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Abstract. 
We derive general bounds for the large time size of supnorm values 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 of solutions to one-dimensional advection-diffusion equations 
	
		
			

				𝑢
			

			

				𝑡
			

			
				+
				(
				𝑏
				(
				𝑥
				,
				𝑡
				)
				𝑢
				)
			

			

				𝑥
			

			
				=
				𝑢
			

			
				𝑥
				𝑥
			

			
				,
				𝑥
				∈
				ℝ
				,
				𝑡
				>
				0
			

		
	
 with initial data 
	
		
			
				𝑢
				(
				⋅
				,
				0
				)
				∈
				𝐿
			

			

				𝑝
			

			

				0
			

			
				(
				ℝ
				)
				∩
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 for some 
	
		
			
				1
				≤
				𝑝
			

			

				0
			

			
				<
				∞
			

		
	
 and arbitrary bounded advection speeds 
	
		
			
				𝑏
				(
				𝑥
				,
				𝑡
				)
			

		
	
, introducing new techniques based on suitable energy arguments. Some open problems and related results are also given.


1. Introduction
In this work, we obtain very general large time estimates for supnorm values of solutions 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 to parabolic initial value problems of the form
	
 		
 			
				(
				1
				a
				)
			
 			
				(
				1
				b
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				+
				(
				𝑏
				(
				𝑥
				,
				𝑡
				)
				𝑢
				)
			

			

				𝑥
			

			
				=
				𝑢
			

			
				𝑥
				𝑥
			

			
				,
				𝑥
				∈
				ℝ
				,
				𝑡
				>
				0
				,
				𝑢
				(
				⋅
				,
				0
				)
				=
				𝑢
			

			

				0
			

			
				∈
				𝐿
			

			

				𝑝
			

			

				0
			

			
				(
				ℝ
				)
				∩
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
				,
				1
				≤
				𝑝
			

			

				0
			

			
				<
				∞
				,
			

		
	
for arbitrary continuously differentiable advection fields 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
. Here, by solution to (1a) and (1b) in some time interval 
	
		
			
				[
				0
				,
				𝑇
			

			

				∗
			

			

				[
			

		
	
,
	
		
			
				0
				<
				𝑇
			

			

				∗
			

			
				≤
				∞
			

		
	
, we mean a function 
	
		
			
				𝑢
				∶
				ℝ
				×
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				→
				ℝ
			

		
	
 which is bounded in each strip 
	
		
			

				𝑆
			

			

				𝑇
			

			
				=
				ℝ
				×
				[
				0
				,
				𝑇
				]
			

		
	
, 
	
		
			
				0
				<
				𝑇
				<
				𝑇
			

			

				∗
			

		
	
, solves (1a) in the classical sense for 
	
		
			
				0
				<
				𝑡
				<
				𝑇
			

			

				∗
			

		
	
, and satisfies 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				→
				𝑢
			

			

				0
			

		
	
 in
	
		
			

				𝐿
			

			
				1
				l
				o
				c
			

			
				(
				ℝ
				)
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

		
	
. It follows from the a priori estimates given in Section 2 that all solutions of problem (1a), (1b) are actually globally defined 
	
		
			
				(
				𝑇
			

			

				∗
			

			
				=
				∞
				)
			

		
	
, with 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				∈
				𝐶
			

			

				0
			

			
				(
				[
				0
				,
				∞
				[
				,
				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
				)
			

		
	
 for each 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

		
	
 finite. Given 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
, what then can be said about the size of supnorm values 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 for 
	
		
			
				𝑡
				≫
				1
			

		
	
?
When 
	
		
			
				𝜕
				𝑏
				/
				𝜕
				𝑥
				≥
				0
			

		
	
 for all 
	
		
			
				𝑥
				∈
				ℝ
				,
				𝑡
				≥
				0
			

		
	
, it is well known that, for each 
	
		
			

				𝑝
			

			

				0
			

			
				≤
				𝑝
				≤
				∞
			

		
	
, 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

		
	
 is monotonically decreasing in 
	
		
			

				𝑡
			

		
	
, with
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				
				𝑝
				≤
				𝐾
			

			

				0
			

			
				
				‖
				‖
				𝑢
			

			

				0
			

			
				‖
				‖
			

			

				𝐿
			

			
				𝑝
				0
			

			
				(
				ℝ
				)
			

			

				𝑡
			

			
				−
				1
				/
				2
				𝑝
			

			

				0
			

			
				
				𝑏
				∀
				𝑡
				>
				0
			

			

				𝑥
			

			
				
				≥
				0
			

		
	

					for some constant 
	
		
			
				0
				<
				𝐾
				(
				𝑝
			

			

				0
			

			
				)
				<
				2
			

			
				−
				1
				/
				𝑝
			

			

				0
			

		
	
 that depends only on 
	
		
			

				𝑝
			

			

				0
			

		
	
; see, for example, [1–5]. For general 
	
		
			
				𝑏
				(
				𝑥
				,
				𝑡
				)
			

		
	
, however, estimating 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 is much harder. To see why, let us illustrate with the important case 
	
		
			

				𝑝
			

			

				0
			

			
				=
				1
			

		
	
, where one has 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				(
				‖
				𝑢
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				≤
				‖
				‖
				𝑢
			

			

				0
			

			
				‖
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				∀
				𝑡
				>
				0
				,
			

		
	

					as recalled in Theorem 1. Writing (1a) as
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				+
				𝑏
				(
				𝑥
				,
				𝑡
				)
				𝑢
			

			

				𝑥
			

			
				=
				𝑢
			

			
				𝑥
				𝑥
			

			
				−
				𝑏
			

			

				𝑥
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑢
				,
			

		
	

					we observe on the right hand side of (4) that 
	
		
			
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				|
			

		
	
 is pushed to grow at points 
	
		
			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 where 
	
		
			

				𝑏
			

			

				𝑥
			

			
				(
				𝑥
				,
				𝑡
				)
				<
				0
			

		
	
. If this condition persists long enough, large values of 
	
		
			
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				|
			

		
	
 might be generated, particularly at sites where 
	
		
			
				−
				𝑏
			

			

				𝑥
			

			
				(
				𝑥
				,
				𝑡
				)
				≫
				1
			

		
	
. Now, because of constraint (3), any persistent growth in solution size will eventually create long thin structures as shown in Figure 1, which, in turn, tend to be effectively dissipated by viscosity. The final overall behavior that ultimately results from such competition is not immediately clear, either on physical or on mathematical grounds.




	
	



	
	



	
	



	



	



	



	



	



	
	













	
	
	


	
	
	
	
		





	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
		
		
		
	


	
		
	
	
		
		
		
	
	
		
	
	
		
	


	
		
	




	
		
	
	
		
		
	


	
		
	


	
		
	
	
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
			
			
		
		
			
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	

Figure 1: Solution profiles showing typical growth in regions with 
	
		
			

				𝑏
			

			

				𝑥
			

			
				<
				0
			

		
	
, where 
	
		
			
				𝑏
				=
				5
				c
				o
				s
				𝑥
			

		
	
. After reaching maximum height, solution starts decaying very slowly due to its spreading and mass conservation (decay rate is not presently known).


As shown in (4), it is not the magnitude of 
	
		
			
				𝑏
				(
				𝑥
				,
				𝑡
				)
			

		
	
 itself but instead its oscillation that is relevant in determining 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
. Accordingly, we introduce the quantity 
	
		
			
				𝐵
				(
				𝑡
				)
			

		
	
 defined by
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				1
				𝐵
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				
				s
				u
				p
			

			
				𝑥
				∈
				ℝ
			

			
				𝑏
				(
				𝑥
				,
				𝑡
				)
				−
				i
				n
				f
			

			
				𝑥
				∈
				ℝ
			

			
				
				𝑏
				(
				𝑥
				,
				𝑡
				)
				,
				𝑡
				≥
				0
				,
			

		
	

					which plays a fundamental role in the analysis. Our main result is now easily stated.

        Main Theorem. For each 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

		
	
, one has 1
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				3
				√
			

			
				
			
			

				3
			

			
				
			
			
				𝑝
				
				2
				𝜋
			

			
				1
				/
				𝑝
			

			
				⋅
				ℬ
			

			
				1
				/
				𝑝
			

			
				⋅
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			

				,
			

		
	
where 
	
		
			
				ℬ
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				𝐵
				(
				𝑡
				)
			

		
	
.
In particular, in the important case 
	
		
			

				𝑝
			

			

				0
			

			
				=
				1
			

		
	
 considered above, we obtain, using (3), 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				3
				√
			

			
				
			
			

				3
			

			
				
			
			
				
				‖
				‖
				𝑢
				2
				𝜋
				⋅
				ℬ
				⋅
			

			

				0
			

			
				‖
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

					so that 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 stays uniformly bounded for all time in this case.2 Estimates similar to (6) can also be shown to hold for the 
	
		
			

				𝑛
			

		
	
-dimensional problem
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				+
				d
				i
				v
				(
				𝐛
				(
				𝑥
				,
				𝑡
				)
				𝑢
				)
				=
				Δ
				𝑢
				,
				𝑢
				(
				⋅
				,
				0
				)
				∈
				𝐿
			

			

				𝑝
			

			
				(
				ℝ
			

			

				𝑛
			

			
				)
				∩
				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				𝑛
			

			
				)
				,
			

		
	

					but to simplify our discussion we consider here the case 
	
		
			
				𝑛
				=
				1
			

		
	
 only. Our derivation of (6), which improves some unpublished results by the third author, uses the 1D inequality
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				‖
				𝚟
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				𝐶
			

			

				∞
			

			
				‖
				𝚟
				‖
			

			
				𝐿
				1
				/
				3
			

			

				1
			

			
				(
				ℝ
				)
			

			
				‖
				‖
				𝚟
			

			

				𝑥
			

			
				‖
				‖
			

			
				𝐿
				2
				/
				3
			

			

				2
			

			
				(
				ℝ
				)
			

			
				,
				𝚟
				∈
				𝐿
			

			

				1
			

			
				(
				ℝ
				)
				∩
				𝐻
			

			

				1
			

			
				(
				ℝ
				)
				,
			

		
	

					where 
	
		
			

				𝐶
			

			

				∞
			

			
				=
				(
				3
				/
				4
				)
			

			
				2
				/
				3
			

		
	
, and can be readily extended to other problems of interest like 1D systems of viscous conservation laws [6, Ch. 9] or the more general equation
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				+
				(
				𝑏
				(
				𝑥
				,
				𝑡
				,
				𝑢
				)
				𝑢
				)
			

			

				𝑥
			

			
				=
				
				𝑎
				(
				𝑥
				,
				𝑡
				,
				𝑢
				)
				𝑢
			

			

				𝑥
			

			

				
			

			

				𝑥
			

			
				,
				𝑎
				(
				𝑥
				,
				𝑡
				,
				𝑢
				)
				≥
				𝜇
				(
				𝑡
				)
				>
				0
				,
			

		
	

					with bounded values 
	
		
			
				𝑏
				(
				𝑥
				,
				𝑡
				,
				𝑢
				)
			

		
	
; provided that we assume 
	
		
			

				∫
			

			

				∞
			

			
				𝜇
				(
				𝑡
				)
				𝑑
				𝑡
				=
				∞
			

		
	
: using a similar argument, we get the estimate3 [7, Ch. 2]
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				3
				√
			

			
				
			
			

				3
			

			
				
			
			
				𝑝
				
				2
				𝜋
			

			
				1
				/
				𝑝
			

			
				⋅
				ℬ
			

			
				𝜇
				1
				/
				𝑝
			

			
				⋅
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

					for each 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

		
	
, where
	
 		
 			
				(
				1
				2
				a
				)
			
 			
				(
				1
				2
				b
				)
			
 		
	

	
		
			

				ℬ
			

			

				𝜇
			

			
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				𝐵
				(
				𝑡
				)
			

			
				
			
			
				,
				1
				𝜇
				(
				𝑡
				)
				𝐵
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				
				s
				u
				p
			

			
				𝑥
				∈
				ℝ
			

			
				𝑏
				(
				𝑥
				,
				𝑡
				,
				𝑢
				(
				𝑥
				,
				𝑡
				)
				)
				−
				i
				n
				f
			

			
				𝑥
				∈
				ℝ
			

			
				
				.
				𝑏
				(
				𝑥
				,
				𝑡
				,
				𝑢
				(
				𝑥
				,
				𝑡
				)
				)
			

		
	
More involving applications, such as problems with superlinear advection or degenerate diffusion, which require considerable extra work, will be studied in the future.
2. A Priori Estimates
This section contains some preliminary results on the solutions of problem (1a) and (1b) needed later for our derivation of estimate (6), which is completed in Section 3. (Recall that a solution on some given time interval 
	
		
			
				[
				0
				,
				𝑇
			

			

				∗
			

			

				[
			

		
	
, 
	
		
			
				0
				<
				𝑇
			

			

				∗
			

			
				≤
				∞
			

		
	
, is a function
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				∈
				𝐿
			

			
				∞
				l
				o
				c
			

			
				(
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				,
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
				)
			

		
	
 which is smooth (
	
		
			

				𝐶
			

			

				2
			

		
	
 in 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝐶
			

			

				1
			

		
	
 in 
	
		
			

				𝑡
			

		
	
) in 
	
		
			
				ℝ
				×
				]
				0
				,
				𝑇
			

			

				∗
			

			

				[
			

		
	
 and solves (1a) there, verifying the initial condition in the sense of
	
		
			

				𝐿
			

			
				1
				l
				o
				c
			

			
				(
				ℝ
				)
			

		
	
, i.e., 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				−
				𝑢
			

			

				0
			

			

				‖
			

			

				𝐿
			

			

				1
			

			
				(
				𝕂
				)
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

		
	
 for each compact 
	
		
			
				𝕂
				⊂
				ℝ
			

		
	
. Local existence theory can be found in, e.g., [8, Ch. 6].) We start with a simple Gronwall-type estimate for 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				0
			

			
				≤
				𝑞
				<
				∞
			

		
	
. The corresponding result for the supnorm 
	
		
			
				(
				𝑞
				=
				∞
				)
			

		
	
 is more difficult to obtain and will be given at the end of Section 2; see Theorem 4.
Theorem 1.  If
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				∈
				𝐿
			

			
				∞
				l
				o
				c
			

			
				(
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				,
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
				)
			

		
	
 solves problem (1a), (1b), then 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				∈
				𝐶
			

			

				0
			

			
				(
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				,
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
				)
			

		
	
 for each 
	
		
			

				𝑝
			

			

				0
			

			
				≤
				𝑞
				<
				∞
			

		
	
, and
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				‖
				𝑢
				(
				⋅
				,
				0
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				
				1
				⋅
				e
				x
				p
			

			
				
			
			
				2
				
				(
				𝑞
				−
				1
				)
			

			
				𝑡
				0
			

			
				𝐵
				(
				𝜏
				)
			

			

				2
			

			
				
				𝑑
				𝜏
			

		
	

						for all 
	
		
			
				0
				<
				𝑡
				<
				𝑇
			

			

				∗
			

		
	
.
Proof. The proof is standard, so we will only sketch the basic steps. Taking 
	
		
			
				𝑆
				∈
				𝐶
			

			

				1
			

			
				(
				ℝ
				)
			

		
	
 such that 
	
		
			

				𝑆
			

			

				
			

			
				(
				v
				)
				≥
				0
			

		
	
 for all 
	
		
			

				v
			

		
	
, 
	
		
			
				𝑆
				(
				0
				)
				=
				0
			

		
	
,
	
		
			
				𝑆
				(
				v
				)
				=
				s
				g
				n
				(
				v
				)
			

		
	
 for
	
		
			
				|
				v
				|
				≥
				1
			

		
	
, let (given 
	
		
			
				𝛿
				>
				0
			

		
	
)
	
		
			

				𝐿
			

			

				𝛿
			

			
				∫
				(
				u
				)
				=
			

			

				u
			

			

				0
			

			
				𝑆
				(
				v
				/
				𝛿
				)
				𝑑
				v
			

		
	
, so that
	
		
			

				𝐿
			

			

				𝛿
			

			
				(
				u
				)
				→
				|
				u
				|
			

		
	
 as 
	
		
			
				𝛿
				→
				0
			

		
	
, uniformly in
	
		
			

				u
			

		
	
. Let
	
		
			

				Φ
			

			

				𝛿
			

			
				(
				u
				)
				=
				𝐿
			

			

				𝛿
			

			
				(
				u
				)
			

			

				𝑞
			

		
	
. Given 
	
		
			
				𝑅
				>
				0
			

		
	
, 
	
		
			
				0
				<
				𝜖
				≤
				1
			

		
	
, let 
	
		
			

				𝜁
			

			

				𝑅
			

			
				(
				⋅
				)
			

		
	
 be the cut-off function 
	
		
			

				𝜁
			

			

				𝑅
			

			
				(
				𝑥
				)
				=
				0
			

		
	
 for 
	
		
			
				|
				𝑥
				|
				≥
				𝑅
			

		
	
, 
	
		
			

				𝜁
			

			

				𝑅
			

			
				√
				(
				𝑥
				)
				=
				e
				x
				p
				{
				−
				𝜖
			

			
				
			
			
				1
				+
				𝑥
			

			

				2
			

			
				√
				}
				−
				e
				x
				p
				{
				−
				𝜖
			

			
				
			
			
				1
				+
				𝑅
			

			

				2
			

			

				}
			

		
	
 for 
	
		
			
				|
				𝑥
				|
				<
				𝑅
			

		
	
. Multiplying (1a) by 
	
		
			

				Φ
			

			
				
				𝛿
			

			
				(
				𝑢
				(
				𝑥
				,
				𝑡
				)
				)
				⋅
				𝜁
			

			

				𝑅
			

			
				(
				𝑥
				)
			

		
	
 if 
	
		
			
				𝑞
				≠
				2
			

		
	
, or 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				⋅
				𝜁
			

			

				𝑅
			

			
				(
				𝑥
				)
			

		
	
 if 
	
		
			
				𝑞
				=
				2
			

		
	
, and integrating the result on 
	
		
			
				ℝ
				×
				[
				0
				,
				𝑡
				]
			

		
	
, we obtain, letting 
	
		
			
				𝛿
				→
				0
			

		
	
 and then 
	
		
			
				𝑅
				→
				∞
			

		
	
, since 
	
		
			
				𝑢
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				𝑡
				]
				)
			

		
	
,
	
 		
 			
				(
				1
				4
				a
				)
			
 		
	

	
		
			

				𝚄
			

			

				𝜖
			

			
				(
				𝑡
				)
				+
				𝑉
			

			

				𝜖
			

			
				(
				𝑡
				)
				≤
				𝚄
			

			

				𝜖
			

			
				
				(
				0
				)
				+
			

			
				𝑡
				0
			

			

				𝐺
			

			

				𝜖
			

			
				(
				𝜏
				)
				𝚄
			

			

				𝜖
			

			
				𝚄
				(
				𝜏
				)
				𝑑
				𝜏
				,
			

			

				𝜖
			

			
				
				(
				𝑡
				)
				=
			

			

				ℝ
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			

				𝑞
			

			

				𝑤
			

			

				𝜖
			

			
				(
				𝑥
				)
				𝑑
				𝑥
				,
			

		
	

						where 
	
		
			

				𝑤
			

			

				𝜖
			

			
				√
				(
				𝑥
				)
				=
				e
				x
				p
				{
				−
				𝜖
			

			
				
			
			
				1
				+
				𝑥
			

			

				2
			

			

				}
			

		
	
, 
	
		
			

				𝐺
			

			

				𝜖
			

			
				(
				𝑡
				)
				=
				(
				1
				/
				2
				)
				𝑞
				(
				𝑞
				−
				1
				)
				𝐵
				(
				𝑡
				)
			

			

				2
			

			
				+
				𝜖
				2
				𝑞
				⋅
				s
				u
				p
			

			
				0
				≤
				𝜏
				≤
				𝑡
			

			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 
	
		
			
				+
				𝜖
			

		
	
, and
							
	
 		
 			
				(
				1
				4
				b
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝜖
			

			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				1
				(
				𝑡
				)
			

			
				
			
			
				2
				×
				
				𝑞
				(
				𝑞
				−
				1
				)
			

			
				𝑡
				0
			

			

				
			

			
				𝑢
				≠
				0
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				𝑞
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				|
				|
				(
				𝑥
				,
				𝜏
				)
			

			

				2
			

			

				𝑤
			

			

				𝜖
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
				𝑑
				𝜏
				,
				i
				f
				𝑞
				≠
				2
				,
			

			
				𝑡
				0
			

			

				
			

			

				ℝ
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				|
				|
				(
				𝑥
				,
				𝜏
				)
			

			

				2
			

			

				𝑤
			

			

				𝜖
			

			
				(
				𝑥
				)
				𝑑
				𝑥
				𝑑
				𝜏
				,
				i
				f
				𝑞
				=
				2
				.
			

		
	
By Gronwall’s lemma, (14a) and (14b) give
	
		
			

				U
			

			

				𝜖
			

			
				(
				𝑡
				)
				≤
				U
			

			

				𝜖
			

			
				∫
				(
				0
				)
				⋅
				e
				x
				p
				{
			

			
				𝑡
				0
			

			

				𝐺
			

			

				𝜖
			

			
				(
				𝜏
				)
				𝑑
				𝜏
				}
			

		
	
, from which we obtain (13) by simply letting 
	
		
			
				𝜖
				→
				0
			

		
	
. This shows, in particular, that
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				∈
				𝐿
			

			
				∞
				l
				o
				c
			

			
				(
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				,
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
				)
			

		
	
 if 
	
		
			

				𝑝
			

			

				0
			

			
				≤
				𝑞
				<
				∞
			

		
	
. Now, to get 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
				∈
				𝐶
			

			

				0
			

			
				(
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				,
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
				)
			

		
	
, it is sufficient to show that, given 
	
		
			
				𝜀
				>
				0
			

		
	
 and 
	
		
			
				0
				<
				𝑇
				<
				𝑇
			

			

				∗
			

		
	
 arbitrary, we can find 
	
		
			
				𝑅
				=
				𝑅
				(
				𝜀
				,
				𝑇
				)
				≫
				1
			

		
	
 large enough so that we have 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				|
				𝑥
				|
				>
				𝑅
				)
			

			
				<
				𝜀
			

		
	
 for any 
	
		
			
				0
				≤
				𝑡
				≤
				𝑇
			

		
	
. Taking 
	
		
			
				𝜓
				∈
				𝐶
			

			

				2
			

			
				(
				ℝ
				)
			

		
	
 with 
	
		
			
				0
				≤
				𝜓
				≤
				1
			

		
	
 and 
	
		
			
				𝜓
				(
				𝑥
				)
				=
				0
			

		
	
 for all 
	
		
			
				𝑥
				≤
				0
			

		
	
, 
	
		
			
				𝜓
				(
				𝑥
				)
				=
				1
			

		
	
 for all 
	
		
			
				𝑥
				≥
				1
			

		
	
, let 
	
		
			

				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				∈
				𝐶
			

			

				2
			

			
				(
				ℝ
				)
			

		
	
 be the cut-off function given by 
	
		
			

				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
				=
				0
			

		
	
 if 
	
		
			
				|
				𝑥
				|
				≤
				𝑅
				−
				1
			

		
	
, 
	
		
			

				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
				=
				𝜓
				(
				|
				𝑥
				|
				−
				𝑅
				+
				1
				)
			

		
	
 if 
	
		
			
				𝑅
				−
				1
				<
				|
				𝑥
				|
				<
				𝑅
			

		
	
, and 
	
		
			

				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
				=
				1
			

		
	
 if 
	
		
			
				𝑅
				≤
				|
				𝑥
				|
				≤
				𝑅
				+
				𝑀
			

		
	
, 
	
		
			

				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
				=
				𝜓
				(
				𝑅
				+
				𝑀
				+
				1
				−
				|
				𝑥
				|
				)
			

		
	
 if 
	
		
			
				𝑅
				+
				𝑀
				<
				|
				𝑥
				|
				<
				𝑅
				+
				𝑀
				+
				1
			

		
	
, 
	
		
			

				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
				=
				0
			

		
	
 if 
	
		
			
				|
				𝑥
				|
				≥
				𝑅
				+
				𝑀
				+
				1
			

		
	
, where 
	
		
			
				𝑅
				>
				1
			

		
	
, 
	
		
			
				𝑀
				>
				0
			

		
	
 are given. Multiplying (1a) by 
	
		
			

				Φ
			

			
				
				𝛿
			

			
				(
				𝑢
				(
				𝑥
				,
				𝑡
				)
				)
				⋅
				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
			

		
	
 if 
	
		
			
				𝑞
				≠
				2
			

		
	
, or 
	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				⋅
				Ψ
			

			
				𝑅
				,
				𝑀
			

			
				(
				𝑥
				)
			

		
	
 if 
	
		
			
				𝑞
				=
				2
			

		
	
, and integrating the result on 
	
		
			
				ℝ
				×
				[
				0
				,
				𝑡
				]
			

		
	
, 
	
		
			
				0
				<
				𝑡
				≤
				𝑇
			

		
	
, we obtain, as in (14a) and (14b), by letting 
	
		
			
				𝛿
				→
				0
			

		
	
, 
	
		
			
				𝑀
				→
				∞
			

		
	
, that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				|
				𝑥
				|
				>
				𝑅
				)
			

			
				<
				𝜀
				/
				2
				+
				‖
				𝑢
				(
				⋅
				,
				0
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				|
				𝑥
				|
				>
				𝑅
				−
				1
				)
			

		
	
 for all 
	
		
			
				0
				≤
				𝑡
				≤
				𝑇
			

		
	
, provided that we take 
	
		
			
				𝑅
				>
				1
			

		
	
 sufficiently large. This gives the continuity result, and the proof is complete.
An important by-product of the proof above is that we have (letting 
	
		
			
				𝜖
				→
				0
			

		
	
 in (14a) and (14b), and using (13)), for each 
	
		
			
				0
				<
				𝑇
				<
				𝑇
			

			

				∗
			

		
	
 and 
	
		
			
				𝑞
				≥
				m
				a
				x
				{
				𝑝
			

			

				0
			

			
				,
				2
				}
			

		
	
, 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			

				ℝ
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				𝑞
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				|
				|
				(
				𝑥
				,
				𝜏
				)
			

			

				2
			

			
				𝑑
				𝑥
				𝑑
				𝜏
				<
				∞
				.
			

		
	

					Therefore, if we repeat the steps above leading to (14a) and (14b), we obtain (letting 
	
		
			
				𝛿
				→
				0
			

		
	
, 
	
		
			
				𝑅
				→
				∞
			

		
	
, 
	
		
			
				𝜖
				→
				0
			

		
	
, in this order, taking (13) and (15) into account) the identity
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				
				+
				𝑞
				(
				𝑞
				−
				1
				)
			

			
				𝑡
				0
			

			

				
			

			

				ℝ
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				𝑞
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				|
				|
				(
				𝑥
				,
				𝜏
				)
			

			

				2
			

			
				𝑑
				𝑥
				𝑑
				𝜏
				=
				‖
				𝑢
				(
				⋅
				,
				0
				)
				‖
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				
				+
				𝑞
				(
				𝑞
				−
				1
				)
			

			
				𝑡
				0
			

			

				
			

			

				ℝ
			

			
				|
				|
				|
				|
				(
				𝑏
				(
				𝑥
				,
				𝜏
				)
				−
				𝛽
				(
				𝜏
				)
				)
				𝑢
				(
				𝑥
				,
				𝜏
				)
			

			
				𝑞
				−
				2
			

			
				×
				𝑢
				(
				𝑥
				,
				𝜏
				)
				𝑢
			

			

				𝑥
			

			
				(
				𝑥
				,
				𝜏
				)
				𝑑
				𝑥
				𝑑
				𝜏
			

		
	

					for every 
	
		
			
				0
				<
				𝑡
				<
				𝑇
			

			

				∗
			

		
	
 and 
	
		
			
				m
				a
				x
				{
				𝑝
			

			

				0
			

			
				,
				2
				}
				≤
				𝑞
				<
				∞
			

		
	
, where
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				1
				𝛽
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				
				s
				u
				p
			

			
				𝑥
				∈
				ℝ
			

			
				𝑏
				(
				𝑥
				,
				𝑡
				)
				+
				i
				n
				f
			

			
				𝑥
				∈
				ℝ
			

			
				
				𝑏
				(
				𝑥
				,
				𝑡
				)
				,
				𝑡
				≥
				0
				.
			

		
	

					The core of the difficulty in the analysis of (1a) and (1b) is apparent here: under the sole assumption that 
	
		
			

				𝑏
			

		
	
 is bounded, it is not much clear how one should go about the last term in (16) in order to get more than (13) above. Actually, it will be convenient to consider (16) in the (equivalent) differential form, that is,
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				
				+
				𝑞
				(
				𝑞
				−
				1
				)
			

			

				ℝ
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				𝑞
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				|
				|
				(
				𝑥
				,
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑥
				=
				𝑞
				(
				𝑞
				−
				1
				)
			

			

				ℝ
			

			
				|
				|
				|
				|
				(
				𝑏
				(
				𝑥
				,
				𝑡
				)
				−
				𝛽
				(
				𝑡
				)
				)
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				𝑞
				−
				2
			

			
				×
				𝑢
				(
				𝑥
				,
				𝑡
				)
				𝑢
			

			

				𝑥
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑥
			

		
	

					for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				⧵
				𝐸
			

			

				𝑞
			

		
	
, where 
	
		
			

				𝐸
			

			

				𝑞
			

			
				⊂
				[
				0
				,
				𝑇
			

			

				∗
			

			

				[
			

		
	
 has zero measure. We then readily obtain, using (9) and the one-dimensional Nash inequality [9]
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				‖
				𝚟
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝐶
			

			

				2
			

			
				‖
				𝚟
				‖
			

			
				𝐿
				2
				/
				3
			

			

				1
			

			
				(
				ℝ
				)
			

			
				‖
				‖
				𝚟
			

			

				𝑥
			

			
				‖
				‖
			

			
				𝐿
				1
				/
				3
			

			

				2
			

			
				(
				ℝ
				)
			

			
				,
				𝐶
			

			

				2
			

			
				=
				
				3
				√
			

			
				
			
			

				3
			

			
				
			
			
				
				4
				𝜋
			

			
				1
				/
				3
			

			

				,
			

		
	

					where the value given above for 
	
		
			

				𝐶
			

			

				2
			

		
	
 is optimal [10], the following result.
Theorem 2.  Let 
	
		
			
				𝑞
				≥
				2
				𝑝
			

			

				0
			

		
	
. If 
	
		
			
				̂
				𝑡
				∈
				[
				0
				,
				𝑇
			

			

				∗
			

			
				[
				⧵
				𝐸
			

			

				𝑞
			

		
	
 is such that 
	
		
			
				(
				𝑑
				/
				𝑑
				𝑡
				)
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
				|
			

			
				𝑡
				=
			

			
				̂
				𝑡
				≥
				0
			

		
	
, then 
	
 		
 			
				(
				2
				0
				a
				)
			
 			
				(
				2
				0
				b
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				
				̂
				𝑡
				
				‖
				‖
				⋅
				,
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				
				𝑞
			

			
				
			
			
				2
				𝐶
			

			
				3
				2
			

			

				
			

			
				1
				/
				𝑞
			

			
				𝐵
				
				̂
				𝑡
				
			

			
				1
				/
				𝑞
			

			
				‖
				‖
				𝑢
				
				̂
				𝑡
				
				‖
				‖
				⋅
				,
			

			

				𝐿
			

			
				𝑞
				/
				2
			

			
				(
				ℝ
				)
			

			
				,
				‖
				‖
				𝑢
				
				̂
				𝑡
				
				‖
				‖
				⋅
				,
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				𝑞
			

			
				
			
			
				2
				𝐶
			

			

				2
			

			

				𝐶
			

			

				∞
			

			

				
			

			
				2
				/
				𝑞
			

			
				𝐵
				
				̂
				𝑡
				
			

			
				2
				/
				𝑞
			

			
				‖
				‖
				𝑢
				
				̂
				𝑡
				
				‖
				‖
				⋅
				,
			

			

				𝐿
			

			
				𝑞
				/
				2
			

			
				(
				ℝ
				)
			

			

				.
			

		
	

Proof. Consider (20a) first. From (5), (17), and (18), we have
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				|
				|
				𝑢
				
				̂
				𝑡
				
				|
				|
				𝑥
				,
			

			
				𝑞
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				
				̂
				𝑡
				
				|
				|
				𝑥
				,
			

			

				2
			

			
				
				̂
				𝑡
				
				
				𝑑
				𝑥
				≤
				𝐵
			

			

				ℝ
			

			
				|
				|
				𝑢
				
				̂
				𝑡
				
				|
				|
				𝑥
				,
			

			
				𝑞
				−
				1
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				
				̂
				𝑡
				
				|
				|
				𝑥
				,
				𝑑
				𝑥
				.
			

		
	

						This gives
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				|
				|
				𝑢
				
				̂
				𝑡
				
				|
				|
				𝑥
				,
			

			
				𝑞
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				
				̂
				𝑡
				
				|
				|
				𝑥
				,
			

			

				2
			

			
				
				̂
				𝑡
				
				𝑑
				𝑥
				≤
				𝐵
			

			

				2
			

			
				‖
				‖
				𝑢
				
				̂
				𝑡
				
				‖
				‖
				⋅
				,
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

						or, in terms of 
	
		
			
				̂
				𝑣
				∈
				𝐿
			

			

				1
			

			
				(
				ℝ
				)
				∩
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 defined by 
	
		
			
				̂
				̂
				𝑣
				(
				𝑥
				)
				=
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				|
			

			
				𝑞
				/
				2
			

		
	
 if 
	
		
			
				𝑞
				>
				2
			

		
	
, 
	
		
			
				̂
				̂
				𝑣
				(
				𝑥
				)
				=
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 if 
	
		
			
				𝑞
				=
				2
			

		
	
,
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				‖
				‖
				̂
				𝑣
			

			

				𝑥
			

			
				‖
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝑞
			

			
				
			
			
				2
				𝐵
				
				̂
				𝑡
				
				‖
				̂
				𝑣
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			

				.
			

		
	

						Using (19), we then get 
	
		
			
				‖
				̂
				𝑣
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				(
				𝑞
				/
				2
				)
				𝐶
			

			
				3
				2
			

			
				̂
				̂
				𝐵
				(
				𝑡
				)
				‖
				𝑣
				‖
			

			
				2
				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

		
	
, which is equivalent to (20a). Similarly, (20b) can be obtained, using (9).
Thus, we can use (20a) and (20b) when 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 is not decreasing. If it is decreasing, (18) becomes useless but at least we know in such case that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 is not increasing, which should be useful too. Different values of 
	
		
			

				𝑞
			

		
	
 have different scenarios, which we will have to piece together in some way. The next result shows us just how. To this end, it is convenient to introduce the quantities 
	
		
			
				𝔹
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
			

		
	
 and 
	
		
			

				𝕌
			

			

				𝑝
			

			
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
			

		
	
 defined by 
						
	
 		
 			
				(
				2
				4
				)
			
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝔹
				
				𝑡
			

			

				0
			

			
				
				
				;
				𝑡
				=
				s
				u
				p
				𝐵
				(
				𝜏
				)
				∶
				𝑡
			

			

				0
			

			
				
				,
				𝕌
				≤
				𝜏
				≤
				𝑡
			

			

				𝑝
			

			
				
				𝑡
			

			

				0
			

			
				
				
				;
				𝑡
				=
				s
				u
				p
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			
				∶
				𝑡
			

			

				0
			

			
				
				,
				≤
				𝜏
				≤
				𝑡
			

		
	

					given 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

			
				,
				0
				≤
				𝑡
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
			

			

				∗
			

		
	
 arbitrary.
Theorem 3.  Let 
	
		
			
				𝑞
				≥
				2
				𝑝
			

			

				0
			

		
	
. For each 
	
		
			
				0
				≤
				𝑡
			

			

				0
			

			
				<
				𝑇
			

			

				∗
			

		
	
, we have
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝕌
			

			

				𝑞
			

			
				
				𝑡
			

			

				0
			

			
				
				
				‖
				‖
				𝑢
				
				;
				𝑡
				≤
				m
				a
				x
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				;
				
				𝑞
			

			
				
			
			
				2
				𝐶
			

			
				3
				2
			

			

				
			

			
				1
				/
				𝑞
			

			
				𝔹
				
				𝑡
			

			

				0
			

			
				
				;
				𝑡
			

			
				1
				/
				𝑞
			

			

				𝕌
			

			
				𝑞
				/
				2
			

			
				
				𝑡
			

			

				0
			

			
				
				
				;
				𝑡
			

		
	

						for all 
	
		
			

				𝑡
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
			

			

				∗
			

		
	
.
Proof. Set 
	
		
			

				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
				=
				(
				(
				𝑞
				/
				2
				)
				𝐶
			

			
				3
				2
			

			

				)
			

			
				1
				/
				𝑞
			

			
				𝔹
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
			

			
				1
				/
				𝑞
			

			

				𝕌
			

			
				𝑞
				/
				2
			

			
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
			

		
	
. There are three cases to consider.Case I. 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for all 
	
		
			

				𝑡
			

			

				0
			

			
				≤
				𝜏
				≤
				𝑡
			

		
	
. By (20a), Theorem 2, we must then have 
	
		
			
				(
				𝑑
				/
				𝑑
				𝜏
				)
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				<
				0
			

		
	
 for all 
	
		
			
				𝜏
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑡
				]
				⧵
				𝐸
			

			

				𝑞
			

		
	
, so that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 is monotonically decreasing in 
	
		
			
				[
				𝑡
			

			

				0
			

			
				,
				𝑡
				]
			

		
	
. In particular, 
	
		
			

				𝕌
			

			

				𝑞
			

			
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
				=
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 in this case, and (26) holds.Case II. 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				1
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for some 
	
		
			

				𝑡
			

			

				1
			

			
				∈
				]
				𝑡
			

			

				0
			

			
				,
				𝑡
				]
			

		
	
. In this case, let 
	
		
			

				𝑡
			

			

				2
			

			
				∈
				]
				𝑡
			

			

				0
			

			
				,
				𝑡
				]
			

		
	
 be such that we have 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for all 
	
		
			

				𝑡
			

			

				0
			

			
				≤
				𝜏
				<
				𝑡
			

			

				2
			

		
	
, while 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				2
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				=
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
. We claim that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for every 
	
		
			

				𝑡
			

			

				2
			

			
				≤
				𝜏
				≤
				𝑡
			

		
	
: in fact, if this were not true, we could then find 
	
		
			

				𝑡
			

			

				3
			

			
				,
				𝑡
			

			

				4
			

		
	
 with 
	
		
			

				𝑡
			

			

				2
			

			
				≤
				𝑡
			

			

				3
			

			
				<
				𝑡
			

			

				4
			

			
				≤
				𝑡
			

		
	
 such that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for all 
	
		
			

				𝑡
			

			

				3
			

			
				<
				𝜏
				≤
				𝑡
			

			

				4
			

		
	
, 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				3
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				=
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
. By (20a), Theorem 2, this would require 
	
		
			
				(
				𝑑
				/
				𝑑
				𝜏
				)
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			
				𝑞
				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				<
				0
			

		
	
 for all 
	
		
			
				𝜏
				∈
				]
				𝑡
			

			

				3
			

			
				,
				𝑡
			

			

				4
			

			
				]
				⧵
				𝐸
			

			

				𝑞
			

		
	
, so that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 could not increase anywhere on 
	
		
			
				[
				𝑡
			

			

				3
			

			
				,
				𝑡
			

			

				4
			

			

				]
			

		
	
. This contradicts 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				3
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				<
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				4
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
, and so we have 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for every 
	
		
			

				𝑡
			

			

				2
			

			
				≤
				𝜏
				≤
				𝑡
			

		
	
, as claimed. On the other hand, by (20a), 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 has to be monotonically decreasing on 
	
		
			
				[
				𝑡
			

			

				0
			

			
				,
				𝑡
			

			

				2
			

			

				]
			

		
	
, just as in Case I. Therefore, we have 
	
		
			

				𝕌
			

			

				𝑞
			

			
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
				=
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

		
	
 in this case again, which shows (26).Case III. Consider 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
. This gives 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝜏
				)
				‖
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 for every 
	
		
			

				𝑡
			

			

				0
			

			
				≤
				𝜏
				≤
				𝑡
			

		
	
, by repeating the argument used on the interval 
	
		
			
				[
				𝑡
			

			

				2
			

			
				,
				𝑡
				]
			

		
	
 in Case II. It follows that we must have 
	
		
			

				𝕌
			

			

				𝑞
			

			
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
				≤
				𝜆
			

			

				𝑞
			

			
				(
				𝑡
				)
			

		
	
 in this case, and the proof of Theorem 3 is complete.
An important application of Theorem 3 is the following result.
Theorem 4.  Let 
	
		
			

				𝑝
			

			

				0
			

			
				≤
				𝑝
				<
				∞
			

		
	
, 
	
		
			
				0
				≤
				𝑡
			

			

				0
			

			
				<
				𝑇
			

			

				∗
			

		
	
. Then
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				(
				2
				𝑝
				)
			

			
				1
				/
				𝑝
			

			
				
				‖
				‖
				𝑢
				
				⋅
				m
				a
				x
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				
				𝑡
				;
				𝔹
			

			

				0
			

			
				
				;
				𝑡
			

			
				1
				/
				𝑝
			

			

				𝕌
			

			

				𝑝
			

			
				
				𝑡
			

			

				0
			

			
				
				
				;
				𝑡
			

		
	

						for any 
	
		
			

				𝑡
			

			

				0
			

			
				≤
				𝑡
				<
				𝑇
			

			

				∗
			

		
	
, where 
	
		
			
				𝔹
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
			

		
	
 and 
	
		
			

				𝕌
			

			

				𝑝
			

			
				(
				𝑡
			

			

				0
			

			
				;
				𝑡
				)
			

		
	
 are given in (24) and (25) above.
Proof. Let 
	
		
			
				𝑘
				∈
				ℤ
			

		
	
, 
	
		
			
				𝑘
				≥
				2
			

		
	
. Applying (26) successively with 
	
		
			
				𝑞
				=
				2
				𝑝
				,
				4
				𝑝
				,
				…
				,
				2
			

			

				𝑘
			

			

				𝑝
			

		
	
, we obtain
	
 		
 			
				(
				2
				8
				a
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				
				‖
				‖
				𝐮
				
				≤
				m
				a
				x
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				;
				𝐾
				(
				𝑘
				,
				ℓ
				)
			

			
				1
				/
				𝑝
			

			
				
				𝑡
				⋅
				𝔹
			

			

				0
			

			
				
				;
				𝑡
			

			
				(
				1
				/
				𝑝
				)
				(
				2
			

			
				−
				ℓ
			

			
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				‖
				‖
				𝑢
				
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			
				2
				ℓ
				𝑝
			

			
				(
				ℝ
				)
			

			
				,
				1
				≤
				ℓ
				≤
				𝑘
				−
				1
				;
				𝐾
				(
				𝑘
				,
				0
				)
			

			
				1
				/
				𝑝
			

			
				
				𝑡
				⋅
				𝔹
			

			

				0
			

			
				
				;
				𝑡
			

			
				(
				1
				/
				𝑝
				)
				(
				1
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				𝕌
			

			

				𝑝
			

			
				
				𝑡
			

			

				0
			

			
				
				
				,
				;
				𝑡
			

		
	

						where
							
	
 		
 			
				(
				2
				8
				b
				)
			
 		
	

	
		
			
				𝐾
				(
				𝑘
				,
				ℓ
				)
				=
			

			

				𝑘
			

			

				
			

			
				𝑗
				=
				ℓ
				+
				1
			

			
				
				2
			

			
				𝑗
				−
				1
			

			
				𝑝
				𝐶
			

			
				3
				2
			

			

				
			

			

				2
			

			
				−
				𝑗
			

			
				,
				0
				≤
				ℓ
				≤
				𝑘
				−
				1
				.
			

		
	
Now, for 
	
		
			
				1
				≤
				ℓ
				≤
				𝑘
				−
				1
			

		
	
,
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝔹
				
				𝑡
			

			

				0
			

			
				
				;
				𝑡
			

			
				(
				1
				/
				𝑝
				)
				(
				2
			

			
				−
				ℓ
			

			
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				‖
				‖
				𝑢
				
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			
				2
				ℓ
				𝑝
			

			
				(
				ℝ
				)
			

			
				
				𝑡
				≤
				𝔹
			

			

				0
			

			
				
				;
				𝑡
			

			
				(
				1
				/
				𝑝
				)
				(
				2
			

			
				−
				ℓ
			

			
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
				‖
			

			
				(
				2
			

			
				−
				ℓ
			

			
				−
				2
			

			
				−
				𝑘
			

			
				)
				/
				(
				1
				−
				2
			

			
				−
				𝑘
			

			
				)
				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			
				⋅
				‖
				‖
				𝑢
				
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			
				(
				1
				−
				2
			

			
				−
				ℓ
			

			
				)
				/
				(
				1
				−
				2
			

			
				−
				𝑘
			

			
				)
				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				
				‖
				‖
				𝑢
				
				≤
				m
				a
				x
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				;
				𝔹
				
				𝑡
			

			

				0
			

			
				
				;
				𝑡
			

			
				(
				1
				/
				𝑝
				)
				(
				1
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				‖
				‖
				𝑢
				
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			

				
			

		
	

						by Young’s inequality (see, e.g., [11, page 622]); in particular, we get, from (28a) and (28b),
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				≤
				(
				2
				𝑝
				)
			

			
				1
				/
				𝑝
			

			
				
				‖
				‖
				𝑢
				
				⋅
				m
				a
				x
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				
				𝑡
				;
				𝔹
			

			

				0
			

			
				
				;
				𝑡
			

			
				(
				1
				/
				𝑝
				)
				(
				1
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				𝕌
			

			

				𝑝
			

			
				
				𝑡
			

			

				0
			

			
				
				
				,
				;
				𝑡
			

		
	

						since 
	
		
			
				𝐾
				(
				𝑘
				,
				ℓ
				)
				≤
				2
				𝑝
			

		
	
 for all 
	
		
			
				0
				≤
				ℓ
				≤
				𝑘
				−
				1
			

		
	
. Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
, (27) is obtained.
It follows from Theorems 1 and 4 that 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 is globally defined (
	
		
			

				𝑇
			

			

				∗
			

			
				=
				∞
			

		
	
). Now, from (27), we immediately obtain, letting 
	
		
			
				𝑡
				→
				∞
			

		
	
,
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				(
				2
				𝑝
				)
			

			
				1
				/
				𝑝
			

			
				
				‖
				‖
				𝑢
				
				⋅
				m
				a
				x
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				
				𝑡
				;
				𝔹
			

			

				0
			

			

				
			

			
				1
				/
				𝑝
			

			

				𝕌
			

			

				𝑝
			

			
				
				𝑡
			

			

				0
			

			
				
				
			

		
	

					for any 
	
		
			

				𝑡
			

			

				0
			

			
				≥
				0
			

		
	
, where 
	
		
			
				𝔹
				(
				𝑡
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			

				𝕌
			

			

				𝑝
			

			
				(
				𝑡
			

			

				0
			

			

				)
			

		
	
 are given by
						
	
 		
 			
				(
				3
				2
				)
			
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝔹
				
				𝑡
			

			

				0
			

			
				
				
				=
				s
				u
				p
				𝐵
				(
				𝑡
				)
				∶
				𝑡
				≥
				𝑡
			

			

				0
			

			
				
				,
				𝕌
			

			

				𝑝
			

			
				
				𝑡
			

			

				0
			

			
				
				
				=
				s
				u
				p
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			
				∶
				𝑡
				≥
				𝑡
			

			

				0
			

			
				
				.
			

		
	

					Taking 
	
		
			
				(
				𝑡
			

			
				0
				(
				𝑛
				)
			

			

				)
			

			

				𝑛
			

		
	
 such that 
	
		
			

				𝑡
			

			
				0
				(
				𝑛
				)
			

			
				→
				∞
			

		
	
 and 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
			

			
				0
				(
				𝑛
				)
			

			
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				→
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
, and applying (31) with 
	
		
			

				𝑡
			

			

				0
			

			
				=
				𝑡
			

			
				0
				(
				𝑛
				)
			

		
	
 for each 
	
		
			

				𝑛
			

		
	
, we then obtain, letting 
	
		
			
				𝑛
				→
				∞
			

		
	
,
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				(
				2
				𝑝
				)
			

			
				1
				/
				𝑝
			

			
				
				⋅
				m
				a
				x
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				;
				ℬ
			

			
				1
				/
				𝑝
			

			
				⋅
				𝒰
			

			

				𝑝
			

			
				
				,
			

		
	

					where 
	
		
			

				ℬ
			

		
	
 and 
	
		
			

				𝒰
			

			

				𝑝
			

		
	
 are given by
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				ℬ
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				𝐵
				(
				𝑡
				)
				,
				𝒰
			

			

				𝑝
			

			
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			

				.
			

		
	

3. Large Time Estimates
In this section, we use the results obtained above to derive two basic large time estimates (given in Theorems 5 and 6) for solutions 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of problem (1a), (1b), which represent important intermediate steps that will ultimately lead to the main result stated in Theorem 7.
Theorem 5.  Let 
	
		
			
				𝑞
				≥
				2
				𝑝
			

			

				0
			

		
	
, and 
	
		
			
				ℬ
				≥
				0
			

		
	
 be as defined in (35). Then
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				𝑞
			

			
				(
				ℝ
				)
			

			
				,
				≤
				
				𝑞
			

			
				
			
			
				2
				𝐶
			

			
				3
				2
			

			

				
			

			
				1
				/
				𝑞
			

			
				⋅
				ℬ
			

			
				1
				/
				𝑞
			

			
				⋅
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			
				𝑞
				/
				2
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

						where 
	
		
			

				𝐶
			

			

				2
			

			
				√
				=
				(
				3
			

			
				
			
			
				3
				/
				(
				4
				𝜋
				)
				)
			

			
				1
				/
				3
			

		
	
 is the constant in the Nash inequality (19).
Proof. We set 
	
		
			
				𝑝
				=
				𝑞
				/
				2
			

		
	
 and assume that 
	
		
			

				𝒰
			

			

				𝑝
			

		
	
 is finite. As in the proof of Theorem 2, we take 
	
		
			
				𝑣
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 given by 
	
		
			
				𝑣
				(
				𝑥
				,
				𝑡
				)
				=
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				|
			

			

				𝑝
			

		
	
 if 
	
		
			
				𝑝
				>
				1
			

		
	
, 
	
		
			
				𝑣
				(
				𝑥
				,
				𝑡
				)
				=
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 if 
	
		
			
				𝑝
				=
				1
			

		
	
. It follows that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				=
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				𝐿
				2
				𝑝
			

			
				2
				𝑝
			

			
				(
				ℝ
				)
			

			
				,
				‖
				‖
				𝑣
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				=
				𝑝
			

			

				2
			

			

				
			

			

				ℝ
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

			
				2
				𝑝
				−
				2
			

			
				|
				|
				𝑢
			

			

				𝑥
			

			
				|
				|
				(
				𝑥
				,
				𝑡
				)
			

			

				2
			

			
				𝑑
				𝑥
				.
			

		
	

						Therefore, from (18), we have, for some null set 
	
		
			

				𝐸
			

			
				2
				𝑝
			

			
				⊂
				[
				0
				,
				∞
				[
			

		
	
,
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				
				1
				+
				4
				1
				−
			

			
				
			
			
				
				‖
				‖
				𝑣
				2
				𝑝
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				
				1
				≤
				4
				𝑝
				1
				−
			

			
				
			
			
				
				2
				𝑝
				𝐵
				(
				𝑡
				)
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				‖
				‖
				𝑣
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

		
	

						for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				[
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	
, and so, by (19),
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				
				1
				+
				4
				1
				−
			

			
				
			
			
				
				‖
				‖
				𝑣
				2
				𝑝
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				4
				𝑝
				𝐶
			

			

				2
			

			
				
				1
				1
				−
			

			
				
			
			
				
				2
				𝑝
				𝐵
				(
				𝑡
				)
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				𝐿
				2
				/
				3
			

			

				1
			

			
				(
				ℝ
				)
			

			
				‖
				‖
				𝑣
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				𝐿
				4
				/
				3
			

			

				2
			

			
				(
				ℝ
				)
			

			

				.
			

		
	

						This gives, by Young’s inequality ([11, page 622]), for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				∞
				[
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	
,
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				+
				4
			

			
				
			
			
				3
				
				1
				1
				−
			

			
				
			
			
				
				‖
				‖
				𝑣
				2
				𝑝
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				4
			

			
				
			
			
				3
				
				1
				1
				−
			

			
				
			
			
				
				
				2
				𝑝
				𝑝
				𝐶
			

			

				2
			

			

				
			

			

				3
			

			
				𝐵
				(
				𝑡
				)
			

			

				3
			

			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			

				.
			

		
	

						Setting
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑝
			

			
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				𝑔
				
				(
				𝑡
				)
				,
				𝑔
				(
				𝑡
				)
				=
				𝑝
				𝐶
			

			
				3
				2
			

			

				
			

			
				1
				/
				2
			

			
				𝐵
				(
				𝑡
				)
			

			
				1
				/
				2
			

			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

						we claim that
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑝
			

			

				.
			

		
	

						In fact, let us argue by contradiction. If (42) is false, we can pick 
	
		
			
				0
				<
				𝜂
				≪
				1
			

		
	
 and a sequence 
	
		
			
				(
				𝑡
			

			

				𝑗
			

			

				)
			

			
				𝑗
				≥
				0
			

		
	
, 
	
		
			

				𝑡
			

			

				𝑗
			

			
				→
				∞
			

		
	
, such that 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
			

			

				𝑗
			

			
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
			

		
	
 (for all 
	
		
			
				𝑗
				≥
				0
			

		
	
) and 
	
		
			
				𝑔
				(
				𝑡
				)
				≤
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				/
				2
			

		
	
 for all 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
. From (20a), Theorem 2, it will then follow that
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				,
				∀
				𝑡
				≥
				𝑡
			

			

				0
			

			

				.
			

		
	

						In fact, suppose that (43) were false, so that we had 
	
		
			
				‖
				𝑣
				(
				⋅
				,
			

			

				∼
			

			
				𝑡
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
			

		
	
 for some 
	
		
			

				∼
			

			
				𝑡
				>
				𝑡
			

			

				0
			

		
	
. Taking 
	
		
			
				𝑗
				≫
				1
			

		
	
 with 
	
		
			

				𝑡
			

			

				𝑗
			

			

				>
			

			

				∼
			

			

				𝑡
			

		
	
, we could then find 
	
		
			
				̂
				𝑡
				∈
				[
			

			

				∼
			

			
				𝑡
				,
				𝑡
			

			

				𝑗
			

			

				[
			

		
	
 such that 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
			

		
	
 for all 
	
		
			
				̂
				𝑡
				∈
				]
				𝑡
				,
				𝑡
			

			

				𝑗
			

			

				]
			

		
	
, while 
	
		
			
				̂
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				=
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
			

		
	
, and so there would exist 
	
		
			

				𝑡
			

			

				∗
			

			
				̂
				∈
				[
				𝑡
				,
				𝑡
			

			

				𝑗
			

			
				]
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	
 with 
	
		
			
				(
				𝑑
				/
				𝑑
				𝜏
				)
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

		
	
 positive at 
	
		
			
				𝑡
				=
				𝑡
			

			

				∗
			

		
	
. By (20a), we would have 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
			

			

				∗
			

			
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝜆
			

			

				𝑝
			

		
	
, but this would contradict the fact that 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≥
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
			

		
	
 everywhere on 
	
		
			
				[
				̂
				𝑡
				,
				𝑡
			

			

				𝑗
			

			

				]
			

		
	
. Thus, we conclude that (43) cannot be false, as claimed. We then obtain, from (19), (40), and (43),
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				6
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝐶
			

			
				6
				2
			

			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				4
				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				‖
				‖
				𝑣
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝑔
				(
				𝑡
				)
			

			

				6
			

			
				+
				2
				𝑝
			

			
				
			
			
				‖
				2
				𝑝
				−
				1
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
			

			
				4
				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				
				−
				𝑑
			

			
				
			
			
				‖
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			

				
			

		
	

						for all 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				∞
				[
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	
. Recalling that 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				>
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
			

		
	
, 
	
		
			
				𝑔
				(
				𝑡
				)
				≤
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				/
				2
			

		
	
, for  all 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, this gives
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				−
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				
				𝑡
				≥
				𝐾
				(
				𝜂
				)
				,
				∀
				𝑡
				∈
			

			

				0
			

			
				
				,
				∞
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	

						for some constant 
	
		
			
				𝐾
				(
				𝜂
				)
				>
				0
			

		
	
 independent of 
	
		
			

				𝑡
			

		
	
, which cannot be, since this implies 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑣
				
				⋅
				,
				𝑡
			

			

				0
			

			
				
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				
				≥
				𝐾
				(
				𝜂
				)
				⋅
				𝑡
				−
				𝑡
			

			

				0
			

			
				
				∀
				𝑡
				>
				𝑡
			

			

				0
			

			

				.
			

		
	

						This contradiction shows (42), which is equivalent to (36), and the proof is complete.
Applying (36) successively with 
	
		
			
				𝑞
				=
				2
				𝑝
				,
				4
				𝑝
				,
				…
				,
				2
			

			

				𝑘
			

			

				𝑝
			

		
	
, we get 
						
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			
				2
				𝑘
				𝑝
			

			
				(
				ℝ
				)
			

			
				≤
				
			

			

				𝑘
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				2
			

			
				𝑗
				−
				1
			

			
				𝑝
				𝐶
			

			
				3
				2
			

			

				
			

			

				2
			

			
				−
				𝑗
			

			

				
			

			
				1
				/
				𝑝
			

			
				⋅
				ℬ
			

			
				(
				1
				/
				𝑝
				)
				(
				1
				−
				2
			

			
				−
				𝑘
			

			

				)
			

			
				⋅
				𝒰
			

			

				𝑝
			

		
	

					for 
	
		
			
				𝑘
				≥
				1
			

		
	
 arbitrary, where 
	
		
			

				𝒰
			

			

				𝑝
			

			
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

		
	
. Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
, this suggests
	
 		
 			
				(
				4
				8
				a
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				𝐾
				(
				𝑝
				)
				⋅
				ℬ
			

			
				1
				/
				𝑝
			

			
				⋅
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				4
				8
				b
				)
			
 		
	

	
		
			
				𝐾
				
				(
				𝑝
				)
				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				2
			

			
				𝑗
				−
				1
			

			
				𝑝
				𝐶
			

			
				3
				2
			

			

				
			

			

				2
			

			
				−
				𝑗
			

			

				
			

			
				1
				/
				𝑝
			

			
				=
				
				3
				√
			

			
				
			
			

				3
			

			
				
			
			
				𝑝
				
				2
				𝜋
			

			
				1
				/
				𝑝
			

		
	
(cf. (6) above), as long as the limit processes 
	
		
			
				𝑘
				→
				∞
			

		
	
, 
	
		
			
				𝑡
				→
				∞
			

		
	
 can be interchanged. That this is indeed the case is a consequence of (34) and the following result.
Theorem 6.  Let 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

		
	
. Then
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				𝑝
				𝐶
			

			

				2
			

			

				𝐶
			

			

				∞
			

			

				
			

			
				1
				/
				𝑝
			

			
				⋅
				ℬ
			

			
				1
				/
				𝑝
			

			
				⋅
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

						where 
	
		
			

				𝐶
			

			

				2
			

		
	
, 
	
		
			

				𝐶
			

			

				∞
			

		
	
 are the constants given in (19) and (9).
Proof. Again, assuming 
	
		
			

				𝒰
			

			

				𝑝
			

		
	
 finite (otherwise, (49) is obvious; cf. endnote4), we introduce, as in the previous proof, 
	
		
			
				𝑣
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 given by 
	
		
			
				𝑣
				(
				𝑥
				,
				𝑡
				)
				=
				|
				𝑢
				(
				𝑥
				,
				𝑡
				)
				|
			

			

				𝑝
			

		
	
 if 
	
		
			
				𝑝
				>
				1
			

		
	
, and 
	
		
			
				𝑣
				(
				𝑥
				,
				𝑡
				)
				=
				𝑢
				(
				𝑥
				,
				𝑡
				)
			

		
	
 if 
	
		
			
				𝑝
				=
				1
			

		
	
. Thus, (40) is valid, and setting 
	
		
			

				𝜆
			

			

				𝑝
			

			
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑔
				∈
				𝐿
			

			

				∞
			

			
				(
				[
				0
				,
				∞
				[
				)
			

		
	
 by 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑝
			

			
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				𝑔
				(
				𝑡
				)
				,
				𝑔
				(
				𝑡
				)
				=
				𝑝
				𝐶
			

			

				2
			

			
				𝐵
				‖
				(
				𝑡
				)
				‖
				𝐯
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			

				,
			

		
	

						we have that (49) is obtained if we show that
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				𝐶
			

			

				∞
			

			
				⋅
				𝜆
			

			

				𝑝
			

			

				.
			

		
	

						We argue by contradiction and assume that (51) is false. Taking then 
	
		
			
				0
				<
				𝜂
				≪
				1
				,
				𝑡
			

			

				0
			

			
				≫
				1
			

		
	
 so that 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≥
				𝐶
			

			

				∞
			

			
				⋅
				(
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑡
				)
				≤
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				/
				2
			

		
	
 hold for all 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, we get, by (9) and (40),
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				3
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				𝐶
			

			
				3
				∞
			

			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				‖
				‖
				𝑣
			

			

				𝑥
			

			
				‖
				‖
				(
				⋅
				,
				𝑡
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≤
				𝐶
			

			
				3
				∞
			

			
				𝑔
				(
				𝑡
				)
			

			

				3
			

			
				+
				𝐶
			

			
				3
				∞
			

			
				2
				𝑝
			

			
				
			
			
				2
				𝑝
				−
				1
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				×
				
				−
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			

				
			

		
	

						for all 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				∞
				[
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	
. Since 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≥
				𝐶
			

			

				∞
			

			
				⋅
				(
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				)
			

		
	
, 
	
		
			
				𝑔
				(
				𝑡
				)
				≤
				𝜆
			

			

				𝑝
			

			
				+
				𝜂
				/
				2
			

		
	
, this gives
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				−
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑣
				(
				⋅
				,
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				
				𝑡
				≥
				𝐾
				(
				𝜂
				)
				,
				∀
				𝑡
				∈
			

			

				0
			

			
				
				,
				∞
				⧵
				𝐸
			

			
				2
				𝑝
			

		
	

						for some constant 
	
		
			
				𝐾
				(
				𝜂
				)
				>
				0
			

		
	
 independent of 
	
		
			

				𝑡
			

		
	
. As before, this implies that 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

			
				≥
				𝐾
				(
				𝜂
				)
				⋅
				(
				𝑡
				−
				𝑡
			

			

				0
			

			

				)
			

		
	
 for all 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, which is impossible because 
	
		
			
				‖
				𝑣
				(
				⋅
				,
				𝑡
			

			

				0
			

			
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				ℝ
				)
			

		
	
 is finite. This contradiction establishes (51) above, completing the proof of Theorem 6.
We are finally in good position to derive (6), (48a), and (48b). Combining (34) and (49) above, we obtain 
						
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				(
				2
				𝑝
			

			

				2
			

			

				)
			

			
				1
				/
				𝑝
			

			
				⋅
				ℬ
			

			
				1
				/
				𝑝
			

			
				⋅
				𝒰
			

			

				𝑝
			

		
	

					for each 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

		
	
, so that we have, in particular, 
						
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				2
			

			
				2
				𝑘
				+
				1
			

			

				𝑝
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			

				𝑘
			

			

				𝑝
			

			
				⋅
				ℬ
			

			
				1
				/
				2
			

			

				𝑘
			

			

				𝑝
			

			
				⋅
				𝒰
			

			

				2
			

			

				𝑘
			

			

				𝑝
			

		
	

					for each 
	
		
			
				𝑘
				≥
				0
			

		
	
. By (47), we then get 
						
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				≤
				
				
				2
			

			
				2
				𝑘
				+
				1
			

			

				𝑝
			

			

				2
			

			

				
			

			

				2
			

			
				−
				𝑘
			

			

				⋅
			

			

				𝑘
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				2
			

			
				𝑗
				−
				1
			

			
				𝑝
				𝐶
			

			
				3
				2
			

			

				
			

			

				2
			

			
				−
				𝑗
			

			

				
			

			
				1
				/
				𝑝
			

			
				⋅
				ℬ
			

			
				1
				/
				𝑝
			

			
				⋅
				𝒰
			

			

				𝑝
			

		
	

					for all 
	
		
			

				𝑘
			

		
	
. Letting 
	
		
			
				𝑘
				→
				∞
			

		
	
, Theorem 7 is obtained, and our argument is complete.
Theorem 7.  Let 
	
		
			
				𝑝
				≥
				𝑝
			

			

				0
			

		
	
. Assuming 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
, then (6), (48a), and (48b) hold.
It is worth noticing that the corresponding estimate for the 
	
		
			

				𝑛
			

		
	
-dimensional problem (8), namely,
						
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

			
				≤
				𝐾
				(
				𝑛
				,
				𝑝
				)
				⋅
				ℬ
			

			
				𝑛
				/
				𝑝
			

			
				⋅
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

			

				,
			

		
	

					where 
	
		
			
				ℬ
				≥
				0
			

		
	
 is similarly defined, can be also derived in arbitrary dimension 
	
		
			
				𝑛
				>
				1
			

		
	
.
4. Concluding Remarks
We close our discussion of the problem (1a), (1b), given 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
, 
	
		
			
				1
				≤
				𝑝
			

			

				0
			

			
				<
				∞
			

		
	
, indicating a few questions which were not answered by our analysis:(a)characterize all 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 for which it is true that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				→
				0
			

		
	
 (as 
	
		
			
				𝑡
				→
				∞
			

		
	
) for every solution 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of problem (1a) and (1b);(b)same question as (a) above, but requiring only that 
	
		
			
				l
				i
				m
				s
				u
				p
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				<
				∞
			

		
	
 (as 
	
		
			
				𝑡
				→
				∞
			

		
	
) for every solution 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of problem (1a) and (1b), in case 
	
		
			

				𝑝
			

			

				0
			

			
				>
				1
			

		
	
;5(c)given 
	
		
			

				𝑝
			

			

				0
			

			
				>
				1
			

		
	
, characterize all 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 such that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			
				𝑝
				0
			

			
				(
				ℝ
				)
			

			
				→
				0
			

		
	
 (as 
	
		
			
				𝑡
				→
				∞
			

		
	
) for every solution 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of problem (1a) and (1b);(d)same question as (c) above, but requiring only that 
	
		
			
				l
				i
				m
				s
				u
				p
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			
				𝑝
				0
			

			
				(
				ℝ
				)
			

			
				<
				∞
			

		
	
 (as 
	
		
			
				𝑡
				→
				∞
			

		
	
) for every solution 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of problem (1a) and (1b);(e)for 
	
		
			

				𝑝
			

			

				0
			

			
				=
				1
			

		
	
, characterize all 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 such that 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

			
				→
				|
				𝑚
				|
			

		
	
 (as 
	
		
			
				𝑡
				→
				∞
			

		
	
) for every solution 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
, where 
	
		
			
				∫
				𝑚
				=
			

			

				ℝ
			

			

				𝑢
			

			

				0
			

			
				(
				𝑥
				)
				𝑑
				𝑥
			

		
	
 is the solution mass;(f)for 
	
		
			

				𝑝
			

			

				0
			

			
				=
				1
			

		
	
, and 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 not satisfying property (e), what are the values of 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				ℝ
				)
			

		
	
 in case of initial states that change sign?
These questions can be similarly posed for solutions 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of autonomous problems
						
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				+
				(
				𝑏
				(
				𝑥
				)
				𝑢
				)
			

			

				𝑥
			

			
				=
				𝑢
			

			
				𝑥
				𝑥
			

			
				,
				𝑢
				(
				⋅
				,
				0
				)
				∈
				𝐿
			

			

				𝑝
			

			

				0
			

			
				(
				ℝ
				)
				∩
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
				,
			

		
	

					where 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

		
	
 does not depend on the time variable. For (58), question (e) has been answered in [12] (see also [13]). Another interesting question is the following: (g)when (58) admits no stationary solutions other than the trivial solution 
	
		
			
				𝑢
				=
				0
			

		
	
, is it true that 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				∞
			

			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				=
				0
			

		
	
 for every solution 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
?
Moreover, for solutions 
	
		
			
				𝑢
				(
				⋅
				,
				𝑡
				)
			

		
	
 of (1a) and (1b) or (58) with 
	
		
			
				‖
				𝑢
				(
				⋅
				,
				𝑡
				)
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				ℝ
				)
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑡
				→
				∞
			

		
	
, there is the question of determining the proper decay rate.6 As suggested by Figure 1, solution decay may sometimes happen at remarkably slow rates.
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Endnotes
	1. In (6), (11), and other similar expressions in the text, it is assumed that 
	
		
			
				0
				⋅
				∞
				=
				∞
			

		
	
.
	2. The constants 
	
		
			
				√
				(
				3
			

			
				
			
			
				3
				𝑝
				/
				(
				2
				𝜋
				)
				)
			

			
				1
				/
				𝑝
			

		
	
 in (6) and (7) are not optimal; minimal values are not known.
	3. In (6), (11), and other similar expressions in the text, it is assumed that 
	
		
			
				0
				⋅
				∞
				=
				∞
			

		
	
.
	4. In (6), (11), and other similar expressions in the text, it is assumed that 
	
		
			
				0
				⋅
				∞
				=
				∞
			

		
	
.
	5. For 
	
		
			

				𝑝
			

			

				0
			

			
				=
				1
			

		
	
, any 
	
		
			
				𝑏
				∈
				𝐿
			

			

				∞
			

			
				(
				ℝ
				×
				[
				0
				,
				∞
				[
				)
			

		
	
 satisfies property (b); compare (7) in Section 1.
	6. In case we have 
	
		
			

				𝑏
			

			

				𝑥
			

			
				≥
				0
			

		
	
 for all 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑡
			

		
	
, the answer is given in (2) above.
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