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Abstract. 
In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving 
	
		
			
				(
				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				)
			

		
	
-Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.


1. Introduction
We study the existence and multiplicity of solutions of the nonlocal equation
						
	
 		
 			

				(
			
 			

				P
			
 			

				)
			
 		
	

	
		
			
				−
				𝑀
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				
				|
				|
				|
				|
				(
				𝑥
				)
				d
				i
				v
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				
				∇
				𝑢
				−
				𝑀
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				
				|
				|
				|
				|
				(
				𝑥
				)
				d
				i
				v
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				
				∇
				𝑢
				=
				𝑓
				(
				𝑥
				,
				𝑢
				)
			

			
				i
				n
			

			
				Ω
				,
				𝑢
				=
				0
				o
				n
				𝜕
				Ω
				,
			

		
	

					where 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 (
	
		
			
				𝑁
				≥
				3
			

		
	
) is a smooth bounded domain, 
	
		
			

				𝑝
			

			

				𝑖
			

			
				∈
				𝐶
				(
			

			
				
			
			
				Ω
				)
			

		
	
 such that 
	
		
			
				2
				≤
				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				<
				𝑁
			

		
	
 for any 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
, and 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
.
The problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 is related to the stationary version of a model, the so-called Kirchhoff equation, introduced by [1]. To be more precise, Kirchhoff established a model given by the equation
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝜌
				𝜕
			

			

				2
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑡
			

			

				2
			

			
				−
				
				𝑃
			

			

				0
			

			
				
			
			
				ℎ
				+
				𝐸
			

			
				
			
			
				
				2
				𝐿
			

			
				𝐿
				0
			

			
				|
				|
				|
				𝜕
				𝑢
			

			
				
			
			
				|
				|
				|
				𝜕
				𝑥
			

			

				2
			

			
				
				𝜕
				𝑑
				𝑥
			

			

				2
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑥
			

			

				2
			

			
				=
				0
				,
			

		
	

					where 
	
		
			

				𝜌
			

		
	
, 
	
		
			

				𝑃
			

			

				0
			

		
	
, 
	
		
			

				ℎ
			

		
	
, 
	
		
			

				𝐸
			

		
	
, and 
	
		
			

				𝐿
			

		
	
 are constants, which extends the classical D’Alambert’s wave equation, by considering the effects of the changes in the length of the strings during the vibrations. A distinguish feature of the Kirchhoff equation (1) is that the equation contains a nonlocal coefficient 
	
		
			

				𝑃
			

			

				0
			

			
				∫
				/
				ℎ
				+
				(
				𝐸
				/
				2
				𝐿
				)
			

			
				𝐿
				0
			

			
				|
				𝜕
				𝑢
				/
				𝜕
				𝑥
				|
			

			

				2
			

			
				𝑑
				𝑥
			

		
	
 which depends on the average 
	
		
			
				∫
				(
				𝐸
				/
				2
				𝐿
				)
			

			
				𝐿
				0
			

			
				|
				𝜕
				𝑢
				/
				𝜕
				𝑥
				|
			

			

				2
			

			
				𝑑
				𝑥
			

		
	
 of the kinetic energy 
	
		
			
				(
				1
				/
				2
				)
				|
				𝜕
				𝑢
				/
				𝜕
				𝑥
				|
			

			

				2
			

		
	
 on 
	
		
			
				[
				0
				,
				𝐿
				]
			

		
	
, and hence the equation is no longer a pointwise identity. For Kirchhoff-type equations involving the 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian operator, see, for example, [2–4].
The 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian operator 
	
		
			
				−
				Δ
			

			
				𝑝
				(
				𝑥
				)
			

			
				𝑢
				∶
				=
				d
				i
				v
				(
				|
				∇
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
				)
			

		
	
 is a natural generalization of the 
	
		
			

				𝑝
			

		
	
-Laplacian operator 
	
		
			
				−
				Δ
			

			

				𝑝
			

			
				𝑢
				∶
				=
				−
				d
				i
				v
				(
				|
				∇
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
				)
			

		
	
 where 
	
		
			
				𝑝
				>
				1
			

		
	
 is a real constant. The main difference between them is that 
	
		
			

				𝑝
			

		
	
-Laplacian operator is 
	
		
			
				(
				𝑝
				−
				1
				)
			

		
	
 homogenous, that is, 
	
		
			

				Δ
			

			

				𝑝
			

			
				(
				𝜇
				𝑢
				)
				=
				𝜇
			

			
				𝑝
				−
				1
			

			

				Δ
			

			

				𝑝
			

			

				𝑢
			

		
	
 for every 
	
		
			
				𝜇
				>
				0
			

		
	
, but the 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian operator, when 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
 is not constant, is not homogeneous. This causes many problems; some classical theories and methods, such as the Lagrange multiplier theorem and the theory of Sobolev spaces, are not applicable. For 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian operator, we refer the readers to [5–9] and references there in. Moreover, the nonlinear problems involving the 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian operator are extremely attractive because they can be used to model dynamical phenomenons which arise from the study of electrorheological fluids or elastic mechanics. Problems with variable exponent growth conditions also appear in the modelling of stationary thermorheological viscous flows of non-Newtonian fluids and in the mathematical description of the processes of filtration of an ideal barotropic gas through a porous medium. The detailed application backgrounds of the 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian can be found in [10–14] and the references therein.
In the present paper, by considering the joint effects of different (
	
		
			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

		
	
)-Laplace operator 
	
		
			
				−
				Δ
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				𝑢
				−
				Δ
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			

				𝑢
			

		
	
, we study the existence and multiplicity of solutions for a nonlocal problem, that is, problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 via Mountain-Pass theorem and Fountain theorem. As far as we know, there is no paper that deals with a nonlocal problem involving (
	
		
			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

		
	
)-Laplace operator except [15] in which the authors consider problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 for the case 
	
		
			

				𝑀
			

			

				1
			

			
				≡
				1
			

		
	
 and 
	
		
			

				𝑀
			

			

				2
			

			
				≡
				1
			

		
	
. Therefore, our paper deals with more general results than those obtained in [15]. Moreover, if we choose the functions 
	
		
			

				𝑀
			

			

				1
			

			
				≡
				𝑀
			

			

				2
			

			
				≡
				1
			

		
	
 in problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
, we get the equation
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				−
				
				
				|
				|
				|
				|
				d
				i
				v
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
				+
				d
				i
				v
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
				
				
				=
				𝑓
				(
				𝑥
				,
				𝑢
				)
				,
			

		
	

					which is the well-known anisotropic 
	
		
			
				⃗
				𝑝
				(
				⋅
				)
			

		
	
-Laplacian problem (see, e.g., [16] and references therein) in the case 
	
		
			
				𝑁
				=
				1
				,
				2
			

		
	
, that is,
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				−
			

			

				𝑁
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜕
			

			

				𝑥
			

			

				𝑖
			

			
				
				|
				|
				𝜕
			

			

				𝑥
			

			

				𝑖
			

			
				𝑢
				|
				|
			

			

				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				−
				2
			

			

				𝜕
			

			

				𝑥
			

			

				𝑖
			

			
				𝑢
				
				=
				𝑓
				(
				𝑥
				,
				𝑢
				)
				.
			

		
	

					As mentioned above, the 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
-Laplacian can be applied to describe the physical phenomenon with pointwise different properties which earliest arose from the nonlinear elasticity theory. In that context, the systems involving the 
	
		
			
				(
				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				)
			

		
	
-Laplacian (or 
	
		
			
				(
				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				,
				…
				,
				𝑝
			

			

				𝑁
			

			
				(
				𝑥
				)
				)
			

		
	
-Laplacian) can be good candidates for modeling phenomena which ask for distinct behavior of partial differential derivatives in various directions. For a mathematical model of a real physical phenomenon, one can consider the mean curvature operator
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				−
			

			

				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝜕
			

			

				𝑥
			

			

				𝑖
			

			
				
				
				|
				|
				𝜕
				1
				+
			

			

				𝑥
			

			

				𝑖
			

			
				𝑢
				|
				|
			

			

				2
			

			

				
			

			
				(
				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				−
				2
				)
				/
				2
			

			

				𝜕
			

			

				𝑥
			

			

				𝑖
			

			
				𝑢
				
				=
				𝑓
				(
				𝑥
				,
				𝑢
				)
				.
			

		
	

					It is obvious that problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 is a degenerate version of (4) when 
	
		
			

				𝑀
			

			

				1
			

			
				≡
				𝑀
			

			

				2
			

			
				≡
				1
			

		
	
.
2. Preliminaries
We state some basic properties of the variable exponent Lebesgue-Sobolev spaces 
	
		
			

				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 and 
	
		
			

				𝑊
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, where 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 is a bounded domain (for details, see, e.g., [17–19]).
Set
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝐶
			

			

				+
			

			

				
			

			
				
			
			
				Ω
				
				=
				
				
				𝑝
				∶
				𝑝
				∈
				𝐶
			

			
				
			
			
				Ω
				
				,
				𝑝
				(
				𝑥
				)
				>
				1
			

			
				f
				o
				r
				a
				n
				y
			

			
				𝑥
				∈
			

			
				
			
			
				Ω
				
				.
			

		
	

					For any 
	
		
			
				𝑝
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
, denote
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑝
			

			

				−
			

			
				∶
				=
				i
				n
				f
			

			
				𝑥
				∈
			

			
				
			
			

				Ω
			

			
				𝑝
				(
				𝑥
				)
				,
				𝑝
			

			

				+
			

			
				∶
				=
				s
				u
				p
			

			
				𝑥
				∈
			

			
				
			
			

				Ω
			

			
				𝑝
				(
				𝑥
				)
				<
				∞
				,
			

		
	

					and define the variable exponent Lebesgue space by
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				
				𝑢
				(
				Ω
				)
				=
			

			
				i
				s
				a
				m
				e
				a
				s
				u
				r
				a
				b
				l
				e
				r
				e
				a
				l
				f
				u
				n
				c
				t
				i
				o
				n
			

			
				
				o
				n
				Ω
				∶
			

			

				Ω
			

			
				|
				|
				𝑢
				|
				|
				(
				𝑥
				)
			

			
				𝑝
				(
				𝑥
				)
			

			
				
				.
				𝑑
				𝑥
				<
				∞
			

		
	

					We define a norm, the so-called Luxemburg norm, on 
	
		
			

				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 by the formula
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				|
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				
				
				=
				i
				n
				f
				𝜆
				>
				0
				∶
			

			

				Ω
			

			
				|
				|
				|
				𝑢
				(
				𝑥
				)
			

			
				
			
			
				𝜆
				|
				|
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				
				,
				𝑑
				𝑥
				≤
				1
			

		
	

					and then 
	
		
			
				(
				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
				,
				|
				⋅
				|
			

			
				𝑝
				(
				𝑥
				)
			

			

				)
			

		
	
 becomes a Banach space.
Define the variable exponent Sobolev space by
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑊
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				
				(
				Ω
				)
				=
				𝑢
				∈
				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				|
				|
				|
				|
				(
				Ω
				)
				;
				∇
				𝑢
				∈
				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				
				,
				(
				Ω
				)
			

		
	

					then it can be equipped with the norm 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				=
				|
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				+
				|
				|
				|
				|
				∇
				𝑢
			

			
				𝑝
				(
				𝑥
				)
			

			
				,
				∀
				𝑢
				∈
				𝑊
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
				.
			

		
	

					The space 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 is defined as the closure of 
	
		
			

				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
			

		
	
 in 
	
		
			

				𝑊
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 with respect to the norm 
	
		
			
				‖
				𝑢
				‖
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

		
	
. For 
	
		
			
				𝑢
				∈
			

		
	
 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, we can define an equivalent norm 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				‖
				|
				|
				|
				|
				𝑢
				‖
				=
				∇
				𝑢
			

			
				𝑝
				(
				𝑥
				)
			

			

				,
			

		
	

					since Poincaré inequality holds; that is, there exists a positive constant 
	
		
			
				𝐶
				>
				0
			

		
	
 such that
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				|
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				|
				|
				|
				|
				≤
				𝐶
				∇
				𝑢
			

			
				𝑝
				(
				𝑥
				)
			

			

				,
			

		
	

					for all 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
.
Proposition 1 (see [18, 19]).  The conjugate space of 
	
		
			

				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 is 
	
		
			

				𝐿
			

			

				𝑝
			

			

				′
			

			
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, where 
	
		
			
				(
				1
				/
				𝑝
			

			

				
			

			
				(
				𝑥
				)
				)
				+
				(
				1
				/
				𝑝
				(
				𝑥
				)
				)
				=
				1
			

		
	
. For any 
	
		
			
				𝑢
				∈
				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 and 
	
		
			
				𝑣
				∈
			

		
	
 
	
		
			

				𝐿
			

			

				𝑝
			

			

				′
			

			
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, we have
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			

				Ω
			

			
				|
				|
				|
				|
				≤
				
				1
				𝑢
				𝑣
				𝑑
				𝑥
			

			
				
			
			

				𝑝
			

			

				−
			

			
				+
				1
			

			
				
			
			
				(
				𝑝
			

			

				−
			

			

				)
			

			

				
			

			
				
				|
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				|
				𝑣
				|
			

			

				𝑝
			

			

				′
			

			
				(
				𝑥
				)
			

			

				.
			

		
	

Proposition 2 (see [18, 19]).  Denote 
	
		
			
				∫
				𝜌
				(
				𝑢
				)
				=
			

			

				Ω
			

			
				|
				𝑢
				(
				𝑥
				)
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

		
	
, for all 
	
		
			
				𝑢
				,
				𝑢
			

			

				𝑛
			

			
				∈
				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
				(
				𝑛
				=
				1
				,
				2
				,
				…
				)
			

		
	
; one has (i)
	
		
			
				|
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				>
				1
				(
				≤
				1
				)
				⇒
				|
				𝑢
				|
			

			

				𝑝
			

			

				−
			

			
				𝑝
				(
				𝑥
				)
			

			
				≤
				𝜌
				(
				𝑢
				)
				≤
				|
				𝑢
				|
			

			

				𝑝
			

			

				+
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				|
				𝑢
				|
			

			

				𝑝
			

			

				+
			

			
				𝑝
				(
				𝑥
				)
			

			
				≤
				𝜌
				(
				𝑢
				)
				≤
				|
				𝑢
				|
			

			

				𝑝
			

			

				−
			

			
				𝑝
				(
				𝑥
				)
			

			

				)
			

		
	
;(ii)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				𝑢
			

			

				𝑛
			

			

				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				=
				0
				⇔
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜌
				(
				𝑢
			

			

				𝑛
			

			
				)
				=
				0
				;
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				𝑢
			

			

				𝑛
			

			

				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				→
				∞
				⇔
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜌
				(
				𝑢
			

			

				𝑛
			

			
				)
				→
				∞
			

		
	
.
Proposition 3 (see [18, 19]).  If  
	
		
			
				𝑢
				,
				𝑢
			

			

				𝑛
			

			
				∈
				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
				(
				𝑛
				=
				1
				,
				2
				,
				…
				)
			

		
	
, then the following statements are equivalent:(i)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				𝑢
			

			

				𝑛
			

			
				−
				𝑢
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				=
				0
			

		
	
;(ii)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜌
				(
				𝑢
			

			

				𝑛
			

			
				−
				𝑢
				)
				=
				0
			

		
	
;(iii)
	
		
			

				𝑢
			

			

				𝑛
			

			
				→
				𝑢
			

		
	
 in measure 
	
		
			

				Ω
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝜌
				(
				𝑢
			

			

				𝑛
			

			
				)
				=
				𝜌
				(
				𝑢
				)
			

		
	
.
Proposition 4 (see [18, 19]).  
	
		
			

				(
			

			

				i
			

			

				)
			

		
	
 If 
	
		
			
				1
				<
				𝑝
			

			

				−
			

			
				≤
				𝑝
			

			

				+
			

			
				<
				∞
			

		
	
, then spaces 
	
		
			

				𝐿
			

			
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, 
	
		
			

				𝑊
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, and 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 are separable and reflexive Banach spaces. 
	
		
			

				(
			

			
				i
				i
			

			

				)
			

		
	
 If 
	
		
			
				𝑞
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
 and 
	
		
			
				𝑞
				(
				𝑥
				)
				<
				𝑝
			

			

				∗
			

			
				(
				𝑥
				)
			

		
	
 for any 
	
		
			
				𝑥
				∈
			

			
				
			
			
				Ω
				(
				𝑝
			

			

				∗
			

			
				(
				𝑥
				)
				=
				𝑁
				𝑝
				(
				𝑥
				)
				/
				𝑁
				−
				𝑝
				(
				𝑥
				)
			

		
	
 if 
	
		
			
				𝑝
				(
				𝑥
				)
				<
				𝑁
			

		
	
 and 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				𝑥
				)
				=
				+
				∞
			

		
	
 if 
	
		
			
				𝑝
				(
				𝑥
				)
				≥
				𝑁
				)
			

		
	
, then the embedding 
	
		
			

				𝑊
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				(
				Ω
				)
				↪
				𝐿
			

			
				𝑞
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 is compact and continuous.
Definition 5. Let 
	
		
			

				𝑋
			

		
	
 be a Banach space and 
	
		
			
				𝐽
				∶
				𝑋
				→
				ℝ
			

		
	
 a 
	
		
			

				𝐶
			

			

				1
			

		
	
 functional. We say that a functional 
	
		
			

				𝐽
			

		
	
 satisfies the Palais-Smale condition (
	
		
			
				(
				𝐏
				𝐒
				)
			

		
	
 for short), if any sequence 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				{
				𝐽
				(
				𝑢
			

			

				𝑛
			

			
				)
				}
			

		
	
 is bounded and 
	
		
			

				𝐽
			

			

				
			

			
				(
				𝑢
			

			

				𝑛
			

			
				)
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 admits a convergent subsequence. 
3. Main Results and Proofs
Let us consider the functional
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝐽
				(
				𝑢
				)
				=
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
				+
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				𝑑
				𝑥
				,
				∀
				𝑢
				∈
				𝑋
				,
			

		
	

					where 
	
		
			
				𝑋
				∶
				=
				𝑊
			

			
				1
				,
				𝑝
			

			

				1
			

			
				0
				(
				𝑥
				)
			

			
				(
				Ω
				)
				∩
				𝑊
			

			
				1
				,
				𝑝
			

			

				2
			

			
				0
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
 with its norm given by 
	
		
			
				‖
				𝑢
				‖
				∶
				=
				‖
				𝑢
				‖
			

			
				1
				,
				𝑝
				(
				𝑥
				)
			

			
				+
				‖
				𝑢
				‖
			

			
				2
				,
				𝑝
				(
				𝑥
				)
			

		
	
, for all 
	
		
			
				𝑢
				∈
				𝑋
			

		
	
. It is obvious that 
	
		
			
				(
				𝑋
				,
				‖
				⋅
				‖
				)
			

		
	
 is also a separable and reflexive Banach space.
By using standard arguments, it can be proved that 
	
		
			
				𝐽
				∈
				𝐶
			

			

				1
			

			
				(
				𝑋
				,
				ℝ
				)
			

		
	
 (see [20]), and the (
	
		
			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

		
	
)-Laplace operator is the derivative operator of 
	
		
			

				𝐽
			

		
	
 in the weak sense. Denote 
	
		
			
				𝐿
				∶
				=
				𝐽
			

			

				
			

			
				∶
				𝑋
				→
				𝑋
			

			

				∗
			

		
	
; then 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				⟨
				𝐿
				(
				𝑢
				)
				,
				𝜑
				⟩
				=
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				+
				
				∇
				𝑢
				∇
				𝜑
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
				∇
				𝜑
				𝑑
				𝑥
				,
				∀
				𝑢
				,
				𝜑
				∈
				𝑋
				,
			

		
	

					where 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 is the dual pair between 
	
		
			

				𝑋
			

		
	
 and its dual 
	
		
			

				𝑋
			

			

				∗
			

		
	
.
Let us denote
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑝
			

			

				𝑀
			

			
				
				𝑝
				(
				𝑥
				)
				=
				m
				a
				x
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				
				,
				𝑝
				(
				𝑥
				)
			

			

				𝑚
			

			
				
				𝑝
				(
				𝑥
				)
				=
				m
				i
				n
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑝
			

			

				2
			

			
				
				(
				𝑥
				)
				,
				∀
				𝑥
				∈
			

			
				
			
			
				Ω
				.
			

		
	

					By the definition, it is not difficult to see that 
	
		
			

				𝑝
			

			

				𝑀
			

			
				(
				𝑥
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				𝑚
			

			
				(
				𝑥
				)
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
. For 
	
		
			
				𝑞
				(
				𝑥
				)
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
 such that 
	
		
			
				𝑞
				(
				𝑥
				)
				<
				𝑝
			

			
				∗
				𝑀
			

			
				(
				𝑥
				)
			

		
	
 for any 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
, we have 
	
		
			
				𝑋
				∶
				=
				𝑊
			

			
				1
				,
				𝑝
			

			

				1
			

			
				0
				(
				𝑥
				)
			

			
				(
				Ω
				)
				∩
				𝑊
			

			
				1
				,
				𝑝
			

			

				2
			

			
				0
				(
				𝑥
				)
			

			
				(
				Ω
				)
				=
				𝑊
			

			
				1
				,
				𝑝
			

			

				𝑀
			

			
				0
				(
				𝑥
				)
			

			
				(
				Ω
				)
				↪
				𝐿
			

			
				𝑞
				(
				𝑥
				)
			

			
				(
				Ω
				)
			

		
	
, and the imbedding is continuous and compact.
We say that 
	
		
			
				𝑢
				∈
				𝑋
			

		
	
 is a weak solution of 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 if
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑀
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
				∇
				𝜑
				𝑑
				𝑥
				+
				𝑀
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				=
				
				∇
				𝑢
				∇
				𝜑
				𝑑
				𝑥
			

			

				Ω
			

			
				𝑓
				(
				𝑥
				,
				𝑢
				)
				𝜑
				𝑑
				𝑥
				,
			

		
	

					for any 
	
		
			
				𝜑
				∈
				𝑋
			

		
	
.
We associate to the problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 the energy functional, defined as 
	
		
			
				𝐼
				∶
				𝑋
				→
				ℝ
			

		
	
:
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				
				𝑀
				𝐼
				(
				𝑢
				)
				=
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				+
				
				𝑀
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				−
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				𝐹
				(
				𝑥
				,
				𝑢
				)
				𝑑
				𝑥
				,
			

		
	

					where 
	
		
			
				
				𝑀
			

			

				𝑖
			

			
				∫
				(
				𝑡
				)
				=
			

			
				𝑡
				0
			

			

				𝑀
			

			

				𝑖
			

			
				(
				𝜉
				)
				𝑑
				𝜉
			

		
	
 (
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
.) and 
	
		
			
				∫
				𝐹
				(
				𝑥
				,
				𝑢
				)
				=
			

			
				𝑢
				0
			

			
				𝑓
				(
				𝑥
				,
				𝑠
				)
				𝑑
				𝑠
			

		
	
. We know that from 
	
		
			
				(
				𝐌
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐟
			

			

				0
			

			

				)
			

		
	
 (see below) 
	
		
			

				𝐼
			

		
	
 is well defined and in a standard way we can prove that 
	
		
			
				𝐼
				∈
				𝐶
			

			

				1
			

			
				(
				𝑋
				,
				ℝ
				)
			

		
	
 and that the critical points of 
	
		
			

				𝐼
			

		
	
 are solutions of 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
.
Moreover, the derivative of 
	
		
			

				𝐼
			

		
	
 is given by
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				
			

			
				
				(
				𝑢
				)
				,
				𝜑
				=
				𝑀
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
				∇
				𝜑
				𝑑
				𝑥
				+
				𝑀
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				−
				
				∇
				𝑢
				∇
				𝜑
				𝑑
				𝑥
			

			

				Ω
			

			
				𝑓
				(
				𝑥
				,
				𝑢
				)
				𝜑
				𝑑
				𝑥
				,
			

		
	

					for any 
	
		
			
				𝑢
				,
				𝜑
				∈
				𝑋
			

		
	
.
Now, we are ready to set and prove the first main result of the present paper.
Theorem 6.  Assume that the following assumptions hold: 
	
		
			
				(
				𝐌
			

			

				0
			

			

				)
			

		
	

	
		
			

				𝑀
			

			

				1
			

			
				,
				𝑀
			

			

				2
			

			
				∶
				ℝ
			

			

				+
			

			
				→
				ℝ
			

			

				+
			

		
	
 are continuous functions and satisfy the conditions
										
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐶
			

			

				1
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				≤
				𝑀
			

			

				1
			

			
				𝐶
				(
				𝑡
				)
				,
			

			

				2
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				≤
				𝑀
			

			

				2
			

			
				(
				𝑡
				)
				,
			

		
	
 for all 
	
		
			
				𝑡
				>
				0
			

		
	
, where 
	
		
			

				𝐶
			

			

				1
			

		
	
 and 
	
		
			

				𝐶
			

			

				2
			

		
	
 are positive constants and 
	
		
			
				𝛼
				>
				1
			

		
	
;
	
		
			
				(
				𝐟
			

			

				0
			

			

				)
			

		
	

	
		
			
				𝑓
				∶
			

			
				
			
			
				Ω
				×
				ℝ
				→
				ℝ
			

		
	
 is a Carathéodory function and satisfies the growth condition
										
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				𝐶
			

			

				3
			

			
				+
				𝐶
			

			

				4
			

			
				|
				𝑡
				|
			

			
				𝑞
				(
				𝑥
				)
				−
				1
			

			
				,
				∀
				(
				𝑥
				,
				𝑡
				)
				∈
			

			
				
			
			
				Ω
				×
				ℝ
				,
			

		
	
 where 
	
		
			

				𝐶
			

			

				3
			

		
	
 and 
	
		
			

				𝐶
			

			

				4
			

		
	
 are positive constants and 
	
		
			

				𝑝
			

			

				1
			

			
				,
				𝑝
			

			

				2
			

			
				,
				𝑞
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
 such that 
	
		
			

				𝑞
			

			

				+
			

			
				<
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				<
				𝑝
			

			
				∗
				𝑀
			

			
				(
				𝑥
				)
			

		
	
, for all 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
. Then problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 has a weak solution.
Proof. Let 
	
		
			
				‖
				𝑢
				‖
				>
				1
			

		
	
. By the assumptions 
	
		
			
				(
				𝐌
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐟
			

			

				0
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				𝑀
				𝐼
				(
				𝑢
				)
				=
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				+
				
				𝑀
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				−
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				𝐹
				(
				𝑥
				,
				𝑢
				)
				𝑑
				𝑥
				≥
				𝐶
			

			

				1
			

			

				
			

			
				(
				1
				/
				𝑝
			

			
				+
				1
			

			
				)
				𝜌
			

			

				1
			

			
				0
				(
				∇
				𝑢
				)
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				𝑑
				𝑡
				+
				𝐶
			

			

				2
			

			

				
			

			
				(
				1
				/
				𝑝
			

			
				+
				2
			

			
				)
				𝜌
			

			

				2
			

			
				0
				(
				∇
				𝑢
				)
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				𝑑
				𝑡
				−
				𝐶
			

			

				3
			

			

				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝑞
				(
				𝑥
				)
			

			
				𝑑
				𝑥
				−
				𝐶
			

			

				4
			

			
				=
				𝐶
			

			

				1
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				1
			

			

				
			

			

				𝛼
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
				𝑑
				𝑥
			

			

				𝛼
			

			
				+
				𝐶
			

			

				2
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				2
			

			

				
			

			

				𝛼
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
				𝑑
				𝑥
			

			

				𝛼
			

			
				−
				𝐶
			

			

				3
			

			

				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝑞
				(
				𝑥
				)
			

			
				𝑑
				𝑥
				−
				𝐶
			

			

				4
			

			
				≥
				𝐶
			

			

				1
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				1
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				1
			

			
				+
				𝐶
			

			

				2
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				2
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				2
			

			
				−
				𝐶
			

			

				3
			

			
				‖
				𝑢
				‖
			

			

				𝑞
			

			

				+
			

			
				−
				𝐶
			

			

				4
			

			
				≥
				𝑐
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			

				3
			

			
				‖
				𝑢
				‖
			

			

				𝑞
			

			

				+
			

			
				−
				𝐶
			

			

				4
			

			
				(
				⟶
				+
				∞
				‖
				𝑢
				‖
				⟶
				∞
				)
				,
			

		
	

						where 
	
		
			

				𝜌
			

			

				1
			

			
				∫
				(
				∇
				𝑢
				)
				=
			

			

				Ω
			

			
				|
				∇
				𝑢
				|
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

		
	
, 
	
		
			

				𝜌
			

			

				2
			

			
				∫
				(
				∇
				𝑢
				)
				=
			

			

				Ω
			

			
				|
				∇
				𝑢
				|
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

		
	
 and 
	
		
			
				𝑐
				=
				m
				i
				n
				{
				𝐶
			

			

				1
			

			
				,
				𝐶
			

			

				2
			

			

				}
			

		
	
. So, 
	
		
			

				𝐼
			

		
	
 is coercive. Since 
	
		
			

				𝐼
			

		
	
 is sequentially weakly lower semicontinuous, 
	
		
			

				𝐼
			

		
	
 has a minimum point 
	
		
			

				𝑢
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑢
			

		
	
 is a weak solution of 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
.
Theorem 7.  Assume that the following assumptions hold: 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	

	
		
			

				𝑀
			

			

				1
			

			
				,
				𝑀
			

			

				2
			

			
				∶
				ℝ
			

			

				+
			

			
				→
				ℝ
			

			

				+
			

		
	
 are continuous functions and satisfy the conditions
										
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝐶
			

			

				5
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				≤
				𝑀
			

			

				1
			

			
				(
				𝑡
				)
				≤
				𝐶
			

			

				6
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				,
				𝐶
			

			

				7
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			
				≤
				𝑀
			

			

				2
			

			
				(
				𝑡
				)
				≤
				𝐶
			

			

				8
			

			

				𝑡
			

			
				𝛼
				−
				1
			

			

				,
			

		
	
 for all 
	
		
			
				𝑡
				>
				0
			

		
	
, where 
	
		
			

				𝐶
			

			

				5
			

		
	
, 
	
		
			

				𝐶
			

			

				6
			

		
	
, 
	
		
			

				𝐶
			

			

				7
			

		
	
, 
	
		
			

				𝐶
			

			

				8
			

		
	
, and 
	
		
			

				𝛼
			

		
	
 are positive constants such that 
	
		
			

				𝐶
			

			

				5
			

			
				≤
				𝐶
			

			

				6
			

			
				≤
				𝐶
			

			

				7
			

			
				≤
				𝐶
			

			

				8
			

		
	
 and 
	
		
			
				𝛼
				>
				1
			

		
	
;
	
		
			
				(
				𝐟
			

			

				1
			

			

				)
			

		
	

	
		
			
				𝑓
				∶
			

			
				
			
			
				Ω
				×
				ℝ
				→
				ℝ
			

		
	
 is a Carathéodory function and satisfies the growth condition
										
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑓
				|
				|
				(
				𝑥
				,
				𝑡
				)
				≤
				𝐶
			

			

				9
			

			
				+
				𝐶
			

			
				1
				0
			

			
				|
				𝑡
				|
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				,
				∀
				(
				𝑥
				,
				𝑡
				)
				∈
			

			
				
			
			
				Ω
				×
				ℝ
				;
			

		
	

	
		
			
				(
				𝐟
			

			

				2
			

			

				)
			

		
	

	
		
			
				𝑓
				(
				𝑥
				,
				𝑡
				)
				=
				𝑜
				(
				|
				𝑡
				|
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				−
				1
			

			

				)
			

		
	
, 
	
		
			
				𝑡
				→
				0
			

		
	
  uniformly  for  
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
,  where 
	
		
			

				𝐶
			

			

				9
			

		
	
 and 
	
		
			

				𝐶
			

			
				1
				0
			

		
	
 are positive constants and 
	
		
			
				𝛽
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
 such that 
	
		
			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				<
				𝛽
			

			

				−
			

			
				≤
				𝛽
			

			

				+
			

			
				<
				𝑝
			

			
				∗
				𝑀
			

			
				(
				𝑥
				)
			

		
	
, for all 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
;
	
		
			
				(
				𝐟
			

			

				3
			

			

				)
			

		
	

	
		
			
				𝑓
				(
				𝑥
				,
				−
				𝑡
				)
				=
				−
				𝑓
				(
				𝑥
				,
				𝑡
				)
				,
				∀
				(
				𝑥
				,
				𝑡
				)
				∈
			

			
				
			
			
				Ω
				×
				ℝ
			

		
	
; 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	

	
		
			
				∃
				𝐾
				>
				0
			

		
	
, 
	
		
			
				𝜃
				>
				(
				𝑝
			

			
				+
				𝑀
			

			

				)
			

			

				𝛼
			

		
	
such that 
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				0
				<
				𝜃
				𝐹
				(
				𝑥
				,
				𝑡
				)
				≤
				𝑓
				(
				𝑥
				,
				𝑡
				)
				𝑡
				,
				|
				𝑡
				|
				≥
				𝐾
			

			

				a
			

			

				.
			

			

				e
			

			
				.
				𝑥
				∈
			

			
				
			
			
				Ω
				.
			

		
	
 Then problem 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 has at least one nontrivial weak solution. 
To obtain the result of Theorem 7, we need to show Lemmas 8 and 9 hold.
Lemma 8.  Suppose 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐟
			

			

				1
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
 hold. Then I satisfies 
	
		
			
				(
				𝐏
				𝐒
				)
			

		
	
 condition.
Proof. Let us assume that there exists a sequence 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				|
				|
				𝐼
				
				𝑢
			

			

				𝑛
			

			
				
				|
				|
				≤
				𝑐
				,
				𝐼
			

			

				
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				⟶
				0
				.
			

		
	

						Then by the assumptions (26), 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
, we get
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				𝑐
				+
			

			

				𝑛
			

			
				‖
				‖
				
				𝑢
				≥
				𝐼
			

			

				𝑛
			

			
				
				−
				1
			

			
				
			
			
				𝜃
				
				𝐼
			

			

				
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			
				
				≥
				
				𝐶
			

			

				5
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				1
			

			

				
			

			

				𝛼
			

			
				−
				𝐶
			

			

				6
			

			
				
			
			
				
				𝑝
				𝜃
				𝛼
			

			
				−
				1
			

			

				
			

			
				𝛼
				−
				1
			

			
				
				
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
				𝑑
				𝑥
			

			

				𝛼
			

			
				+
				
				𝐶
			

			

				7
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				2
			

			

				
			

			

				𝛼
			

			
				−
				𝐶
			

			

				8
			

			
				
			
			
				
				𝑝
				𝜃
				𝛼
			

			
				−
				2
			

			

				
			

			
				𝛼
				−
				1
			

			
				
				
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
				𝑑
				𝑥
			

			

				𝛼
			

			
				+
				
			

			

				Ω
			

			
				
				1
			

			
				
			
			
				𝜃
				𝑓
				
				𝑥
				,
				𝑢
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				−
				𝐹
				𝑥
				,
				𝑢
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑢
				𝑑
				𝑥
				≥
				𝜆
			

			

				𝑛
			

			
				‖
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				+
				𝑐
				,
			

		
	

						where 
	
		
			
				𝜆
				=
				(
				(
				𝐶
			

			

				5
			

			
				/
				𝛼
				(
				𝑝
			

			
				+
				1
			

			

				)
			

			

				𝛼
			

			
				)
				−
				(
				𝐶
			

			

				6
			

			
				/
				𝜃
				𝛼
				(
				𝑝
			

			
				−
				1
			

			

				)
			

			
				𝛼
				−
				1
			

			
				)
				)
				+
				(
				(
				𝐶
			

			

				7
			

			
				/
				𝛼
				(
				𝑝
			

			
				+
				2
			

			

				)
			

			

				𝛼
			

			
				)
				−
				(
				𝐶
			

			

				8
			

			
				/
				𝜃
				𝛼
				(
				𝑝
			

			
				−
				2
			

			

				)
			

			
				𝛼
				−
				1
			

			
				)
				)
			

		
	
. Since 
	
		
			
				𝜃
				>
				(
				𝑝
			

			
				+
				𝑀
			

			

				)
			

			

				𝛼
			

		
	
, we have 
	
		
			
				𝜆
				>
				0
			

		
	
 for 
	
		
			

				𝜃
			

		
	
 large enough. Therefore, 
	
		
			
				{
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				}
			

		
	
 is bounded in 
	
		
			

				𝑋
			

		
	
. Passing to a subsequence, if necessary, there exists 
	
		
			
				𝑢
				∈
				𝑋
			

		
	
 such that 
	
		
			

				𝑢
			

			

				𝑛
			

			
				⇀
				𝑢
			

		
	
. Therefore, we have the embeddings
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				⇀
				𝑢
			

			
				i
				n
			

			
				𝑢
				𝑋
				,
			

			

				𝑛
			

			
				⟶
				𝑢
			

			
				i
				n
			

			

				𝐿
			

			
				𝛽
				(
				𝑥
				)
			

			
				𝑢
				(
				Ω
				)
				,
			

			

				𝑛
			

			
				⟶
				𝑢
			

			

				a
			

			

				.
			

			

				e
			

			

				.
			

			
				i
				n
			

			
				Ω
				.
			

		
	

						By (26), we have 
	
		
			
				⟨
				𝐼
			

			

				
			

			
				(
				𝑢
			

			

				𝑛
			

			
				)
				,
				𝑢
			

			

				𝑛
			

			
				−
				𝑢
				⟩
				→
				0
			

		
	
. Thus
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			
				
				−
				𝑢
				=
				𝑀
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				×
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				∇
				𝑢
				𝑑
				𝑥
				+
				𝑀
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				×
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				
				−
				∇
				𝑢
				𝑑
				𝑥
			

			

				Ω
			

			
				𝑓
				
				𝑥
				,
				𝑢
			

			

				𝑛
			

			
				𝑢
				
				
			

			

				𝑛
			

			
				
				−
				𝑢
				𝑑
				𝑥
				.
			

		
	

						From 
	
		
			
				(
				𝐟
			

			

				1
			

			

				)
			

		
	
 and Proposition 1, it follows that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			

				Ω
			

			
				𝑓
				
				𝑥
				,
				𝑢
			

			

				𝑛
			

			
				𝑢
				
				
			

			

				𝑛
			

			
				
				|
				|
				|
				|
				−
				𝑢
				𝑑
				𝑥
				≤
				𝐶
			

			
				1
				0
			

			
				|
				|
				|
				|
				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛽
				(
				𝑥
				)
				−
				2
			

			

				𝑢
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				|
				|
				|
				|
				−
				𝑢
				𝑑
				𝑥
				+
				𝐶
			

			

				9
			

			
				|
				|
				|
				|
				
			

			

				Ω
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				|
				|
				|
				|
				−
				𝑢
				𝑑
				𝑥
				≤
				𝐶
			

			
				1
				0
			

			
				|
				|
				|
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				|
				|
				|
			

			
				𝛽
				(
				𝑥
				)
				/
				(
				𝛽
				(
				𝑥
				)
				−
				1
				)
			

			
				×
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				−
				𝑢
			

			
				𝛽
				(
				𝑥
				)
			

			
				+
				𝐶
			

			

				9
			

			

				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				−
				𝑢
				𝑑
				𝑥
				.
			

		
	

						If we consider the relations given in (28), we get
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				𝑓
				
				𝑥
				,
				𝑢
			

			

				𝑛
			

			
				𝑢
				
				
			

			

				𝑛
			

			
				
				−
				𝑢
				𝑑
				𝑥
				⟶
				0
				.
			

		
	

						Hence,
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑀
			

			

				1
			

			
				
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				×
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				∇
				𝑢
				𝑑
				𝑥
				+
				𝑀
			

			

				2
			

			
				
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				×
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				∇
				𝑢
				𝑑
				𝑥
				⟶
				0
				.
			

		
	

						From 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
, it follows that
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				∇
				𝑢
				𝑑
				𝑥
				⟶
				0
				.
			

		
	

						Furthermore, since 
	
		
			

				𝑢
			

			

				𝑛
			

			
				⇀
				𝑢
			

		
	
 in 
	
		
			

				𝑋
			

		
	
, we have
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				−
				2
			

			
				
				∇
				𝑢
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				∇
				𝑢
				𝑑
				𝑥
				⟶
				0
				.
			

		
	

						From (33) and (34), we deduce that 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			

				Ω
			

			
				
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				−
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
				−
				2
			

			
				
				×
				
				∇
				𝑢
				∇
				𝑢
			

			

				𝑛
			

			
				
				−
				∇
				𝑢
				𝑑
				𝑥
				⟶
				0
				.
			

		
	

						Next, we apply the following well-known inequality
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				|
				|
				𝜉
			

			

				𝑖
			

			
				|
				|
			

			

				𝑟
			

			

				𝑖
			

			
				−
				2
			

			

				𝜉
			

			

				𝑖
			

			
				−
				|
				|
				𝜓
			

			

				𝑖
			

			
				|
				|
			

			

				𝑟
			

			

				𝑖
			

			
				−
				2
			

			

				𝜓
			

			

				𝑖
			

			
				
				⋅
				
				𝜉
			

			

				𝑖
			

			
				−
				𝜓
			

			

				𝑖
			

			
				
				≥
				2
			

			
				−
				𝑟
			

			

				𝑖
			

			
				|
				|
				𝜉
			

			

				𝑖
			

			
				−
				𝜓
			

			

				𝑖
			

			
				|
				|
			

			

				𝑟
			

			

				𝑖
			

			
				,
				𝜉
			

			

				𝑖
			

			
				,
				𝜓
			

			

				𝑖
			

			
				∈
				ℝ
			

			

				𝑁
			

			

				,
			

		
	

						valid for all 
	
		
			

				𝑟
			

			

				𝑖
			

			
				≥
				2
			

		
	
 (
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
). From the relations (35) and (36), we infer that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				2
			

			

				
			

			
				𝑖
				=
				1
			

			

				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
				−
				∇
				𝑢
			

			

				𝑝
			

			

				𝑖
			

			
				(
				𝑥
				)
			

			
				𝑑
				𝑥
				⟶
				0
				,
			

		
	

						and, consequently, 
	
		
			

				𝑢
			

			

				𝑛
			

			
				→
				𝑢
			

		
	
 in 
	
		
			

				𝑋
			

		
	
. We are done.
Lemma 9.  Suppose 
	
		
			
				(
				𝐌
			

			

				1
			

			
				)
				,
				(
				𝐟
			

			

				1
			

			
				)
				,
				(
				𝐟
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
 hold. Then the following statements hold: (i)there exist two positive real numbers 
	
		
			

				𝛾
			

		
	
 and 
	
		
			

				𝑎
			

		
	
 such that 
	
		
			
				𝐼
				(
				𝑢
				)
				≥
				𝑎
				>
				0
			

		
	
, 
	
		
			
				𝑢
				∈
				𝑋
			

		
	
 with 
	
		
			
				‖
				𝑢
				‖
				=
				𝛾
			

		
	
;(ii)there exists 
	
		
			
				𝑢
				∈
				𝑋
			

		
	
 such that 
	
		
			
				‖
				𝑢
				‖
				>
				𝛾
			

		
	
, 
	
		
			
				𝐼
				(
				𝑢
				)
				<
				0
			

		
	
.
Proof. (i) Let 
	
		
			
				‖
				𝑢
				‖
				<
				1
			

		
	
. Then by 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
 and Proposition 2, we have
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝐶
				𝐼
				(
				𝑢
				)
				≥
			

			

				5
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				1
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				+
				1
			

			
				+
				𝐶
			

			

				7
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				2
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				+
				2
			

			
				−
				
			

			

				Ω
			

			
				≥
				𝑐
				𝐹
				(
				𝑥
				,
				𝑢
				)
				𝑑
				𝑥
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				−
				
			

			

				Ω
			

			
				𝐹
				(
				𝑥
				,
				𝑢
				)
				𝑑
				𝑥
				,
			

		
	

						where 
	
		
			

				𝑐
			

			

				∗
			

			
				=
				m
				i
				n
				{
				𝐶
			

			

				5
			

			
				,
				𝐶
			

			

				7
			

			

				}
			

		
	
. Since 
	
		
			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				<
				𝛽
			

			

				−
			

			
				≤
				𝛽
			

			

				+
			

			
				<
				𝑝
			

			
				∗
				𝑀
			

			
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
, we have the continuous embeddings 
	
		
			
				𝑋
				↪
				𝐿
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				(
				Ω
				)
			

		
	
 and 
	
		
			
				𝑋
				↪
				𝐿
			

			

				𝛽
			

			

				+
			

			
				(
				Ω
				)
				↪
				𝐿
			

			

				𝛽
			

			

				−
			

			
				(
				Ω
				)
			

		
	
, and also there are positive constants 
	
		
			

				𝐶
			

			
				1
				1
			

			
				,
				𝐶
			

			
				1
				2
			

		
	
 and 
	
		
			

				𝐶
			

			
				1
				3
			

		
	
 such that
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				|
				𝑢
				|
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				≤
				𝐶
			

			
				1
				1
			

			
				‖
				𝑢
				‖
				,
				|
				𝑢
				|
			

			

				𝛽
			

			

				−
			

			
				≤
				𝐶
			

			
				1
				2
			

			
				‖
				𝑢
				‖
				,
				|
				𝑢
				|
			

			

				𝛽
			

			

				+
			

			
				≤
				𝐶
			

			
				1
				3
			

			
				‖
				𝑢
				‖
				,
				∀
				𝑢
				∈
				𝑋
				.
			

		
	

						Let 
	
		
			
				𝜀
				>
				0
			

		
	
 be small enough such that 
	
		
			
				𝜀
				𝐶
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				1
				1
			

			
				<
				(
				𝑐
			

			

				∗
			

			
				/
				2
				𝛼
				(
				𝑝
			

			
				+
				𝑀
			

			

				)
			

			

				𝛼
			

			

				)
			

		
	
. By the assumptions 
	
		
			
				(
				𝐟
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐟
			

			

				2
			

			

				)
			

		
	
, we have 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑡
				)
				≤
				𝜀
				|
				𝑡
				|
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				+
				𝐶
			

			

				𝜀
			

			
				|
				𝑡
				|
			

			
				𝛽
				(
				𝑥
				)
			

		
	
, for all 
	
		
			
				(
				𝑥
				,
				𝑡
				)
				∈
			

			
				
			
			
				Ω
				×
				ℝ
			

		
	
.Then, for 
	
		
			
				‖
				𝑢
				‖
				≤
				1
			

		
	
 it follows that
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝑐
				𝐼
				(
				𝑢
				)
				≥
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				
				−
				𝜀
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				𝑑
				𝑥
				−
				𝐶
			

			

				𝜀
			

			

				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝛽
				(
				𝑥
				)
			

			
				≥
				𝑐
				𝑑
				𝑥
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				−
				𝜀
				𝐶
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				1
				1
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				−
				𝐶
			

			

				𝜀
			

			

				𝐶
			

			

				𝛽
			

			

				−
			

			
				1
				2
			

			
				‖
				𝑢
				‖
			

			

				𝛽
			

			

				−
			

			

				.
			

		
	

						Therefore, there exists two positive real numbers 
	
		
			

				𝛾
			

		
	
 and 
	
		
			

				𝑎
			

		
	
 such that 
	
		
			
				𝐼
				(
				𝑢
				)
				≥
				𝑎
				>
				0
			

		
	
, for all 
	
		
			
				𝑢
				∈
				𝑋
			

		
	
  with  
	
		
			
				‖
				𝑢
				‖
				=
				𝛾
			

		
	
.(ii) From 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
 it follows that 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑡
				)
				≥
				𝑐
				|
				𝑡
				|
			

			

				𝜃
			

		
	
, for all 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
 and 
	
		
			
				|
				𝑡
				|
				≥
				𝐾
			

		
	
. In the other hand, when 
	
		
			
				|
				𝑡
				|
				≥
				𝐾
			

		
	
 from 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
 we obtain that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				
				𝑀
			

			

				1
			

			
				𝐶
				(
				𝑡
				)
				≤
			

			

				6
			

			
				
			
			
				𝛼
				𝑡
			

			

				𝛼
			

			
				≤
				𝐶
			

			

				6
			

			
				
			
			
				𝛼
				𝑡
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				,
				
				𝑀
			

			

				2
			

			
				𝐶
				(
				𝑡
				)
				≤
			

			

				8
			

			
				
			
			
				𝛼
				𝑡
			

			

				𝛼
			

			
				≤
				𝐶
			

			

				8
			

			
				
			
			
				𝛼
				𝑡
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			

				.
			

		
	

						Hence, for any fixed 
	
		
			
				𝜔
				∈
				𝑋
				⧵
				{
				0
				}
			

		
	
 and 
	
		
			
				𝑡
				>
				1
			

		
	
 we have
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝐶
				𝐼
				(
				𝑡
				𝜔
				)
				≤
			

			

				6
			

			
				
			
			
				𝛼
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑡
				𝜔
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				+
				𝐶
			

			

				8
			

			
				
			
			
				𝛼
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑡
				𝜔
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				−
				
			

			

				Ω
			

			
				≤
				𝐶
				𝐹
				(
				𝑥
				,
				𝑡
				𝜔
				)
				𝑑
				𝑥
			

			

				6
			

			
				
			
			
				𝛼
				𝑡
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝜔
			

			

				𝑝
			

			

				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				1
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				+
				𝐶
			

			

				8
			

			
				
			
			
				𝛼
				𝑡
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝜔
			

			

				𝑝
			

			

				2
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				2
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				−
				𝑡
			

			

				𝜃
			

			

				
			

			

				Ω
			

			
				𝐹
				(
				𝑥
				,
				𝜔
				)
				𝑑
				𝑥
				,
			

		
	

						which implies 
	
		
			
				𝐼
				(
				𝑡
				𝜔
				)
				→
				−
				∞
				(
				𝑡
				→
				+
				∞
				)
			

		
	
.
Proof of Theorem 7. From Lemmas 8 and 9 and the fact that 
	
		
			
				𝐼
				(
				0
				)
				=
				0
			

		
	
, 
	
		
			

				𝐼
			

		
	
 satisfies the Mountain-Pass theorem (see [20, 21]). Therefore, 
	
		
			

				𝐼
			

		
	
 has at least one nontrivial critical point; that is, 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 has a nontrivial weak solution. The proof is complete. 
In the following, we will prove the second main result of the present paper.
Theorem 10.  Suppose 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
, 
	
		
			
				(
				𝐟
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐟
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐟
			

			

				3
			

			

				)
			

		
	
 hold. Then 
	
		
			

				𝐼
			

		
	
 has a sequence of critical points 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 such that 
	
		
			
				𝐼
				(
				𝑢
			

			

				𝑛
			

			
				)
				→
				+
				∞
			

		
	
 and 
	
		
			

				(
			

			

				P
			

			

				)
			

		
	
 has infinite many pairs of solutions. 
Since 
	
		
			

				𝑋
			

		
	
 is a reflexive and separable Banach space, then there are 
	
		
			
				{
				𝑒
			

			

				𝑖
			

			
				}
				⊂
				𝑋
			

		
	
 and 
	
		
			
				{
				𝑒
			

			
				∗
				𝑖
			

			
				}
				⊂
				𝑋
			

			

				∗
			

		
	
 such that
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝑋
				=
			

			
				
			
			
				
				𝑒
				s
				p
				a
				n
			

			

				𝑖
			

			
				
				,
				𝑋
				∶
				𝑖
				=
				1
				,
				2
				,
				…
			

			

				∗
			

			

				=
			

			
				
			
			
				
				𝑒
				s
				p
				a
				n
			

			
				∗
				𝑖
			

			
				
				,
				
				𝑒
				∶
				𝑖
				=
				1
				,
				2
				,
				…
			

			

				𝑖
			

			
				,
				𝑒
			

			
				∗
				𝑗
			

			
				
				=
				
				1
				,
				𝑖
				=
				𝑗
				,
				0
				,
				𝑖
				≠
				𝑗
				.
			

		
	

					For convenience, we write 
	
		
			

				𝑋
			

			

				𝑖
			

			
				=
				s
				p
				a
				n
				{
				𝑒
			

			

				𝑖
			

			

				}
			

		
	
, 
	
		
			

				𝑌
			

			

				𝑘
			

			
				=
				⨁
			

			
				𝑘
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝑖
			

		
	
, and 
	
		
			

				𝑍
			

			

				𝑘
			

			
				=
				⨁
			

			
				∞
				𝑖
				=
				𝑘
			

			

				𝑋
			

			

				𝑖
			

		
	
.
Lemma 11.  If 
	
		
			
				𝛽
				∈
				𝐶
			

			

				+
			

			

				(
			

			
				
			
			
				Ω
				)
			

		
	
 such that 
	
		
			
				𝛽
				(
				𝑥
				)
				<
				𝑝
			

			
				∗
				𝑀
			

			
				(
				𝑥
				)
			

		
	
 for any 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
, denote
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑘
			

			
				
				∶
				=
				s
				u
				p
				|
				𝑢
				|
			

			
				𝛽
				(
				𝑥
				)
			

			
				∶
				‖
				𝑢
				‖
				=
				1
				,
				𝑢
				∈
				𝑍
			

			

				𝑘
			

			
				
				.
			

		
	

						Then 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝛿
			

			

				𝑘
			

			
				=
				0
			

		
	
. 
Since the proof of Lemma 11 is similar to that of Lemma 4.9 in [7], we omit it.
Proof of Theorem 10. By the assumptions 
	
		
			
				(
				𝐌
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
, and 
	
		
			
				(
				𝐟
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				𝐼
			

		
	
 satisfies 
	
		
			
				(
				𝐏
				𝐒
				)
			

		
	
 condition and from 
	
		
			
				(
				𝐟
			

			

				3
			

			

				)
			

		
	
 it is also an even functional. In the sequel, we will show that if 
	
		
			

				𝑘
			

		
	
 is large enough, then there exist 
	
		
			

				𝜌
			

			

				𝑘
			

			
				>
				𝑟
			

			

				𝑘
			

			
				>
				0
			

		
	
 such that(i)
	
		
			

				𝑏
			

			

				𝑘
			

			
				∶
				=
				i
				n
				f
			

			
				𝑢
				∈
				𝑍
			

			

				𝑘
			

			
				,
				‖
				𝑢
				‖
				=
				𝑟
			

			

				𝑘
			

			
				𝐼
				(
				𝑢
				)
				→
				+
				∞
				(
				𝑘
				→
				∞
				)
			

		
	
;(ii)
	
		
			

				𝑎
			

			

				𝑘
			

			
				∶
				=
				m
				a
				x
			

			
				𝑢
				∈
				𝑌
			

			

				𝑘
			

			
				,
				‖
				𝑢
				‖
				=
				𝜌
			

			

				𝑘
			

			
				𝐼
				(
				𝑢
				)
				≤
				0
			

		
	
.
					Therefore, to obtain the results of Theorem 10 it is enough to apply Fountain theorem (see [21]).(i) For any 
	
		
			
				𝑢
				∈
				𝑍
			

			

				𝑘
			

		
	
 with 
	
		
			
				‖
				𝑢
				‖
			

		
	
 big enough, we have
										
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝐶
				𝐼
				(
				𝑢
				)
				≥
			

			

				5
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				1
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				1
			

			
				+
				𝐶
			

			

				7
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				2
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				2
			

			
				−
				𝐶
			

			
				1
				4
			

			

				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝛽
				(
				𝑥
				)
			

			
				𝑑
				𝑥
				−
				𝑐
			

			

				1
			

			
				≥
				𝑐
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			
				1
				4
			

			
				|
				𝑢
				|
			

			
				𝛽
				(
				𝜉
				)
				𝛽
				(
				𝑥
				)
			

			
				−
				𝑐
			

			

				2
			

			

				,
			

			
				w
				h
				e
				r
				e
			

			
				𝑐
				𝜉
				∈
				Ω
				.
				𝐼
				(
				𝑢
				)
				≥
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			
				1
				4
			

			
				−
				𝑐
			

			

				2
			

			

				,
			

			
				i
				f
			

			
				|
				𝑢
				|
			

			
				𝛽
				(
				𝑥
				)
			

			
				𝑐
				≤
				1
				,
				𝐼
				(
				𝑢
				)
				≥
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			
				1
				4
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			
				‖
				𝑢
				‖
			

			

				𝛽
			

			

				+
			

			
				−
				𝑐
			

			

				2
			

			

				,
			

			
				i
				f
			

			
				|
				𝑢
				|
			

			
				𝛽
				(
				𝑥
				)
			

			
				𝑐
				>
				1
				,
				𝐼
				(
				𝑢
				)
				≥
			

			

				∗
			

			
				
			
			
				𝛼
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			
				1
				4
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			
				‖
				𝑢
				‖
			

			

				𝛽
			

			

				+
			

			
				−
				𝑐
			

			

				3
			

			
				=
				𝑐
			

			

				∗
			

			
				
			
			
				𝛼
				
				1
			

			
				
			
			
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			
				1
				5
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			
				‖
				𝑢
				‖
			

			

				𝛽
			

			

				+
			

			
				
				−
				𝑐
			

			

				3
			

			

				.
			

		
	
Set 
	
		
			
				‖
				𝑢
				‖
				=
				𝑟
			

			

				𝑘
			

			

				=
			

		
	
 
	
		
			
				(
				𝐶
			

			
				1
				5
			

			

				𝛽
			

			

				+
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			

				)
			

			
				1
				/
				(
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝛽
			

			

				+
			

			

				)
			

		
	
. Because 
	
		
			

				𝛿
			

			

				𝑘
			

			
				→
				0
			

		
	
 and 
	
		
			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				≤
				𝛼
				𝑝
			

			
				+
				𝑀
			

			
				<
				𝛽
			

			

				+
			

		
	
, we have
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝑐
				𝐼
				(
				𝑢
				)
				≥
			

			

				∗
			

			
				
			
			
				𝛼
				
				1
			

			
				
			
			
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				‖
				𝑢
				‖
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝐶
			

			
				1
				5
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			
				‖
				𝑢
				‖
			

			

				𝛽
			

			

				+
			

			
				
				−
				𝑐
			

			

				3
			

			
				=
				𝑐
			

			

				∗
			

			
				
			
			
				𝛼
				⎛
				⎜
				⎜
				⎜
				⎝
				1
			

			
				
			
			
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				
				𝐶
			

			
				1
				5
			

			

				𝛽
			

			

				+
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				/
				(
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝛽
			

			

				+
			

			

				)
			

			
				−
				𝐶
			

			
				1
				5
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			
				
				𝐶
			

			
				1
				5
			

			

				𝛽
			

			

				+
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			

				
			

			

				𝛽
			

			

				+
			

			
				/
				(
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝛽
			

			

				+
			

			

				)
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				−
				𝑐
			

			

				3
			

			
				=
				𝑐
			

			

				∗
			

			
				
			
			
				𝛼
				
				1
			

			
				
			
			
				
				𝑝
			

			
				+
				𝑀
			

			

				
			

			

				𝛼
			

			
				−
				1
			

			
				
			
			
				
				𝛽
			

			

				+
			

			

				
			

			

				𝛼
			

			
				
				×
				
				𝐶
			

			
				1
				5
			

			

				𝛽
			

			

				+
			

			

				𝛿
			

			

				𝛽
			

			

				+
			

			

				𝑘
			

			

				
			

			
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				/
				(
				𝛼
				𝑝
			

			
				−
				𝑚
			

			
				−
				𝛽
			

			

				+
			

			

				)
			

			
				−
				𝑐
			

			

				3
			

			
				⟶
				+
				∞
				(
				𝑘
				⟶
				∞
				)
				.
			

		
	
(ii) From 
	
		
			
				(
				𝐀
				𝐑
				)
			

		
	
, we have 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑡
				)
				≥
				𝐶
			

			
				1
				6
			

			
				|
				𝑡
				|
			

			

				𝜃
			

			
				−
				𝐶
			

			
				1
				7
			

		
	
. Because 
	
		
			
				𝜃
				>
				(
				𝑝
			

			
				+
				𝑀
			

			

				)
			

			

				𝛼
			

		
	
 and 
	
		
			
				d
				i
				m
				𝑌
			

			

				𝑘
			

			
				=
				𝑘
			

		
	
, it is obvious that 
	
		
			
				𝐼
				(
				𝑢
				)
				→
				−
				∞
			

		
	
 as 
	
		
			
				‖
				𝑢
				‖
				→
				∞
			

		
	
 for 
	
		
			
				𝑢
				∈
				𝑌
			

			

				𝑘
			

		
	
.
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