Methodology Report

Investigation on I-V for Different Heating Temperatures of Nanocomposited MEH-PPV:CNTs Organic Solar Cells

M. S. P. Sarah, F. S. S. Zahid, and M. Rusop

NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA Shah Alam, 40450 Selangor, Malaysia

Correspondence should be addressed to M. S. P. Sarah, puteri.ajip@yahoo.com and M. Rusop, nanouitm@gmail.com

Received 27 September 2011; Accepted 16 January 2012

Academic Editor: Bhushan Sopori

Copyright © 2012 M. S. P. Sarah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper discussed the effect of different thermal evaporation treatments for nanocomposited MEH-PPV:CNTs thin films towards the performance of organic solar cells. The configuration of the organic solar cells is ITO/MEH-PPV:CNTs/Au. The heating temperature was varied from, as deposited, 50°C, 75°C, and 100°C. From the results, we observed that the efficiency increase slightly before decreasing back at 100°C. The highest efficiency was solar cells heated at 75°C with efficiency 0.001% which is supported by the I-V characteristics and also by the absorption spectra.

1. Introduction

Organic solar cells are gaining much interest in this energy-saving era, due to their simple and low cost fabrication process. However, the efficiency of organic solar cells is still low. Even though much research is done on blending organic material with a nonorganic material, very rare is done on blending polymer with carbon nanotubes (CNTs) because of the dispersity problem.

Even if CNTs have dispersion problems, it still has gained a lot of attention due to its unique properties. The uniqueness of the nanotube arises from its structure, which is the helicity in the arrangement of the carbon atoms in hexagonal arrays on their surface honeycomb lattices [1]. CNTs have high surface area (~1600 m²/g) that offers tremendous opportunity for exciton dissociation [2]. CNTs can be metallic or semiconducting which is determined by the chirality of the nanotube. The diameter of the CNTs is an important property as it has a direct correlation with the optical band gap. The optical absorbance of CNTs is affected by both structure and dimension of the nanotube [3].

CNTs properties like high electron conductivity, high thermal conductivity, and robustness are flexible by nature and are assumed to improve the properties of a conjugated polymer. Basically, conjugated polymer has high absorption coefficient in the visible region (~10⁻⁵ cm⁻¹), charge generation under illumination, and easy deposition on substrates even at room temperature [4], which makes them well-liked in recent research. Poly[2-methoxy-5-(2′-ethyhexoxy-p-phenylene vinylene] (MEH-PPV) is a commonly used conjugated polymer due to its solubility and absorption in the visible range [5]. The structure of electronic states of conjugated polymers is such that several types of excited states (singlet and triplet excitons) and charges (e.g., polarons) can be easily created by visible light excitation [6]. MEH-PPV is a conjugated polymer which is known as a novel class of material that combine the optical and electronic properties of semiconducting with the processing advantages and mechanical properties of plastics. It is found that the corresponding property of the matrices could be enhanced in the presence of homogeneously dispersed CNTs [7].

In order to solve the issue of undispersity of CNTs, the increase percentage of the composition is presented in this work. However, so far the agglomeration of the undisperse CNTs still exists and they are still unevenly scattered. Photoconductivity of MEH-PPV is often limited by low absorption. Therefore, in this paper we fabricate organic cells as shown in Figure 2 and discuss on the heating
annealed at 450 °C. Before adding the CNTs to the polymer solution, it was heated on a hot plate stirrer for 5 minutes to vaporize the solvent at 50, 75, and 100 °C. The detailed descriptions of the samples are shown in Table 1. To compare the performance of the devices, as deposited, and undergo heat treatment, one device is fabricated without undergoing the treatment process. The thickness of the blended device was in the range of 50 to 90 nm. Film thickness is important in determining the efficiency of organic solar cells due to the face that it has short diffusion length which leads to recombination. Therefore, it will yield low photocurrent and gives less energy conversion efficiency. The thickness of the nanocomposited MEH-PPV:CNTs is measured using surface profiler Veeco Dektak 750. A schematic diagram of the present solar cells is shown in Figure 1. The Au was deposited on another ITO using sputter coater so that the blended thin film was sandwiched between Au and ITO electrode.

The current density-voltage (J-V) characteristics of the solar cells were measured both in dark and under illumination at 100 mW/cm² by using an AM 1.5 solar simulator CEP 2000 Spectral Sensitivity Analyzing System. The solar cells were illuminated through the side of ITO substrates, and the illuminated areas were 0.01 cm².

UV-visible absorption spectra were obtained by using Perkin Elmer Lambda 750 UV/Visible Spectrometer to analyze the absorbance and transmittance.

Table 1: Description of samples.

<table>
<thead>
<tr>
<th>Name of sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₀</td>
<td>As deposited sample</td>
</tr>
<tr>
<td>S₅₀</td>
<td>Sample heated for 5 minutes at 50°C</td>
</tr>
<tr>
<td>S₇₅</td>
<td>Sample heated for 5 minutes at 75°C</td>
</tr>
<tr>
<td>S₁₀₀</td>
<td>Sample heated for 5 minutes at 100°C</td>
</tr>
</tbody>
</table>

Figure 1: Structure of organic solar cell.

2. Methodology

The compositions of CNTs are fixed at 60 wt%. The CNTs used are commercially available with purification >95%. Before adding the CNTs to the polymer solution, it was annealed at 450°C for 30 minutes to ensure that all of the impurities in the CNTs are totally removed. The solvent used for dissolving the MEH-PPV powder is tetrahydrofuran (THF).

A thin layer of nanocomposited MEH-PPV blend CNTs was spin-coated with 2000 rpm for 1 minute on indium tin oxide (ITO) size 2 cm × 2 cm. The deposition was done at room temperature under normal pressure. After the deposition is done, the nanocomposited on the ITO was heated on a hot plate stirrer for 5 minutes to vaporize the solvent at 50°C, 75°C, and 100°C. The detailed descriptions of the samples are shown in Table 1. To compare the performance of the devices, as deposited, and undergo heat treatment, one device is fabricated without undergoing the treatment process. The thickness of the blended device was in the range of 50 to 90 nm. Film thickness is important in determining the efficiency of organic solar cells due to the face that it has short diffusion length which leads to recombination. Therefore, it will yield low photocurrent and gives less energy conversion efficiency. The thickness of the nanocomposited MEH-PPV:CNTs is measured using surface profiler Veeco Dektak 750. A schematic diagram of the present solar cells is shown in Figure 1. The Au was deposited on another ITO using sputter coater so that the blended thin film was sandwiched between Au and ITO electrode.

The current density-voltage (J-V) characteristics of the solar cells were measured both in dark and under illumination at 100 mW/cm² by using an AM 1.5 solar simulator CEP 2000 Spectral Sensitivity Analyzing System. The solar cells were illuminated through the side of ITO substrates, and the illuminated areas were 0.01 cm².

UV-visible absorption spectra were obtained by using Perkin Elmer Lambda 750 UV/Visible Spectrometer to analyze the absorbance and transmittance.

3. Results and Discussions

3.1. Electrical Properties. The measured current-voltage (I-V) characteristics of a MEH-PPV:CNTs organic solar cells in dark and under illumination are shown in Figures 2(a), 2(b), 2(c), and, 2(d), respectively, where else Figure 2(e) shown the comparison for I-V characteristic under illumination for different thermal evaporation temperature. It can be seen that the I-V curve form Schottky contact when Au was used as the metal contact. The metal-semiconductor (M-S) contact in which \(\Phi_M > \Phi_S \) is called a Schottky barrier diode where there is nonlinear current flow in the device. Because the current flows easily in one direction but not in the other, it is a rectifying contact. The explanation concerning this issue is that Au has work function value higher than the organic-inorganic blend. We also assumed that the Schottky formation is based on solvent used to dissolve the MEH-PPV. Naturally, MEH-PPV is a p-type material but in this paper, MEH-PPV acts as electron acceptor (n-type) and CNTs act as electron donor (p-type). The type of MEH-PPV depends on the solvent used to dissolve the polymer [9]. The Schottky formation can also be regarded as the CNTs being the metallic material and the MEH-PPV is the semiconducting part. Metallic CNTs conduct electricity easily because many electrons have easy access to adjacent conduction states.

It can be seen in Figures 2(a), 2(b), 2(c), and 2(d) that the I-V curve showed insignificant changes under illumination condition as compared to in dark due to the samples are sensitive to light. There is only a slight change for both conditions in dark and under illumination due to CNTs structure that is not compatible with the MEH-PPV polymer chain [10]. However, devices consisting MEH-PPV only show a shorter lifetime compared to organic solar cells fabricated with MEH-PPV blend CNTs [11]. Even though the current shows not much difference between the as deposited solar cell. This is due to its high absorbance which is shown in Figure 5, later. The increment of the current from as S₀ to S₇₅ shows the highest current under illumination condition compared to the as deposited solar cell. This is due to its high absorbance which is shown in Figure 5, later. The increment from as S₀ to S₇₅ implies that as the temperature is increased, more charge carriers overcome the activation energy barrier and participate in the electron movement [13].

The measured current density-voltage (J-V) characteristic of a nanocomposited MEH-PPV:CNTs structure...
Figure 2: $I-V$ for organic solar cells with different thermal treatment: (a) S₀, (b) S₅₀, (c) S₇₅, (d) S₁₀₀, and (e) comparison for $I-V$ under illumination for (nanocomposited MEH-PPV:CNTs as deposited, 50°C, 75°C, and 100°C.

(a) As deposited
(b) 50 degree
(c) 75 degree
(d) 100 degree
Figure 3: Measured current density-voltage (J-V) characteristics for nanocomposited MEH-PPV:CNTs at different heating temperature.

Figure 4: FESEM images of nanocomposited MEH-PPV:CNTs for (a) untreated, (b) treated.

Figure 5: Absorbance spectra for nanocomposited MEH-PPV:CNTs for different heating temperature.
under illumination are shown in Figure 3. Photocurrent of 0.052 mA/cm² is observed under illumination for S75 which is the highest as compared to the other solar cell. This support the assumption where absorption of light in the MEH-PPV:CNTs, followed by the separation of carriers at the interface. Where else the lowest photocurrent is shown for S100 with 0.029 mA/cm². This occurred due to the degradation of the MEH-PPV emission properties [14].

Table 2. Measured parameters of the solar cells.

<table>
<thead>
<tr>
<th></th>
<th>As deposited</th>
<th>50°C</th>
<th>75°C</th>
<th>100°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc (V)</td>
<td>0.097</td>
<td>0.094</td>
<td>0.091</td>
<td>0.079</td>
</tr>
<tr>
<td>Jsc (mA/cm²)</td>
<td>0.033</td>
<td>0.031</td>
<td>0.052</td>
<td>0.029</td>
</tr>
<tr>
<td>FF</td>
<td>0.243</td>
<td>0.269</td>
<td>0.229</td>
<td>0.255</td>
</tr>
<tr>
<td>η (%)</td>
<td>0.0007</td>
<td>0.0008</td>
<td>0.001</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

4. Conclusion

It can be concluded that MEH-PPV:CNTs nanocomposite shows a Schottky contact when Au is used as the metal contact. There is a slight change for I-V in dark and under illumination condition which shows that CNTs influence the behaviour of the conjugated polymer. The highest I-V is shown for sample undergoes heat treatment at 75°C. This is supported by the highest absorbance also occurred at 75°C. At 100°C, the nanocomposited MEH-PPV:CNTs was not capable to perform due to its decrement in its photamplifier properties. From the surface morphology images, the dispersion of CNTs in the polymer matrix also does not show remarkable results that will influence the overall results.

Acknowledgments

The authors would like express their deepest appreciation to Research Management Institute UiTM (600-RMI/ST/DANA 5/3/Dst (399/2011), MOSTI E-Science Grant (06-01-01-SF0328) and MOHE for the financial support. Special thanks to staff of NANO-ElecTronic Centre, Faculty of Electrical Engineering, UiTM Shah Alam.

References

Submit your manuscripts at http://www.hindawi.com