Research Article

Love Wave Ultraviolet Photodetector Fabricated on a TiO$_2$/ST-Cut Quartz Structure

Walter Water, Yi-Shun Lin, and Chi-Wei Wen

1 Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan
2 Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan

Correspondence should be addressed to Walter Water; wwater@nfu.edu.tw

Received 30 May 2014; Accepted 20 June 2014; Published 10 July 2014

Copyright © 2014 Walter Water et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A TiO$_2$ thin film deposited on a 90° rotated 42°45′ ST-cut quartz substrate was applied to fabricate a Love wave ultraviolet photodetector. TiO$_2$ thin films were grown by radio frequency magnetron sputtering. The crystalline structure and surface morphology of TiO$_2$ thin films were examined using X-ray diffraction, scanning electron microscope, and atomic force microscope. The effect of TiO$_2$ thin film thickness on the phase velocity, electromechanical coupling coefficient, temperature coefficient of frequency, and sensitivity of ultraviolet of devices was investigated. TiO$_2$ thin film increases the electromechanical coupling coefficient but decreases the temperature coefficient of frequency for Love wave propagation on the 90° rotated 42°45′ ST-cut quartz. For Love wave ultraviolet photodetector application, the maximum insertion loss shift and phase shift are 2.81 dB and 3.55 degree at the 1.35-μm-thick TiO$_2$ film.

1. Introduction

Titanium dioxide (TiO$_2$) is a wide gap semiconductor and has three kinds of crystallography structures named anatase, brookite, and rutile. Anatase phase has the most photocatalytic activity due to its larger band gap energy (3.2 eV) and rutile phase has higher refractive index and compact structure [1, 2]. TiO$_2$ was intensively investigated on various fields due to its strong mechanical and chemical stability, high dielectric constant, excellent photoelectric activity, and diverse nanostructures [3–5]. Ever since Fujishima et al. demonstrated photocatalytic activity of TiO$_2$ [6], it became the most popular material for photocatalysis applications that can be applied to decompose of a large variety of organic and inorganic compounds into environmentally friendly compounds. The optical absorption energies for photocatalytic activity of TiO$_2$ have been modified from the ultraviolet to the visible and near infrared by doping [7, 8]. The various surface morphologies and nanostructures of TiO$_2$ thin films were grown to increase the absorption ability for optical devices applications [9]. TiO$_2$ thin film can be synthesized using various approaches, such as chemical vapor deposition (CVD) [10], sol-gel process [11], pulsed laser deposition [12], hydrothermal method, and magnetron sputtering [13–15].

Surface acoustic wave (SAW) devices have been widely applied in wireless communication components, sensors, and actuators [16, 17]. Love wave is the one type of SAWs, which is a shear horizontal polarized wave, that has the highest sensitivity in a liquid environment among all known acoustic sensors due to the waveguiding effect [18, 19]. Love waves propagate in a layered structure consisting of a substrate and a layer on top of it. The layer acts as a guide, with the elastic waves generated in the substrate being coupled to the surface guiding layer [18].

Leaky waves of LiTaO$_3$ and LiNbO$_3$ and surface skimming bulk waves (SSBW) of ST-cut quartz have been used as substrates for Love wave devices applications [20–22]; typically ZnO, fused silica (SiO$_2$), and polymethylmethacrylate (PMMA) thin films have been used to construct the layered structure for the Love wave sensor [18, 23, 24]. SSBW transmitted on ST-cut quartz has higher wave velocity than other substrates. ZnO thin film is an excellent guiding layer for Love wave devices applications because it is a piezoelectric material and can be deposited as various surface
morphologies and nanostructures [25, 26]. But ZnO film presents a poor stability in the acid or alkaline solutions. TiO$_2$ thin films and TiO$_2$ nanowires have been applied for various types of UV photodetectors [10, 27], but the reports of Love wave type were few. The requirements of guiding layer for a Love wave device application are being rigid, dense, and stable and having low radiation loss. Although TiO$_2$ is not a piezoelectric material, its strong mechanical and chemical stability, excellent photoelectric activity, and ease of synthesizing the various surface morphologies with nanostructures provide the potential as the guiding and sensing layer for Love wave sensors applications.

2. Experimental

The Love wave devices were fabricated on ST-cut (42° 45’)
quartz substrates (12 mm × 13 mm × 0.5 mm) with a propagation direction perpendicular to the crystallographic x-axis (90° rotated). The input and output interdigital transducers (IDTs) consisted of 30 finger pairs with an electrode width of 10 μm and separation of 10 μm, yielding a periodicity of 40 μm. The IDT aperture was 4 mm and the center to center of separation was 6.2 mm. The IDTs were made of 200 nm sputtered titanium. After the contact electrode of IDTs with a protection, the TiO$_2$ films were deposited by RF magnetron sputtering using a TiO$_2$ target (99.9%). In the film deposition process, sputtering power was 350 W, sputtering pressure was 1.33 Pa, O$_2$/Ar ratio was 0.25, distance between substrate and target was 70 mm, and the substrate was not heated. The deposition rates were controlled at approximately 170 nm/hour. Figure 1 presents the structure and pattern of the Love wave device.

The crystalline structure and orientation of the TiO$_2$ films were examined by X-ray diffraction (XRD) (Shimadzu XRD-6000). The surface morphology of the TiO$_2$ films was analyzed using field-emission scanning electron microscopy (FESEM) (Hitachi S4800-I) and atomic force microscopy techniques (DI D3100). Frequency response, phase of transmitted signals, wave velocities, electromechanical coupling coefficients, UV responses, and temperature coefficients of frequency of Love wave devices were measured by the network analyzer (Agilent E5062A). The error bars were calculated as two devices with the same parameters for measuring three times, respectively.

3. Results and Discussion

3.1. Crystalline Structure and Surface Morphology. Figure 2 presents the XRD patterns of TiO$_2$ thin films with various thicknesses deposited on quartz substrates. The TiO$_2$ thin film at 1.35-μm thickness shows an anatase structure and the major reflection planes are (101), (004), (112), (200), and (211), respectively. The films at 0.50- and 1.60-μm thicknesses present an amorphous structure. Figure 3 shows the SEM images of TiO$_2$ films with various thicknesses. The surface morphology is transferred greatly due to the films’ thickness. The 0.50-μm thick TiO$_2$ thin film has a smooth surface and a small columnar size. When thickness reaches 0.85 and 1.35 μm, the polyhedrons with a sharp shape are grown on the surface and the columnar size increases obviously. The surface roughness of films turns into rough with increasing thickness. The root mean square values of surface roughness are presented in Table 1.

3.2. Love Wave Device with TiO$_2$ Guiding Layer. Figure 4 shows the frequency response and phase of transmitted signal (S_{21}) for device with a 1.6-μm thick TiO$_2$ film. The phase velocity of a blank ST-cut (42° 45’) quartz for X-propagation is 5060 m/s; the phase velocity decreases with increasing thickness of TiO$_2$ thin film and approaches 4356 m/s for

![Figure 1: Structure of the Love wave device.](image1)

![Figure 2: XRD patterns of TiO$_2$ thin films with various thicknesses.](image2)

![Table 1: The root mean square values and phase velocities of TiO$_2$ thin films deposited on quartz substrate with various thicknesses.](table1)
Figure 3: SEM images of TiO$_2$ thin films with various thicknesses.
Insertion loss (dB)
Frequency (MHz)

<table>
<thead>
<tr>
<th>Insertion loss (dB)</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>118.116979 MHz</td>
<td>-53.346 dB</td>
</tr>
</tbody>
</table>

(a) Frequency response of transmitted signal

(b) Phase of transmitted signal

Figure 4: Frequency response and phase of transmitted signal (S_{21}) of 1.6-μm thick TiO$_2$ film.

The electromechanical coupling coefficient (k^2) was obtained as follows:

$$k^2 = \frac{\pi \cdot \text{Ga}}{4N \cdot B}$$ \hspace{1cm} (1)

where N is the number of IDT finger pairs and Ga and B are radiation resistance and susceptance, respectively [28]. Figure 5 shows the electromechanical coupling coefficients of devices with different thicknesses of TiO$_2$ thin films. Although TiO$_2$ thin film is not a piezoelectric material, the electromechanical coupling coefficients of devices increase with increasing thicknesses due to the waveguide effect and the maximum value is 0.38% at the 1.6-μm thick TiO$_2$ film.

Figure 5: Electromechanical coupling coefficients of devices with different thicknesses of TiO$_2$ thin films.

The temperature coefficients of frequency (TCF) were calculated by substituting the center frequencies at 30, 50, and 70°C into the following equation:

$$\text{TCF} = \frac{F(70°C) - F(30°C)}{40 \times F(50°C)}.$$ \hspace{1cm} (2)

Figure 6 shows the TCFs of devices with different thicknesses of TiO$_2$ thin films. The 90° rotated 42°45' ST-cut quartz reported in the literature showed a relatively high TCF about +30 ppm/°C [16]. This TCF value decreases by means of a TiO$_2$ layer with a low TCF value and reduces to +6.6 ppm/°C at 2.5-μm thick TiO$_2$ film.

Figure 6: Temperature coefficients of frequency of devices with different thicknesses of TiO$_2$ thin films.

3.3. Characteristics of the Love Wave Ultraviolet Photodetector. The band gap of TiO$_2$ thin film with anatase phase is about 3.2 eV; carriers’ concentrations are increased when the TiO$_2$ thin film is exposed to UV illumination. When Love wave
When the guiding layer becomes a higher conducting film due to the capacitance increasing and insertion loss of transmission signal will shift due to the variation of impedance. The wave velocity will decrease. The phase velocity, electromechanical coupling coefficient, temperature coefficient of frequency, and ultraviolet sensitivity of device was investigated. Although TiO\textsubscript{2} thin film is not a piezoelectric material, the electromechanical coupling coefficient increases from 0.10\% of blank quartz substrate to 0.38\% at the 1.6-\textmu m thick TiO\textsubscript{2} film deposited due to the waveguiding effect. The temperature coefficient of frequency decreases with increasing thickness of TiO\textsubscript{2} thin film. The ultraviolet sensitivity is affected sensitively by the thickness of the TiO\textsubscript{2} thin film; the maximum insertion loss shift and phase shift are 2.81 dB and 3.55 degree at the 1.35-\textmu m thick TiO\textsubscript{2} film.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The authors would like to thank the National Science Council of China, Taiwan, for financially supporting this research under Grant no. NSC-101-2221-E-150-044.

References

[7] D. Wójcieszak, M. Mazur, M. Kurnatowska et al., “Influence of Nd-doping on photocatalytic properties of TiO\textsubscript{2} nanoparticles under 254 nm UV illumination was below 1 degree [23]. The TiO\textsubscript{2} thin film provides the good potential for Love wave UV photodetector application.

4. Conclusions

The Love wave ultraviolet photodetector that used TiO\textsubscript{2} thin film and 90° rotated 42° 45' ST-cut quartz substrate was proposed. The effect of thickness of TiO\textsubscript{2} thin film on the phase velocity, electromechanical coupling coefficient, temperature coefficient of frequency, and ultraviolet sensitivity of device was investigated. Although TiO\textsubscript{2} thin film is not a piezoelectric material, the electromechanical coupling coefficient increases from 0.10\% of blank quartz substrate to 0.38\% at the 1.6-\textmu m thick TiO\textsubscript{2} film deposited due to the waveguiding effect. The temperature coefficient of frequency decreases with increasing thickness of TiO\textsubscript{2} thin film. The ultraviolet sensitivity is affected sensitively by the thickness of the TiO\textsubscript{2} thin film; the maximum insertion loss shift and phase shift are 2.81 dB and 3.55 degree at the 1.35-\textmu m thick TiO\textsubscript{2} film.

Submit your manuscripts at http://www.hindawi.com