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This paper considers the estimation problem for the Frèchet distribution under progressive Type II censoring with random
removals, where the number of units removed at each failure time has a binomial distribution. We use the maximum likelihood
method to obtain the estimators of parameters and derive the sampling distributions of the estimators, and we also construct the
confidence intervals for the parameters and percentile of the failure time distribution.

1. Introduction

Recently, the extreme value distribution is becoming increas-
ingly important in engineering statistics as a suitable model
to represent phenomena with usually large maximum obser-
vations. In engineering circles, this distribution is often called
the Frèchet model. It is one of the pioneers of extreme value
statistics. The Frèchet (extreme value type II) distribution
is one of the probability distributions used to model
extreme events. The generalization of the standard Frèchet
distribution has been introduced by Nadarajah and Kotz
[1] and Abd-Elfattah and omima [2]. There are over fifty
applications ranging from accelerated life testing through to
earthquakes, floods, rain fall, queues in supermarkets, sea
currents, wind speeds, and track race records, see Kotz and
Nadarajah [3]. Censoring arises in a life test when exact
lifetimes are known for only a portion of test units and the
remainder of the lifetimes are known only to exceed certain
values under an experiment. There are several types of
censored test. One of the most common censoring schemes
is Type II censoring. In a Type II censoring, a total of n
units is placed on test, but instead of continuing until all
n units have failed, the test is terminated at the time of
the mth (1 ≤ m ≤ n) unit failure. Type II censoring

with different failure time distribution has been studied by
many authors including Mann et al. [4], Lawless [5], and
Meeker and Escobar [6]. If an experiment desires to remove
live units at points other than the final termination point
of the life test, the above described scheme will not be
of use to experimenter. Type II censoring does not allow
for units to be lost or removed from the test at points
other than the final termination point see Balakrishnan and
Aggarwala [7, Chapter 1].

A generalization of Type II censoring is progressive Type
II censoring. Under this scheme, n units are placed on test at
time zero, and m failure are going to be observed. When the
first failure is observed, r1 of surviving units are randomly
selected, removed, and so on. This experiment terminates at
the time when the mth failures is observed and remaining
rm = n − r1 − r2 − · · · − rm−1 − m surviving units are
all removed. The statistical inference on the parameters of
failure time distribution under progressive Type II censoring
has been studied by several authors [7–10]. Note that, in
this scheme, r1, . . . , rm are all prefixed. However, in some
practical situations, these numbers may occur at random
[11]. In some reliability experiments, an experimenter may
decide that it is inappropriate or too dangerous to carry
on the testing on some of the tested units even though
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these units have not failed. In these cases, the pattern of
removal at each failure is random. We assume that, any test
unit being dropped out from the life test is independent of
the others but with the same probability p. Then Tea et al.
[12] indicated that the number of test units removed at each
failure time has a binomial distribution.

In this paper, we will make inference on the param-
eters of three-parameter Frèchet distribution under pro-
gressive type II censoring with binomial removals. The
maximum likelihood estimators (MLEs) for the param-
eters in an explicit and implicit form are obtained in
Section 3. Section 4 discusses the sampling distribution of
the MLEs and constructs the confidence intervals for the
parameters. The estimator and confidence interval for the
percentile of failure time distribution are also presented in
Section 4.

2. Description of the Model

Let random variable X has a three-parameter Frèchet dis-
tribution. The probability density function and cumulative
distribution function are
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)
, (2)

respectively, where α is continuous shape parameter, β is
continuous scale parameter, and θ is continuous location
parameter (θ = 0 yields the two-parameter Frèchet distri-
bution).

3. Estimation of Parameters

Suppose n independent units are placed on a test with
the corresponding life times being identically distributed
with probability density function fX(x) and cumulative
distribution function FX(x). For simplicity of notation,
let X1,X2, . . . ,Xm denote a progressively Type II censored
sample. Then, the joint probability density function of all m
progressively Type II-censored order statistics is

fX1,...,Xm(x1, . . . , xm)

= k
m∏
i=1

fX(xi)[1− FX(xi)]ri , x1 < · · · < xm,
(3)

where k = n(n − r1 − 1) · · · (n − r1 − · · · − rm−1 −m + 1).
Thus, for a progressive Type II with predetermined number

of removals R = r, the conditional likelihood and Log-
likelihood functions, respectively, can be written as
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where k is defined in (3). Now, suppose that an individual
unit being removed from the life test is independent of the
others but with the same probability p. Then, the number
of units removed at each failure time follows a binomial
distribution such that

P(R1 = r1) =
⎛
⎝n−m

r1

⎞
⎠pri(1− p

)n−m−r1 , (6)

where 0 ≤ r1 ≤ n
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(7)

where 0 ≤ ri ≤ n −m −∑i
k=1 rk, i = 2, . . . ,m − 1. Suppose

further that Ri is independent of Xi. Then, the Log-likelihood
function can be expressed as

L∗
(
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) = L∗
(
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)
P(R = r), (8)

where

P(R = r)

= P(Rm−1 = rm−1 | Rm−2 = rm−2, . . . ,R1 = r1)

· · ·P(R2 = r2 | R1 = r1)P(R1 = r1),

(9)
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Independently, the MLE of parameter p can be obtained by
maximizing (10). Thus, we find immediately

p̂ =
∑m−1

i=1 ri
(m− 1)(n−m)−∑m−1

i=1 (m− i− 1)ri
. (11)

Note that P(R = r) does not depend on the parameters α, β,
and θ, and hence the MLE’s of the parameters can be derived
from (5) by differentiating with respect to α, β, and θ and
equating to zero, in this case we have
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(12)

since (12) cannot be solved analytically for estimators α̂, β̂,

and θ̂. Hence, in this paper, the numerical solution is used to
solve the problem.

4. Some Further Results

In this section, we are going to derive the sampling distri-
butions of the MLE’s and obtain the confidence intervals
for the parameters [13–15]. In addition, we will obtain the
MLE and confidence interval for the percentile of failure time
distribution.

4.1. Distributions and Confidence Intervals for the Parameters.
Let X1 < X2 < · · · < Xm−1 < Xm denote a progressively
Type II censored sample from a three-parameter Frèchet
distribution with censored scheme R = (r1, . . . , rm). Let Yi =
[(xi − θ)/β]−α, i = 1, . . . ,m. It can be seen that, Z1 < Z2 <
· · · < Zm is a progressively Type II censored sample from

an exponential distribution with mean 1. Let us consider the
following transformation

Z1 = nY1

Z2 = (n− r1 − 1)(Y2 − Y1)

...
...

Zm = (n− r1 − · · · − rm−1 −m + 1)(Ym − Ym−1).

(13)

Thomas and Wilson [16] showed that the generalized spac-
ings Z1,Z2, . . . ,Zm as defined in the previous equation (13)
are all independent and identically distributed as standard
exponential. V = 2Z1 = 2n[(xi − θ)/β]−α has a Chi-square
distribution with 2 degrees of freedom. We can also write the

numerator of β̂ as the sum of m− 1 independent generalized
spacings, that is, 2

∑m
i=1(ri+1)Yi−nY1 = 2

∑m
i=2 Zi. Therefore,

we can find that, conditionally on a fixed set of R =
(r1, . . . , rm), U = 2

∑m
i=1(ri + 1)Yi − nY1 has a Chi-square

distribution with 2m − 2 degrees of freedom. It is also easily
seen that V and U are independent. Let

T1 = U
(m− 1)V

=
∑m

i=1(ri + 1)Yi − nY1

n(m− 1)Y1
,

T2 = U + V = 2
m∑
i=1

(ri + 1)Yi.

(14)

It is easy to show that, T1 has an F distribution with
2m − 2 and 2 degrees of freedom, and T2 has a Chi-square
distribution with 2m degrees of freedom. Furthermore, T1

and T2 are independent.

Theorem 1. Suppose that w1 < w2 < · · · < wm. Let

T1(w) =
∑m

i=1(ri + 1)(wi − θ)−α − n(w1 − θ)−α

n(m− 1)(w1 − θ)−α
. (15)

Then, T1(w) is strictly increasing in w for any w > 0,
furthermore, if t > 0, the equation T1(w) = t has unique
solution for any w > 0.

Suppose that, Xi, i = 1, . . . ,m are order statistics of a
progressively Type II censored sample of size n from the
Frèchet distribution, with censoring scheme (r1, . . . , rm) the
a 100(1− φ) confidence interval for α is

Ψ
(
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)
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.

(16)
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Such that,
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Furthermore, the 100(1 − φ) joint confidence region for α
and β is determined by the following inequalities:
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4.2. Confidence Interval of xF . In reliability analysis [17,
18], we are not only interested in making inference about
parameter but also interested in deriving inference about
percentiles of the failure time distribution. Let xF be the
100F th percentile of the failure time distribution. One can
obtain xF by solving FX(xF) = p where FX(·) is as given
in (2). Then it easy to see that xF = θ − β(log p)−1/α.

Consequently, the MLE of xF is given by xF = θ̂ −
β̂(log p)−1/α̂. Confidence interval for xF can be derived by

using the pivotal quantity UF = [(xF − θ̂)/β̂]
−α̂

if (u f ,1−φ)−α

is the (1− φ)th percentile of UF , then

1− φ = P
[
UF ≤ uF,1−φ

]
= P

[
xF ≥ θ̂ − β̂uF,1−φ

]
. (21)

Hence, θ̂ − β̂uF,1−φ is a lower confidence limit for xF with
confidence coefficient 1− φ. We can rewrite (21) as

1− φ = P
[
V

2n
+ λU ≤ − ln p

]
, (22)

such that, V ∼ χ2(2), U ∼ χ2(2m− 2), and λ = −uF,1−φ/2m.
In addition, V and U are independent, which is discussed
in the previous subsection. Hence, we need to find the value
of λ by using solving (22). There are several methods for
computing λ, see Engelhardt and Bain [19].

5. Conclusions

We develop some results on a three-parameter Frèchet dis-
tribution when progressive Type II censoring with binomial
removals is performed. We derive the MLEs and confidence
for the parameters. The MLE and confidence interval for
the percentiles of failure time distribution are obtained. In
practice, it is often useful to have an idea of the duration
of a life test. Therefore, it is important to compute the
expected time required to complete a life test. In the
case of progressively type II-censored sampling plan with
binomial removals, one can obtain this information by
calculating the expectation of the mth order statistic. In
fact, we believe that the value of removal probability p is
very important when we compare the expected test times
of progressive Type II censoring with binomial removals
and complete sampling plan. In addition, the removal
probability p may not be fixed for each stage. Such belief
is not discussed in this paper and we will be investigated in
the future.

List of Symbols

f (x): Probability density function
F(x): Cumulative distribution function
α, β, θ: Three-parameter Frèchet distribution
R: Number of removals
p: Removal probability
χ2: Chi-square
F: F-distribution
100(1− φ): Confidence interval
XF : 100-th percentile of the failure time

distribution.
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