
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2009, Article ID 205149, 9 pages
doi:10.1155/2009/205149

Research Article

vMAGIC—Automatic Code Generation for VHDL

Christopher Pohl, Carlos Paiz, and Mario Porrmann

Heinz Nixdorf Institute, University of Paderborn, Fürstenallee 11, D - 33102 Paderborn, Germany

Correspondence should be addressed to Christopher Pohl, pohl@hni.upb.de

Received 28 November 2008; Accepted 26 March 2009

Recommended by Michael Huebner

Automatic code generation is a standard method in software engineering, improving the code reliability as well as reducing the
overall development time. In hardware engineering, automatic code generation is utilized within a number of development tools,
the integrated code generation functionality, however, is not exposed to developers wishing to implement their own generators. In
this paper, VHDL Manipulation and Generation Interface (vMAGIC), a Java library to read, manipulate, and write VHDL code is
presented. The basic functionality as well as the designflow is described, stressing the advantages when designing with vMAGIC.
Two real-world examples demonstrate the power of code generation in hardware engineering.

Copyright © 2009 Christopher Pohl et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The notion automatic code generation (ACG) envelopes a
number of different techniques aimed at simplifying the
task of writing a code. Apart from specific implementation
details these techniques differ in the level of abstraction
exposed to the developer: a very low level of abstraction is
given by template-based techniques such as code completion
or code insertion. These allow for the generation of code
structures with a low complexity (e.g., getters/setters), which
are inserted into the code by the user on an explicit (calling
an editor function) or implicit (the editor recognizes the
beginning of a construct and completes it) basis. This is
a very general approach that can be applied in every pro-
gramming language and in any kind of desired application.
Code transformation represents a higher level of abstraction,
where a piece of code is translated from a source language
into a target language. This is useful if domain specific
language (DSL) exists to describe features of a very specific
kind of application, which will be implemented in another,
more general language. This approach can obviously save a
lot of time, as the definition of an application in the very
specific and abstract DSL typically takes much less time than
implementing it in the specific target language.

Code generators such as the aforementioned exist for
various types of applications in computer science, for
example, parser generators, database generators, or unified

modeling language (UML) tools, rapidly generating pro-
duction code and saving development costs. Apart from
saving time by generating code which would otherwise have
to be implemented manually, (correct) generators deliver
correct code; additionally, all developmental iterations (with
alterations to the specification) can be handled in the
source language, again saving time. While these principles
and methods are largely applied in the area of software
development, hardware developers are supported by very
few specific tools like IP-Core Generators or C-to-hardware
compilers, covering only a very small area of what could be
done with ACGs. Examples for C-based or graphical tools
can be found in [1–4]. Each of these tools utilizes code
generators for some hardware description language in their
specific area, however, this functionality is not exposed to a
developer wishing to implement own code generator.

VHDL Manipulation and Generation Interface
(vMAGIC) has been developed to fill in this gap by
providing a basis for all kinds of VHDL code generators by
implementing three important basic tasks:

(i) reading of existing code,

(ii) manipulation of existing code, generation of new
code,

(iii) writing of manipulated and/or generated code.

2 International Journal of Reconfigurable Computing

vMAGIC is not a code generator by itself, but a
homogenous framework for implementing code gen-
erators (and other applications, cf. Section 2). Using
vMAGIC accelerates design processes whenever uniform
tasks can be automated and reused many times. vMAGIC
is free software under LGPL 3 and can be obtained via
http://vmagic.sourceforge.net/.

The general concepts and the user interface to the
vMAGIC API are discussed in Section 2, as are a very small
example and a number of possible applications beyond code
generators. In Sections 3 and 4, two examples (HiLDE and
HiLDEGART) are provided to demonstrate the power of
vMAGIC. This paper concludes with a summary the benefits
of the presented approach, and the work in progress is
shown.

2. Automatic Code Generation with vMAGIC

The description of the vMAGIC API starts with the imple-
mentation of the main functionality of parsing, modifying,
and writing VHDL code. The next section is devoted to
the API comprising of a set of so-called metaclasses. The
description of vMAGIC concludes with an example and an
outlook on further use cases for vMAGIC.

2.1. Functionality. The vMAGIC API is a Java library com-
patible with runtime environments 1.5 and later. Therefore,
it is platform independent and usable in command line tools,
graphical user interfaces, and scripts. The full functionality
is given in the API documentation [5], here the implementa-
tion of the basic functionality is described.

(i) Parser. vMAGIC implements a VHDL’93 compliant
parser to transform VHDL code into a more convenient
internal representation called Abstract Syntax Tree (AST).
An AST in general contains all information from the code,
while redundancy (parenthesis, semicolons, and so on are
implicitly included in the tree structure) is removed; this
AST however is shaped in a way optimally suited for the
manipulations described next.

The vMAGIC parser was generated using ANTLR 3.1 [6],
a powerful parser generator; parsers generated with ANTLR
support certain error recovery strategies. This implies that
the vMAGIC parser can correct certain unambiguous syn-
tactical errors while parsing VHDL source code, such as
additional semicolons in a port or component.

(ii) Modification and Generation of Code. The AST by itself
is a tree structure, which is not well suited for human
interaction. To hide this structure behind a simple API, a
set of so-called metaclasses was defined. Metaclasses combine
the functionality to generate or modify specific VHDL con-
structs and the knowledge how to interact with the AST, such
that the developer is using a homogenous API with intu-
itive functions. For example, Signal.getIdentifier()
returns the identifier of a signal, new Process()creates a
new VHDL process.

Objects of metaclasses are created either by the user,
defining a VHDL design from scratch, or using a VHDL

template. The template is parsed into an AST, which is
then parsed by a tree parser generating the metaobjects and
discarding the original tree. This approach is, again assuming
that the tree grammar is correct, another means of ensuring
that the generated code is correct regardless of coding style or
context. The metaobjects implicitly define a descendible tree
structure, beginning with a VhdlFile object with members
for Entity and Architecture objects and so on. User
programs work on this metatree rather than on the AST,
allowing for intuitive software development for hardware
generation or analysis purposes.

There are two different levels of abstraction represented
by metaclasses: the so-called low-level classes represent basic
VHDL constructs such as signal declarations or processes;
the high-level metaclasses combine several low-level classes
such as to create complex functionality like registers or state
machines. The use of high-level classes implies a higher level
of abstraction and therefore an improved coding speed.

(iii) VHDL Writer. To generate VHDL code from an AST, a
VHDL Writer based on ANTLR’s String Template system was
developed. Again, a tree parser is used to analyze the tree and
templates are used to generate VHDL code constructs. These
templates are defined in a single text file in a very simple
format, such that the developers preference in coding style
(e.g., the use of lower case or upper case letters for keywords,
or using optional identifiers at the end of a process or entity)
are implementable by changing this text file.

The vMAGIC designflow, as depicted in Figure 1, follows
the three steps as described above.

2.2. vMAGIC API. The complete API functionality of
vMAGIC is contained in the metaclasses, accessible via
member functions. The most important functions not
related to VHDL are public String toVhdlString()
implemented by all metaclasses and the public static
VhdlFile parse() function in the VhdlFile class. The
toVhdlString() function generates VHDL code from
every possible VHDL element, such that either the complete
design or parts of the design can be viewed as VHDL code
(cf. II-C, where VHDL is generated for an architecture). The
parse()function is an overloaded function, allowing for the
creation of VhdlFile objects from various sources. The usage
of both functions is demonstrated in Example 1. All other
members are VHDL related and can be found in the vMAGIC
API-Documentation on the vMAGIC website.

Another important feature of the API is the possibility to
process so-called vMAGIC-tags, beginning with “–∗” in the
source code. This is a means to pass additional information
from the source code to a vMAGIC application, for example,
categorizing files or processes, or giving instructions on what
to do with certain parts of the design.

Extracting information from a VHDL-file in vMAGIC is
based on high-level functions accessing the AST: generating
new code means creating and joining metaobjects. Using the
vMAGIC API ensures syntactically correct code. In the next
section, the use of metaclasses is demonstrated by means of
an example.

International Journal of Reconfigurable Computing 3

Meta-class
creator

Meta-class
instances
(objects)

Abstract
syntax tree

VHDL parser

User program

Analyze, manipulate, create

Reading VHDL files: optional

Writing VHDL files: optional

VHDL file
(template)

VHDL file
(target)

VHDL Writer/
Formatter

Abstract
syntax tree

Figure 1: vMAGIC Designflow, reading and writing VHDL is optional. As such a vMAGIC application can be a pure VHDL generator or
analyzer.

2.3. Example. The code listed in Algorithm 1 constructs a
very simple wrapper file for an entity in the VHDL file
test.vhd.

In lines 1 et seq. the input file is parsed, the entity is
extracted and an output file with the same entity is generated.
Lines 5–10 create an architecture beh with the component
declaration of the entity and the instantiation of and add
it to the output file. The for loop in lines 11–25 generates
registers for all signals in the entity of : line 12 et seq. generate
and declare an internal signal of the same type as the port
signal, which is then connected to a new register based on the
mode of the port signal. If the port signal is an input to (see
line 15), the register connects the appropriate signal of the
wrapper entity with the intermediate signal (line 16), which
is then connected to the instance of (line 17). The registers
for output ports are generated in line 18 et seq. After the loop
has finished by adding the register to the architecture (line
22), the reset and clock signals are generated and added to
the wrapper entity, and the code is printed out.

The output for an entity called , containing one 8 Bit
input and one 8 Bit output signal, is given in Algorithm 2.
For the tiny entity , creating this very simple code generator
takes about twice as much time as creating the wrapper file
manually. However, the wrapper generator can be reused on
every possible entity, thus saving a lot of time even for this
very simple case.

2.4. Advantages and Application Areas. Using a code gen-
erator always implies spending additional time on the
code generator rather than programming an application
manually. However, if the code generator is versatile, and this
degree of versatility cannot be reached using methods native
to the target language (e.g., Generics in VHDL), then it is
very likely that the time spent on the generator is less than the
time saved by using it. In VHDL, that point is easily reached
due to limitations of VHDL as a computer language: every-
day objects such as multiplexers with a generic number of
inputs or busses with a generic number of devices cannot be
described efficiently in standard synthesizable VHDL. Apart
from these limitations, the implementation of DSLs can
greatly improve coding speed as shown in the next section.

Apart from code generation, vMAGIC provides impor-
tant mechanisms to extract information such as signal

names, design hierarchies, or generic values from VHDL
code. On top of this functionality, any kind of analyzer
tool can be implemented. Optimization algorithms can be
implemented on the level of VHDL code rather than by
accessing netlists. IP-Cores and Algorithms specified with
vMAGIC are portable, such that they can be applied to any
design.

In the following sections we present a versatile and
platform-independent approach to FPGA-based testing,
which makes extensive use of the vMAGIC library (available
online on the vMAGIC web site). The basic principles of
this approach are similar to those of Hardware-in-the-Loop
(HiL) simulations, where a real Design under test (DUT) is
interacting with a simulated environment. In this case, the
DUT resides on an FPGA while the environment is simulated
on a host computer, resulting in a high reliability of test
results and, in many cases, in a speedup for the simulation
itself.

3. HiLDE: A Designflow for FPGA Based Testing

Hardware-in-the-Loop Development Environment (HiLDE)
is a cycle-accurate testing framework for performing FPGA-
in-the-Loop simulations. HiLDE utilizes vMAGIC to encap-
sulate a DUT into a hardware wrapper, such as to enable the
connection to and synchronization with a simulation tool
such as MATLAB/Simulink [7], ModelSim [8] or CAMeL-
View [9]. In the following, a brief description of the HiLDE
wrapper and the use of vMAGIC is given, the basic concept
of HiLDE has been published in [10].

There are two main challenges in the creation of HiL
simulations: the synchronization of DUT and simulation
on the one hand, a high-speed data transfer between DUT
and simulation on the other hand. Section 3.1 gives an
overview of the synchronization mechanism in HiLDE,
while recent and unpublished developments in the HiLDE
communication system are described in Section 3.2.

3.1. DUT Access. The HiLDE synchronization system utilizes
the properties of synchronous logic to slow down the
DUT execution to match the speed of the environmental
simulation. This is a very special case, as typical HiL
frameworks (such as [11]) must speed up the simulation to

4 International Journal of Reconfigurable Computing

1 VhdlFile inFile = VhdlFile.parse("test.vhd"); // parse a VHDL file
2 Entity inEntity = inFile.getEntity("test"); //get the input entity (”test”)
3 VhdlFile outFile =newVhdlFile(); // create a new VHDL file as output
4 outFile.add(inEntity.clone()); // add a copy of the entity to the out file
5 Architecture arch =new Architecture("beh", outFile.getEntity("test"));
6 outFile.add(arch); // create a new architecture in the output file
7 Component comp =newComponent(inEntity); // create a component from test
8 arch.addDeclaration(comp); // declare the component in the out file
9 ComponentInstantiation inst =newComponentInstantiation("inst", comp);

10 arch.addStatement(inst); // instantiate the component in the out file
11 for(Signal s : comp.getPort().getSignals()){ // for all signals in the component
12 Signal wire =newSignal(s.getIdentifier() + " int", s.getType());

13 arch.addDeclaration (wire);

14 Register reg = null;
15 if(s.getMode() == Signal.Mode.IN){ // create an in- or out-register
16 reg =newRegister("regp " + s.getIdentifier(), s, wire);

17 inst.connect(s.getIdentifier(), wire);

18 } else if(s.getMode() == Signal.Mode.OUT){
19 reg =newRegister("regp " + s.getIdentifier(), wire, s);

20 inst.connect(s.getIdentifier(), wire);

21 } else { /∗ handle other modes (INOUT, BUF, ...)∗/ }
22 arch.addStatement(reg); // and add that register to the out file
23 }
24 Signal rst =newSignal("LRESET N");

25 rst.setMode(Signal.Mode.IN); // create and add reset and clock signals
26 Signal clk =newSignal("clk");

27 clk.setMode(Signal.Mode.IN);

28 inEntity.getPort().addSignal(rst);

29 inEntity.getPort().addSignal(clk);

30 System.out.println(outFile.toVhdlString());

Algorithm 1: Java program to generate a wrapper file for the entity which registers inputs and outputs.

real-time level, because the DUT’s behavior would change
at lower speeds, or it cannot be executed at a lower clock
rate at all. This is especially the case when the DUT cannot
be isolated from, that is, analog interfaces or other timing
critical devices, such as in a production ready controller
module. Under the premises of pure synchronous logic,
however, the synchronization of DUT and simulation can be
solved with the following interface: the hardware interface for
HiLDE (see Figure 2) comprises of a bus interface [12] to the
host PC, which is connected to the DUT’s input and output
ports, and the so-called synchronizer. The synchronizer can
switch the clocks of th DUT on and off on a ”per clock
cycle” basis; the user can adapt the number of clock cycles the
DUT should run before synchronizing with the simulation.
The integration of a DUT into a software simulator such as
MATLAB/Simulink is depicted in Figure 3. The simulation
itself follows four steps:

(1) read the DUTs outputs and propagate to the simu-
lated environment (as inputs),

(2) read the environments outputs and propagate to the
DUTs inputs,

(3) execute a predefined number of clock cycles (acoord-
ing to the DUTs I/O data rates),

(4) return to step 1) or end simulation.

3.2. Communication Optimization. In the simulation flow
as described above, all I/O data have to be transferred at
every clock cycle, resulting in redundant I/O operations
where data have not changed. To decrease this overhead,
two further concepts were integrated in HiLDE: event based
communication and transactors:

(i) Event-Based Communication. To reduce the number of
redundant I/O operations, only data that actually changes
has to be transferred. While this is straightforward to be
implemented in software (Simulink provides appropriate
functions), the hardware wrapper has to be extended. The
register of every output port is extended with a mechanism
to detect changes at the output. For no output ports an
additional register with no bits stores the results of these
detectors, and thus indicates which values must be read
by the host computer. The number of additional read
operations to retrieve this information is dependent on the
word width of the bus to the host computer, resulting in an
overall number of read accesses ñr :

ñr = Δ(out) +
⌈

no
wordwidth

⌉

, (1)

whereΔ(out) is the number of output ports with a new value.
Given that nr denotes the number of read operations in the

International Journal of Reconfigurable Computing 5

1 ENTITY test IS
2 PORT (
3 din : IN STD LOGIC VECTOR(7 DOWNTO 0);

4 dout : OUT STD LOGIC VECTOR(7 DOWNTO 0);

5 LRESET N : IN std logic ;

6 clk : IN std logic

7);

8 END;
9
10 ARCHITECTURE beh OF test IS
11 COMPONENT test IS
12 PORT (
13 din : IN STD LOGIC VECTOR(7 DOWNTO 0);

14 dout : OUT STD LOGIC VECTOR(7 DOWNTO 0)

15);
16 END COMPONENT;
17 SIGNAL din int : STD LOGIC VECTOR(7 DOWNTO 0);

18 SIGNAL dout int : STD LOGIC VECTOR(7 DOWNTO 0);

19 BEGIN
20 inst : test
21 PORT MAP (
22 din => din int,

23 dout => dout int

24);
25 regp din : PROCESS (clk, LRESET N)

26 BEGIN
27 IF LRESET N = ’0’ THEN
28 din int <= "00000000";

29 ELSIF clk ′ event AND clk = ’1’THEN
30 din int <= din ;

31 END IF;
32 END PROCESS;
33 regp dout : PROCESS(clk, LRESET N)

34 BEGIN
35 IF LRESET N = ’0’ THEN
36 dout2 <= "00000000";

37 ELSIF clk’event AND clk = ’1’ THEN
38 dout <= dout int;

39 END IF;
40 END PROCESS;
41 END;

Algorithm 2: VHDL output of the example Java program. The indentation and the notation of keywords is governed by the String Template
file and can be changed to fit the developers needs.

standard HiLDE wrapper, the benefit nr/ñr is dependent on
the relation of I/Os with regularly changing values to the
overall number of I/Os in the DUT. In general DUTs with
irregularly changing I/Os will benefit from this technique.

(ii) Transactors. Whenever the sequence of events (value
changes) is predefined, such as in communication protocols,
the number of I/O operations can be reduced even further by
implementing adaptors for the simulation and for the FPGA.
The amount of savings here is dependent on the complexity
of the protocol: instead of transferring all control-signals or
control-signal changes, the adaptors detect protocol activity
and transfer only the necessary data, such as address and
data, the actual protocol handling is processed in the

adaptors in the simulation environment and in the FPGA.
While the functionality of the HiL simulation is not affected
by this method, the amount of I/O operations for a protocol
as described in [12] can be reduced by over 90%.

3.3. HiLDE and vMAGIC. The generation of the HiLDE
hardware wrapper is a very uniform procedure, usually
varying only in the number and width of I/Os, or in the
transfer mode as described earlier. The following steps are
completed by a Java program utilizing vMAGIC:

(1) parse the DUT and a special template file,

(2) create an instance of the host communication bus
and connect the synchronizer to the bus,

6 International Journal of Reconfigurable Computing

Simulation

HiLDE API to Sim

Interface to host

Synchronizer FSM

System generator/
VHDL-DUT

Figure 2: HiLDE hardware wrapper controlling the DUT-IOs and
clock.

(3) declare and instantiate the DUT in the template,

(4) create registers for ever I/O port and connect them to
the DUT instance,

(5) add all registers to the bus,

(6) generate configuration files for different simula-
tors (currently Simulink, ModelSim and CamelView
[13]).

While the manual (error prone) implementation of the
wrapper can take hours, the HiLDE Wrapper Generator takes
seconds at most. A demo of the generator is available at the
vMAGIC project website.

4. HiLDEGART

A logical step after performing a cycle-accurate functional
design verification with a simulated environment is to realize
a real-time verification of the DUT. The requirements for
such a real-time framework are as follows.

(i) Monitoring of inputs and outputs of an FPGA-based
system which is connected to a real testbed. To limit
the data that is transferred to the host, resampling
and data-based triggering of data recording must be
possible, while not influencing the DUT’s function-
ality or timing. Downsampling the data allows for a
trade-off between monitoring accuracy and required
communication infrastructure.

(ii) In addition to monitoring abilities, parameterization
of the DUT must be possible. Switching between
different parameter sets during run-time should be
possible based on inputs or outputs of the DUT.

(iii) The triggering subsystem as described in what
follows, should allow triggers based on boolean
operations on inputs and outputs of the DUT as well
as combinations of these.

End simulation
mdlTerminate()

Si
m

u
la

ti
on

 lo
op

Calculate outputs
mdlOutputs()

Initialize model

mdlCheckParameters()

mdlInitializeSizes()

mdlInitializeSampleTimes()

mdlStart()

Update discrete states

mdlUpdate()

(a) Simulink simulation steps.

End simulation
mdlTerminate()

Si
m

u
la

ti
on

 lo
op

Fetch outputs

Write inputs

Run n cycles

Initialize hardware

Download bitstream

Parameterize synchronizer

Initialize DUT

(b) HiLDE simulation steps.

Figure 3: For Hilde simulations the standard Simulink S-Function
(a) has been extended (b).

One approach is to use real-time verification tools such
as ChipScope from Xilinx [14]. However, aside from its
limited allowable monitoring time, this kind of tools do
not permit an interaction with a DUT. Another approach
is logic analyzers, which are expensive and it is very time
consuming to set up a test environment. For this purpose,
HiLDE for Guided Active Real-Time test (HiLDEGART)
was developed. Our approach can be implemented with
a standard PC, and it allows the automatic integration of
an already functionally verified design to be tested in real-
time. In the following section, the concept and realization of
HiLDEGART is presented, focusing on the communication
between the DUT and the host computer.

International Journal of Reconfigurable Computing 7

Recording

On-line
sampling

Off-line
sampling
(SDRAM)

Interface to host PC

Graphical user interface

Event
manager

AA

we we

wewe

re
we
data

Plant

DUT

Input 1

Parameter 1

Parameterisation

Parameter 2

Parameter FIFO

Time FIFO

FIFO

re
we
data

FIFO

Timer

Parameter 3

Input 2

Output 1

Output 2

A
ct

u
at

or
s

C
on

tr
ol

le
r

Se
n

so
rs

DD

+1 =

Figure 4: Structure of a real-time FPGA-in-the-Loop scenario utilizing HiLDEGART.

4.1. DUT Access. Figure 4 shows the basic concept of the
presented Hardware-in-the-Loop (HiL) framework. The
design under test (DUT), a controller, is implemented on an
FPGA. The testbed consists of a plant to be controlled and
an analog/digital interface. There are three main components
surrounding a DUT to be tested with HiLDEGART.

(i) The Interface to Host-PC enables the communication
between the host PC and the DUT. It works very
similar to the interface described in Section 3.1 The
main difference is the use of embedded FIFOs and
external SDRAM memory to assure meeting the
required sampling rates, as explained in what follows.

(ii) By utilizing the Recording-Block, the user has the
choice to select a specific sampling rate for each port
of a DUT using this module. There are two kinds
of sampling mechanisms, real-time and offline sam-
pling. Real-time sampling enables the visualisation
of the selected signals at run time—the amount of
signals that can be visualized in real-time is limited
by external factors (e.g., I/O-bandwidth). For offline
sampling, an SDRAM memory directly attached to
the FPGA is used for buffering the data, allowing
for very high sampling rates. The buffered data, as
opposed to real-time data, is transferred to the host
for visualization after the simulation has finished.

(iii) The Event Manager allows basic compare operations
to generate events. These events may be combined by

boolean operators to form conditions like (A > ˜A)∧
¬(B = ˜B), where A and B are the ports and ˜A and ˜B
are values defined by the user at run time. With the
resulting events, either the changing of the sampling
rates or the changing of the parameters of the design
can be triggered in real-time. Additionally, the events
can be used to start or stop recording.

The presentation of I/O values and all configuration
tasks are controlled via a GUI, which has been imple-
mented using Trolltech’s platform-independent program-
ming environment Qt [15] in combination with QWT [16].
The project files describe the hardware interface including
addresses and number representations (e.g., fix point/binary
configuration). They are generated by a vMAGIC application
based on user annotations (vMAGIC-tags, cf. Section 2) in
the VHDL code. The GUI is automatically generated based
on the interface description, including graphs, LCD-like
displays for current values, and input boxes for parameters,
as can be seen in Figure 5.

The automatic generation of the HiLDEGART hardware
wrapper using vMAGIC is similar to the process as described
in Section 3.3. The typical tool-flow for HiLDE and HiLDE-
GART as well as a test-case is described in the following
section.

5. vMAGIC Toolflow and Example

Generating the hardware wrappers for HiLDE and HiLDE-
GART is an application of the complete vMAGIC designflow

8 International Journal of Reconfigurable Computing

Figure 5: Main-, Log-, and Plot-Window of HiLDEGART. The GUI
is generated from an XML file generated by a vMAGIC application.

as depicted in Figure 1. The starting point of the flow is
a VHDL file containing the DUT’s entity definition (if no
internal signals should be monitored the DUT itself can be
described in any HDL), which is then analyzed by vMAGIC.
The user program generates the DUT-specific wrappers
according to the specifications described in Section 3 respec-
tively, 4 and generates the configuration files for a HiLDE
simulation or HiLDEGART. These configuration files con-
tain information regarding hardware addresses, sampling
rates and number formats (e.g., fixpoint position). As the
number of formats and sampling rates cannot be deduced
from the hardware interface, they are supplied via vMAGIC-
tags in the source code or directly in the GUI. This completes
the vMAGIC specific part; after this, the wrapper and design
files have to be synthesized using vendor specific tools. After
the FPGA bitstream has been generated, the simulation is
conFigurered using the configuration files and the simulation
can be started.

As a case study, an inverted pendulum controller was
designed using Xilinx’ Simulink-based System Generator.
First, a model of the pendulum and a controller to balance
this pendulum are created using Simulink. The controller
is then reimplemented in hardware blocks using the System
Generator Toolbox. Figure 6 shows the difference between
the continuous Simulink controller and the (time- and
value-) discretized hardware controller (SysGen). After the
System Generator model has been simulated it can be
tested in real hardware using the HiLDE-flow, still using
the software model of the pendulum; the result is depicted
as HiLDE. There are very small differences between the
simulation and real hardware due to the internal number
representation in the system generator. The last step is to use
HiLDEGART to monitor the controller in the real control
loop, depicted as HiLDEGART. The differences between the
HiLDE and the HiLDEGART simulations are due to the
inaccurate modelling of the pendulum (e.g., A/D conversion
effects and plant dynamics).

HiLDEGART
HiLDE

SysGen
Simulink

30 31 32 33 34 35 36 37 38

Time (s)

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Pe
n

du
lu

m
s

an
gl

e
(r

ad
)

29.6 29.8 30 30.2 30.4 30.6 30.8 31

−4

−3

−2

−1

0

1

2
×10−3

Figure 6: Inverted pendulum controller: angle of the pendulum.

6. Conclusions and Outlook

In this paper, vMAGIC, a Java library for automatic code gen-
erators for VHDL has been presented. Its functionality and
the associated design flow have been shown alongside with
examples for vMAGIC’s analysis and generation capabilities.
The application areas and advantages of a vMAGIC-based
designflow have been described.

The vMAGIC API has been released under LGPL 3 on
sourceforge.net and can be freely downloaded and used
for personal research or commercial uses. It is very usable
and reliable, but by no means complete, as many useful
features have not been implemented yet. We keep adding
functionality to the library and we are planning to create a
library on top of vMAGIC that will be able to do semantic
operations as well.

Acknowledgments

This work was developed in the course of the ”Collaborative
Research Center 614 - Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering,” University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

References

[1] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y.
Lu, and S. Vassiliadis, “DWARV: delftworkbench automated
reconfigurable VHDL generator,” in Proceedings of the 17th
International Conference on Field Programmable Logic and
Applications (FPL ’07), pp. 697–701, Amsterdam, The Nether-
lands, August 2007.

[2] S. McCloud, “Catapult C Synthesis-Based Design Flow:
Speeding Implementation and Increasing Flexibility,” Mentor
Graphics White Paper, 2004.

[3] Synplify Users Guide, Synopsys, Mountain View, Calif, USA,
3rd edition, 2008.

International Journal of Reconfigurable Computing 9

[4] System Generator Users Guide, Xilinx, San Jose, Calif, USA,
10th edition, 2008.

[5] C. Pohl and R. Fuest, vMAGIC API Documentation, Heinz
Nixdorf Institute, Paderborn Germany, 2008.

[6] T. J. Parr and R. W. Quong, “ANTLR: a predicated-LL(k)
parser generator,” Software: Practice and Experience, vol. 25,
no. 7, pp. 789–810, 1995.

[7] Simulink Users Guide, The Mathworks, Natick, Mass, USA,
2008.

[8] ModelSim Users Guide, Mentor Graphics, Wilsonville, Ore,
USA, 6th edition, 2008.

[9] CAMeL-View Users Guide, iXtronics GmbH, Paderborn, Ger-
many, 6th edition, 2008.

[10] C. Paiz, C. Pohl, and M. Porrmann, “Reconfigurable hard-
ware in-the-loop simulations for digital control design,” in
Proceedings of the 3rd International Conference on Informatics
in Control, Automation and Robotics (ICINCO ’06), pp. 39–46,
Setubal, Portugal, August 2006.

[11] H. Hanselmann and F. Schutte, “Control system prototyping
productionizing and testing with modern tools,” in Proceed-
ings of the 38th International Intelligent Motion Conference, pp.
9–16, Intertec International, Nurnberg, Germany, June 2001.

[12] H. Kalte, M. Porrmann, and U. Rückert, “A prototyping
platform for dynamically reconfigurable system on chip
designs,” in Proceedings of the IEEE Workshop Heterogeneous
Reconfigurable Systems on Chip (SoC ’02), Hamburg, Germany,
April 2002.

[13] CAMeL-View, “CAMeL-View Virtual Engineering Workbench
Reference Guide,” iXtronics GmbH, Paderborn, Germany,
2004.

[14] ChipScope Users Guide, Xilinx, San Jose, Calif, USA, 10th
edition, 2008.

[15] Trolltech, “Qt—cross-platform application framework,”
http://trolltech.com/.

[16] U. Rathmann, “Qwt—Qt Widgets for Technical Applications,”
http://qwt.sourceforge.net/.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

