shown in Figure 5, we can see only that the anatase crystalline phase was present in both samples. The major phase of the photocatalyst is pure anatase without brookite. No rutile peaks were observed for all titania. The peaks appearing at 2θ = 25.3°, 38.7°, 47.6°, and 54.8° are attributed to anatase phase. It was confirmed that Ti(OC₄H₉)₄ was oxidized into TiO₂, and the formed TiO₂ was mostly anatase by the calcination in the air. In addition, immobilization of APTMPP-MPS on TiO₂ has little effect on the interlayer spacing. This demonstrates that the porphyrins grafted on TiO₂ surface does not crystallize.

Figure 6 shows the nitrogen adsorption-desorption curves measured by BET method and the pore-size distribution calculated from desorption isotherms of APTMPP-MPS-TiO₂ prepared by sol-gel method. As seen, the isotherm of the modified sample shows a combination of type I [39]. At low relative pressure, the isotherm exhibits high adsorption, indicating that as-prepared samples contain micropores (type I). While at high relative pressure from 0.6 to 1.0, the curve exhibits a little bigger adsorption, indicating that the bigger crystallites aggregation form bigger pores. The BET surface area and specific pore volume of the composite are 266.3 m² g⁻¹ and 0.23 cm³ g⁻¹. Figure 7 shows the pore size distribution curve of the corresponding products by the BJH method. It can be seen that the diameter of pore ranged from 1.8 to 4.0 nm, and the largest pore diameter was 2.1 nm.

In order to analyze the chemical composition of the APTMPP-MPS-TiO₂, we performed X-ray photoelectron spectroscopy (XPS) analyses. Figure 8 shows XPS survey spectrum for the surface of APTMPP-MPS-TiO₂ particles. The XPS spectrum reveals characteristic peaks from Ti, C, Si, S, N, and oxygen. Parameters of the XPS peak for Ti(2P 3/2) and O(1S) are listed in Table 1. The peaks of APTMPP-MPS-TiO₂ are shifted to higher binding energies by 0.28 and 0.62 eV for Ti(2P 3/2) and O(1S) than TiO₂ [40], respectively. The increase of binding energy for Ti(2P 3/2) and O(1S) while APTMPP-MPS adsorbed on TiO₂ indicates chemical bonding at the interface of the silica coating layer and titania particle surface. Figure 9 shows the XPS spectra of O(1S) peak for APTMPP-MPS-TiO₂. The shape of a wide and asymmetric peak of XPS O(1S) spectra indicated that there would be more than one chemical state according to the binding energy. It includes crystal lattice oxygen (Oₐ–O or Oₐ–O) and chemisorbed oxygen (Oₐ–H). The main contribution is attributed to Ti–O in TiO₂, and the other two kinds of oxygen contributions can be ascribed to the –OH in Ti–OH and the Si–O in SiO₂, respectively [41, 42]. Usually, hydroxyl groups measured by XPS are ascribed to the chemisorbed water. As seen, the hydroxyl content increased in the sample. This is probably due to the fact that the films easily adsorb water vapor in air, leading to the formation of hydroxyl on the films. This also corresponds to the results of previous TG and FTIR.

3.2. Photocatalytic Activity of APTMPP-MPS-TiO₂

3.2.1. α-Terpinene Photooxidation. The photocatalytic activities for the degradation of α-terpinene under visible light irradiation using prepared photocatalysts were tested. α-Terpinene degradation occurred promptly in the visible irradiation under the adding of the APTMPP-MPS-TiO₂ as confirmed by the UV-vis spectra changes of APTMPP-MPS-TiO₂ (Figure 10). The absorption spectrum of α-terpinene in ethanol was characterized by the band of 265 nm in...
Table 1: XPS data for APTCPP-MPS-TiO₂.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Binding energy (eV)</th>
<th>FWHM</th>
<th>Content (atom%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti2p3/2</td>
<td>458.76</td>
<td>1.16</td>
<td>16.56</td>
</tr>
<tr>
<td>C1s</td>
<td>284.82</td>
<td>1.87</td>
<td>27.99</td>
</tr>
<tr>
<td>O1s</td>
<td>530.28</td>
<td>1.38</td>
<td>49.41</td>
</tr>
<tr>
<td>Si2p</td>
<td>101.48</td>
<td>1.36</td>
<td>1.96</td>
</tr>
<tr>
<td>S2p</td>
<td>163.29</td>
<td>1.97</td>
<td>1.62</td>
</tr>
<tr>
<td>N1s</td>
<td>401.94</td>
<td>1.51</td>
<td>6.46</td>
</tr>
</tbody>
</table>

FWHM: full width at a half of the maximum height of peaks. BE: binding energy.

Figure 6: Nitrogen adsorption isotherms of APTMPP-MPS-TiO₂.

Figure 7: Pore diameter distribution of APTMPP-MPS-TiO₂.

Figure 8: XPS survey spectrum for the surface of APTMPP-MPS-TiO₂.

Figure 9: XPS spectra of O1s peak for APTMPP-MPS-TiO₂.

Figure 10: The intensity of the 265 nm absorption band decreased rapidly under visible light irradiation, indicating the degradation of α-terpinene in the presence of APTMPP-MPS-TiO₂ microspheres. For comparison, blank experiments, in which the photooxidation experiment of α-terpinene was performed in dark in the presence of APTMPP-MPS-TiO₂ or irradiated with visible light with TiO₂, were done and no obvious catalytic results were observed. It believes that both visible light and APTMPP-MPS-TiO₂ were indispensable to the photooxidation of α-terpinene.

A tentative photocatalytic mechanism of APTMPP-MPS-TiO₂ was deduced and shown in Scheme 2. When the visible light irradiates on the surface of APTMPP-MPS-TiO₂, the porphyrin molecules adsorbed on the surface of TiO₂ can be excited by visible light, and then the photoinduced electrons inject into the conduction band of TiO₂. Subsequently, the reactive electrons in the conduction band can reduce O₂ adsorbed on the surface of TiO₂ to O₂⁻, which can further transform into H₂O₂ and •OH, resulting in the oxidation of α-terpinene.
3.2.2. Effect of Catalyst Amount on the Photocatalytic Activity. The photocatalytic activities are also influenced by the catalyst amount, as shown in Figure 11. It reveals that APTMPP-MPS-TiO₂ hybrids have higher photocatalytic activity than that of only TiO₂ particles and the photooxidation efficiency increases with an increase in APTMPP-MPS-TiO₂ concentration up to 2.0 mg/mL and then remains almost constant above a certain level. This has been explained as the concentration of the APTMPP-MPS-TiO₂ increased; the number of photons absorbed and the number of α-terpinene molecules adsorbed increased with respect to an increase in the number of APTMPP-MPS-TiO₂ molecules. The density of the molecule in the area of illumination also increases and thus the rate gets enhanced. After a certain level, the dye
3.2.3. Stability and Reusability of the Catalysts. For the assessment of catalyst stability and reusability, APTMPP-MPS-TiO₂ sample was used in the degradation of different solutions of α-terpinene in four consecutive experiments. Catalyst was recovered using centrifuge during sampling and after each experiment. The UV-vis and IR spectra as well as the morphology of the recovered hybrid material did not show any substantial change compared to fresh material. All reaction solutions analyzed after catalytic reactions did not show the characteristic soret band of porphyrins, which indicated that no APTMPP lost from TiO₂. Using the recovered APTMPP-MPS-TiO₂ as catalyst to catalyze α-terpinene photooxidation in the same conditions, they retain their high catalytic activity after being recycled four times. For example, the photooxidation percentages of α-terpinene for four consecutive experiments are as follows: 87, 84, 80, 79, and 81% in the same conditions (1 mg/mL APTMPP-MPS-TiO₂, 3.7 × 10⁻⁴M α-terpinene, 60 min). These results indicate that APTMPP-MPS-TiO₂ has highly chemical stability and is recoverable and reusable.

4. Conclusions

In this work, novel APTMPP-MPS-TiO₂ hybrids with high photocatalytic activity were synthesized by immobilizing metal-free porphyrin on titania sol particles. The metal-free porphyrin can extend the light absorption of TiO₂ into visible region and make α-terpinene be effectively photooxidated under visible light. The degradation reaction process of α-terpinene completely obeys the first-order law. Furthermore, the photocatalysts are stable, harmless, and they can be reused with high efficiency.

Acknowledgments

The authors are grateful to the supports of Guangzhou Municipality Science and Technology Bureau of China, the National Natural Science Foundation of China and National Key Foundation Research Development Project (973) Item of China (no. 2007 CB815306), the foundation for Doctors of Jianggangshan University (JZ10044), the Education Department Foundation of the Guangxi Zhuang Autonomous Region of China (201012M5203), the Education Department Foundation of the Jiangxi Province (GJJ12472), and the Young Science Foundation of Guangxi Province of China (0832090).

References

