Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2014, Article ID 536362, 21 pages
http://dx.doi.org/10.1155/2014/536362

Hindawi

Research Article
Design Patterns for Self-Adaptive RTE Systems Specification

Mouna Ben Said,' Yessine Hadj Kacem,'! Mickaél Kerboeuf,’
Nader Ben Amor,' and Mohamed Abid’

! University of Sfax, ENIS, CES Laboratory, Soukra km 3,5, BP 1173, 3000 Sfax, Tunisia
2 University of Brest, Lab-STICC, MOCS Team, France

Correspondence should be addressed to Mouna Ben Said; mouna.ben-said@ceslab.org
Received 30 November 2013; Revised 2 April 2014; Accepted 28 April 2014; Published 14 July 2014
Academic Editor: Markus Happe

Copyright © 2014 Mouna Ben Said et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The development of self-adaptive real-time embedded (RTE) systems is an increasingly hard task due to the growing complexity of
both hardware and software and the high variability of the execution environment. Different approaches, platforms, and middleware
have been proposed in the field, from low to high abstraction level. However, there is still a lack of generic and reusable designs
for self-adaptive RTE systems that fit different system domains, lighten designers’ task, and decrease development cost. In this
paper, we propose five design patterns for self-adaptive RTE systems modeling resulting from the generalization of relevant existing
adaptation-related works. Combined together, the patterns form the design of an adaptation loop composed of five adaptation
modules. The proposed solution offers a modular, reusable, and flexible specification of these modules and enables the separation
of concerns. It also permits dealing with concurrency, real-time features, and adaptation cost relative to the adaptation activities.
To validate our solution, we applied it to a complex case study, a cross-layer self-adaptive object tracking system, to show patterns

utilization and prove the solution benefits.

1. Introduction

Compared to desktop systems, embedded systems, and
particularly RTE systems, are more complex and difficult
to develop. They are subject to a multitude of constraints,
such as resource limitations and time, and execute in a
continuously and highly variable environment. The addition
of self-adaptivity to such systems further hardens and delays
their development especially with the current lack of reusable
designs and development tools for self-adaptive RTE systems
[1-3]. Lightening the task of self-adaptive system designers
and reducing the development cost and time to market repre-
sent a major challenge in the field. Numerous research works
aiming at decreasing the complexity of self-adaptive systems
development have been proposed in the literature. They tried
to exploit software engineering approaches, such as the model
driven engineering (MDE) paradigm, to provide rapid and
simplified designs [4]. They tackled different system layers
with different adaptation granularities and goals and different

environmental constraints [3, 5]. However, there is still a lack
of generic and reusable designs that are target independent,
fit different system domains, and ease the design of these
complex systems.

Design pattern development is a relatively old discipline
that has been proven to be beneficial for getting fast and
reusable designs [6]. Unfortunately, patterns that are devoted
to adaptive systems are still not well tackled in the liter-
ature. Existing solutions are mostly dedicated to desktop
and distributed systems, thus ignoring important constraints
that characterize RTE systems (e.g., resource limitations).
They also tackle only the software part of the system, thus
disregarding the hardware side which is as essential as
the software side in embedded systems design [7]. Those
particularly intended for RTE systems domain are, to the best
of our knowledge, almost absent.

In this paper, we aim at proposing a pattern-based
specification of a modular self-adaptive system based on
the external adaptation approach [3] which separates the

adaptable system from the adaptation logic. We append to the
adaptable system an adaptation loop formed by five modules:
four modules forming the so-called MAPE loop [8] (Monitor,
Analyze, Plan or Decide, and Execute or Act) and an addi-
tional fifth one, named Assess, that we propose to include in
the loop. To promote reusability and flexibility of the design,
the adaptation modules are represented as design patterns.
We survey relevant adaptation-related works and generalize
them to extract a generic adaptation terminology that we
use to construct our design patterns. The proposed patterns
handle concurrency, real-time features, and adaptation cost
relative to the adaptation activities. Our patterns are then
used in the specification of a loop-based self-adaptive RTE
system by applying them to a case study representing an
adaptive object tracking system. This work is to be integrated
in a model-based approach for design pattern recognition
to guide RTE system designers to build self-adaptive RTE
systems models.

This work involves different contributions. The first one
lies in the development of five patterns for the MAPE loop
adaptation modules which permits the promotion of their
reuse, separately, in other contexts. It also promotes reusabil-
ity and modularity of the design. The second contribution
consists in the utilization of the proposed patterns for the
specification of a modular self-adaptive RTE system whose
structure is based on the MAPE loop and the external adapta-
tion approach. The use of patterns enables designers to model
their specific adaptive systems and gives them the freedom
to insert additional options that have not been specified
in the design. Moreover, a complete self-adaptive system
is composed of the five modules of the adaptation loop.
However, being scalable and extensible, our solution enables
the designers to specify their own self-adaptive systems using
the modules they need. They have the liberty to remove
modules from the loop or add specific information to it. We
prove this benefit through case studies illustrating different
use of the patterns. In addition to these contributions, an
extended version of the adaptation loop has been proposed
by adding the Assessor module to the MAPE loop in order to
enable the evaluation of its behavior. Another novelty of this
work is that patterns are described using the unified modeling
language (UML) models that are annotated using the MARTE
(modeling and analysis of real-time and embedded systems)
[9] profile. The MARTE profile permits the jointly modeling
of the hardware and software parts of embedded systems
using a rich terminology for the specification and analysis
of RTE systems. The above benefits have been illustrated
through the application of our patterns to different examples
of self-adaptive RTE systems.

The remainder of this paper is organized as follows.
Section 2 surveys relevant related works in the adaptive
embedded systems field. Section3 introduces the RTE
systems domain through the description of the external
adaptation approach and the presentation of an architec-
tural view of the extended MAPE loop. The description
of the five proposed patterns is then given in Section 4.
In Section 5, we illustrate, through two case studies, the
patterns utilization for the specification of different self-
adaptive RTE systems with different patterns combination.

International Journal of Reconfigurable Computing

Finally, Section 6 concludes the paper and mentions future
work.

2. Related Work

A self-adaptive system is a system that is able to change
its structure or behavior at run-time in response to the
execution context variations and according to adaptation
engine decisions [10]. The design of adaptive embedded sys-
tems presents many challenges due to the complexity of the
problem it handles. A common basic challenge is optimizing
system nonfunctional properties (e.g., maximizing output
quality) while meeting internal and external constraints (e.g.,
real-time constraint). For example, a high quality of service
may require a high utilization of system resources, such as
CPU cycles and memory space, and implies high energy
consumption.

The self-adaptive systems domain is relatively old and
thus very rich. In the present review, we limit our study to
research works particularly tackling self-adaptive embedded
systems, which are relevant to the definition of our patterns.

Self-adaptation in embedded systems has been well tack-
led in the literature. Several approaches are based on low-
level development process integrating adaptation techniques
in the classic system on chip codesign flow [11-16]. Later,
the development of adaptive systems at a low level has
become a tedious task due to the growing complexity of
modern systems and dedicated applications. Designers have
then resorted to high abstraction level approaches [17-21],
typically based on the model driven engineering (MDE)
paradigm [22] with the UML/MARTE profile which is
the most upcoming standard for embedded systems model
driven development. This methodology has been proven to be
well appropriate to embedded systems design [23]. It eases the
modeling of self-adaptive systems by avoiding dealing with
technical details thus promoting reusability. Details about the
previously cited works may be found in [5].

In addition to the above approaches, several projects [24,
25] have been realized in the literature to help guide and ease
self-adaptive systems development. Researchers have equally
developed middleware [26-28], frameworks [29, 30], lan-
guages [31], and tools [32] for this aim. CARISMA (context-
aware reflective middleware system for mobile applications)
[27] and MADAM (mobility and adaptation enabling mid-
dleware) [26] offer adaptation middleware to facilitate the
development of mobile applications. CARISMA exploits
the principle of reflection to enable mobile application to
dynamically adapt to context changes. It also offers a conflict
resolution approach that treats conflicts that may be incurred
by the reflective behavior. The MADAM project proposes a
component-based design of both adaptation middleware and
mobile applications. Each component has a set of implemen-
tations offering the same functional properties but different
nonfunctional ones. The adaptation middleware decides on
the implementation that best meets user needs. It is composed
of three core components: a context manager which monitors
the change in user requirements and context elements, an
adaptation manager which takes the appropriate adaptation

International Journal of Reconfigurable Computing

Adaptable RTE system
Context data

Adaptation engine

SW component

Adaptationactions
HW component P

SW component

FIGURE 1: External adaptation approach:

decisions, and a configurator which reconfigures the mobile
application according to the adaptation decisions.

The author of [29] proposed a model-based framework
that helps automate the development of self-adaptive embed-
ded systems. He uses formal methods to specify system
features which are the embedded system, events trigger-
ing reconfiguration, and reconfiguration requirements. The
author proposes a process formalization that permits extend-
ing of the original system model to a self-adaptive one based
on its formal specification. The resulting model can be the
input of existing model-based simulator or code generator.

All the previously described approaches are beneficial
since they facilitate and fasten the development of adaptive
systems. However, they present some weaknesses. They are
generally domain-specific which limits their applicability for
diverse systems. They are also not sufficiently generic since
they tackle specific adaptation problems, which consequently
compromises their reusability as well as their ability to adapt
to new system requirements and constraints. Additionally,
most of them only focus on the software side adaptation
while ignoring the hardware side which is essential in the
embedded systems design.

The development of design patterns is a promising
alternative approach to deal with the above problems. A
design pattern gives a higher abstraction view of a com-
monly recurring problem, thus promoting the reusability
and extensibility of the design. Works dealing with pattern-
based adaptation are not numerous. Some were interested
in defining the internal functioning of adaptation modules
[6, 7, 33] while others rather focused on the structure and
organization of adaptation functions. Concerning patterns
dedicated to the architecture of adaptive systems, we cite
Weyns et al. [34] who proposed patterns to decentralize
multiple adaptation loops in large and complex self-adaptive
systems. In [35] authors proposed a dynamic self-adaptation
pattern for distributed transaction management in service-
oriented applications (SOA). SOA coordination patterns are
used to deal with the coordination of distributed transac-
tions. In [36] a taxonomy was proposed for self-adaptation
patterns at both component and ensemble levels. At the
component level, authors describe the basic components that

Analyzing
@

adaptable system + adaptation loop.

may compose self-adaptation patterns. At the ensemble level,
mechanisms by which components can be composed into
ensembles are presented.

As for patterns dealing with the internals of the adapta-
tion functions, Gamma and colleagues [6] proposed design
patterns to specify the behavior to dynamically reconfigure
four types of software architectures; master/slave, centralized,
server/client, and decentralized architectures. Schmidt et
al. [33] proposed a set of patterns that can be used for
the development of adaptive middleware. For instance, the
virtual component pattern [37] permits the adapting of
a distributed application to embedded systems memory
constraints. The component configurator pattern enables an
application to change its components’ implementations at
run-time. In [7] authors proposed a set of patterns aim-
ing at adapting distributed networked systems in order to
satisfy requirements and constraints that arise at execution
time. Patterns are classified, according to their purpose,
into three principle categories: monitoring, decision-making,
and reconfiguration activities. For example, Sensor Factory
pattern is a monitoring pattern dedicated to component-
based distributed infrastructure and intends to automatically
deploy sensors across a network and probe the distributed
components. These patterns are useful for the development of
adaptive systems in different domains. However, they do not
fit the real-time and embedded systems domain since they do
not deal with RTE systems constraints. Also, they are limited
to only addressing the software part of the system and are
most appropriate for distributed systems.

3. Self-Adaptive RTE Systems

3.1. External Adaptation Approach. Two types of adaptation
approaches have been identified in [3] to define how adap-
tivity is incorporated into a self-adaptive system: external
and internal approaches. In internal approach, the adaptation
logic is mixed with the system functional logic. In this case,
the adaptation engine is system dependent and thus difficult
to maintain, evolve, and reuse. However, in the case of
external approach, illustrated by Figure 1, the self-adaptive
system is defined by an adaptable system and an external

adaptation loop. This approach permits the separation of con-
cerns thus offering a reusable and customizable adaptation
engine. Since most existing works are based on an external
approach, in order to promote scalability, maintainability, and
reusability, we adopt the external approach when developing
our patterns.

3.2. The MAPE Adaptation Loop. A common structure of
the adaptation mechanism owned by a self-adaptive system
has been defined in the literature through the MAPE loop
[3, 8, 38, 39]. It is composed of sensors, effectors, and four
adaptation modules: Monitor, Analyzer, DecisionMaker, and
Actor. In this work, we propose an additional module named
Assessor that serves to adapt the adaptation loop in order
to guarantee the required performances of the self-adaptive
system. The above adaptation modules are briefly described
hereafter as follows.

(i) Sensor collects data about the status of the system and
its environment.

(ii) Monitor processes the collected data to decide about
relevant changes and then trigger change events.

(iii) Analyzer examines change events that occur in the
system to detect if an adaptation is required. It can
also identify the source of the change. Monitoring and
analyzing modules stand for all forms of observation
and evaluation of systems’ execution such as perfor-
mance monitoring, safety inspection, and constraint
verification [10].

(iv) DecisionMaker generates an adaptation decision
which specifies what elements to change and how to
change them in order to best meet system require-
ments. Two common approaches are used in the
literature to construct DecisionMakers: a rule-based
approach and an intelligent approach. The second
approach does not fit the real-time and embedded
systems domain because of its requirements in terms
of computing time. Adaptationactions can be clas-
sified into two categories [40]: parameter adapta-
tion/tuning and compositional adaptation mecha-
nisms. The former modifies application parameters
that determine the behavior. The latter exchanges
algorithmic or structural system components with
others to improve the system outcome.

(v) Actor applies the decision to the system. It maps
actions to effectors’ interfaces.

(vi) Effector is related to an adaptable system element and
is responsible for applying adaptationactions to it.

(vii) Assessor evaluates the adaptation cost-effectiveness
and performs, if needed, adjustments of the adapta-
tion controller in order to meet the required perfor-
mances.

Figure 2 illustrates the global architectural view of the loop-
based self-adaptive system. It specifies an abstract view of the
system with low coupled modules. The adaptation logic is
presented by five modules and each refers to an element of

International Journal of Reconfigurable Computing

Variations

Events
— Analyzing Monitoring
Regues
Plan
Adaptable
elements

ning Assessor

Decision

%l Executing |—)[Effectors

Actions

FIGURE 2: Global architectural view of the adaptive system.

the adaptation loop. The adaptable system is composed of a
set of adaptable elements which are modified by effectors. The
contribution of this paper consists in developing a modular
architectural template for self-adaptive RTE systems based on
the extended MAPE loop. The modules forming the proposed
template are presented as design patterns in order to permit
their reuse, separately, in other contexts.

4. The Proposed Patterns Description

In this section, we present the description of five patterns:
RTE Monitor, RTE Analyzer, RTE DecisionMaker, RTE Actor,
and RTE Assessor. The description follows the pattern tem-
plate in [41]. In this paper, we give details of six fundamental
fields which are the pattern name, problem, intent, context,
motivation, and solution. We use the UML standard diagrams
annotated with the UML/MARTE profile stereotypes to
present structural and behavioral views of patterns’ solutions.
These solutions are the result of the abstraction and gener-
alization of many relevant existing adaptation-related works
[12-16, 24-26, 29, 42].

4.1. RTE Monitor Pattern
Name. RTE Monitor.

Problem. The problem treated by this pattern is the detection
of an irregular status of an RTE system which results from
relevant variations of internal and external context elements.

Intent. The RTE Monitor pattern permits the continuous
control of the status of one or more RTE system properties
in order to detect relevant changes and trigger events. It takes
into consideration the system stability issue by minimizing
events trigger through the selection of only important context
variations. It also handles concurrency and real-time features
relative to the control operations.

Context. This pattern is used in the first step of development
of a self-adaptive RTE system. The designer has to define
the system to adapt and his adaptation requirements by
answering the “what to monitor?” question.

Motivation. The starting point that triggers adaptation mech-
anism in an RTE system is the context variation detection.
Therefore, to be self-adaptive, an RTE system first needs to
integrate a monitoring module that permits continuously
controlling and updating of the status of its execution context.
Additionally, the execution context of an RTE system is very

International Journal of Reconfigurable Computing

<HW _Sensor>

<«SWSchedulableResource,

HWSensor
NotificationResource>
SWSensor
<PpUnit>
W Status
ﬁ value: NFP_Value
. dateTime: DateTime
<RtUnit>
Sensor 1 *
sensorID: Integer
speriod: NFP_Duration
sDIn: NFP_Duration «PpUnit>
<RtFeature>newStatus() 1 1 ContextElement
<RtService, RtFeature> notifyStatus()
cntxtElemld: Integer

Threshold

minValue: NFP_Value
maxValue: NFP_Value

cValue: NFP_Value

getCvalue()
setCvalue(value)

<NotificationResource>>
VarEvent

eventType: String

dateTime: DateTime

0..1 1

<RtUnit>
Monitor

eventData: String

timeOut: Integer

getEventData()

monitorID: Integer
mPeriod: NFP_Duration

mDIn: NFP_Duration

<RtFeature> examineStatus()

<RtService, RtFeature>> notifyVariation()

FIGURE 3: Structural view of the RTE Monitor pattern.

fluctuant so that context variation detection risks are very
frequent. Therefore, in order to have a stable adaptive system
with the minimum of reconfigurations, a monitoring step
is required to restrict the number of treated changes by
approving only relevant ones.

Solution. This pattern represents a monitoring module that
permits the observation of status of RTE system context
properties.

Structural View. Figure 3 shows the class diagram that
explains the structural view of the pattern.

Participants

(i) ContextElement represents an internal or external
property of the system which is observed by the

Monitor, such as CPU load, battery life, and network
bandwidth. It is a passive unit that carries information
about the status of a system property and is concur-
rently accessed by the Sensor and Monitor. It is thus
stereotyped as “PpUnit” It specifies its concurrency
policy through the concPolicy attribute (“sequential’,
“guarded’, or “concurrent”).

(ii) Sensors are responsible for data collection about the
status of Context Elements. A Sensor is associated
with each ContextElement and provides measures of
its status. We classify sensors into two categories: a
hardware sensor, stereotyped as “HW _Sensor” rep-
resents a hardware device providing a measure of a
physical quantity and converting it into a signal. A
software sensor is defined by a software task running

concurrently on the system to measure a system
property, such as CPU usage, and notify a Monitor.
It is thus stereotyped as “SwSchedulableResource”
and “NotificationResource” A notification resource
is a software synchronization resource used to notify
events. To keep events history, the notified occur-
rences can be memorized in a buffer by setting the
policy attribute value to “memorized”

Since we are in the context of real-time and embed-
ded systems, two basic issues have to be taken
into consideration: the concurrency and the real-
time features. In order to handle these issues, we
annotate the active classes by the HLAM “RtUnit”
stereotype [9] indicating that it is a real-time unit.
An RtUnit is an autonomous execution resource that
may own one or more schedulable resources and one
or several behaviors. It is also capable of handling
different incoming messages at the same time without
worrying about concurrency issues thanks to its
own concurrency and behavior controller. It owns
a message queue permitting the saving of messages
it receives. Messages can represent operation calls,
signal occurrences, or data receptions. A message can
be used to trigger the execution of a behavior owned
by the real-time unit. A sensor is an active class that
we annotate “RtUnit.”

(iii) Status stores the measures realized by sensors in
order to keep track of context information history
which is important to determine the trends of context
elements variations [26] and consequently to improve
predictions. Status indicates for each measure the date
and time and the value. The latter is typed NFPValue
which has different attributes that permit precisely the
specifying of NFP values, such as statistical qualifier,
precision, and source.

(iv) The Monitor is an “RtUnit” that is associated with
each ContextElement. It examines sensing data using
minimum and maximum values stored in a Threshold
to decide if a significant variation has occurred or a
certain threshold has been exceeded. Threshold may
represent either interval limits indicating a regular
status or allowed variation margins to be used to
decide about the variation relevance. If a variation
is relevant, the Monitor generates a variation event,
stereotyped as “NotificationResource”

For the sake of system stability when self-adapting, it is
recommended to define an adaptation period in order to
manage the adaptation mechanism occurrence. Commonly,
this period is equal to a defined number Ne of application
iterations [12]. At every period, the monitoring module
starts a control session and then the adaptation cycle is
executed. Therefore, the operations executed by the sensing
and monitoring modules need to specify their occurrence
kind (such as periodic, aperiodic, and sporadic). Moreover,
in order to respect the real-time constraint, these operations
have deadlines that they are asked to meet. In order to
model these real-time properties, we annotate the sensing
and monitoring methods with the “RtFeature” stereotype

International Journal of Reconfigurable Computing

which has the occKind, relDI, and absDI (for occurrence kind,
relative deadline, and absolute deadline, resp.) attributes. In
order to specify additional attributes for real-time constraints
of these operations, we use the “RtService” stereotype. It
permits managing of the execution priority of a real-time
service by the specification of the execution kind (exeKind
attribute) which can be either “deferred”, “remoteImmediate”,
or “locallmmediate”.

Behavioral View. Figure 4 shows the UML sequence diagram
presenting the execution scenario of the RTE Monitor pattern
by showing the communication between the different objects
forming it. The monitoring module starts by Sensor which
periodically delivers a new measure of the status of the
supervised Context Element and then it notifies the Monitor.
The NotifyStatus() method execution kind is locallmmediate
in order to be immediately executed by the Sensor. The
Monitor receives the new measure and updates the current
status value of the Context Element. Then it examines the
new status to decide about the relevance of the change. It
can use thresholds to verify whether the measure is in the
interval delimited by minimum and maximum values. The
negative case indicates an irregular state causing the Monitor
to generate a variation event and send it to the Adaptation
Controller of the system through its notify Variation() method
in order to be processed and decided upon. This method
occurrence is aperiodic since its execution depends on the
verification result of the examineStatus() method. However,
when executed, it has the highest priority, thus having its
execution kind set to locallmmediate.

4.2. RTE Analyzer Pattern
Name. RTE Analyzer.

Problem. Having the status of an RTE system context, the
RTE Analyzer pattern responds to the question of “Does an
adaptation need to be applied?”

Intent. This pattern permits the verification of constraints
meeting of an RTE system and then asks for adaptation if
needed. It contributes to providing a stable adaptive system
by minimizing adaptation requests. It handles concurrency
and real-time features relative to the control operations.

Context. This pattern is used when designing a self-adaptive
RTE system, specifically when information about changes in
the system context is available and system constraints are
defined.

Motivation. A change in the execution context does not
necessarily affect the functioning of the system, that is,
violate system constraints, thus not requiring an adaptation.
Therefore, a verification step is needed in order to avoid
useless adaptations.

Solution

Structural View. Figure 5 shows the class diagram relative to
the structural view of the RTE Analyzer pattern.

International Journal of Reconfigurable Computing

<RtUnit> <PpUnit> <PpUnit>
Sensor Status

ContexElement

«RtFeature> newStatus()
>

i
|
1 1

i <rtFeature, RtService >>n_0tifyStatus()

<RtUnit>
Monitor

{occKind=periodic
(period=Mperiod,
reIDIn=MdIn)}

<NotificationResource>>|
VarEvent

AdaptationController

{occKind=periodic
(period=Speriod,
reIDIn=SdIn)}

I
1
|
I
1
I
I
I

I
I
I
I
I

{occKind=periodic
(period=Speriod,
reIDIn=SdIn,

exeKind=locallmmediate)}
1

/
/
/

setCvalue(value) <RtFeature>-examineStatus()

Alt

[If relevant variation]

new()

N 1
«RtFeature, RtService>>notifyVariation()

{occKind=aperiodic [\
(exeKind=
locallmmediate)}

FIGURE 4: Behavioral view of the RTE Monitor pattern.

<NotificationResource>>
VarEvent

eventType: String

Threshold

minValue: NFP_Value
maxValue: NFP_Value

<RtUnit>
Analyzer

dateTime: DateTime
eventData: String
timeOut: Integer

getEventData()

analyzerID: Integer
aPeriod: NFP_Duration
aDIn: NFP_Duration

<RtFeature>> verifyConstraints()
<RtService, RtFeature>> requestAdaption()

AdaptationRequest

requestTime: DateTime
requestData: String
timeOut: Integer

getRequirements()

FIGURE 5: Structural view of the RTE Analyzer pattern.

Participants

(i) The Analyzer is responsible for the verification of the
system constraints meeting. It processes a Variation
Event that occurs to the system to decide whether
an adaptationaction is required or not. It is thus an
active class stereotyped as “RtUnit.” It has an analysis
method, verifyConstraints(), which generally executes
a constraint miss test. The miss test may require
thresholds. The requireAdaptation() method generates
an Adaptation Request.

(ii) An AdaptationRequest carries request data indicating
the analysis results such as the source of constraint
violation. It has a timeout to be considered when
treated.

Behavioral View. The behavior of the RTE Analyzer pattern is
depicted by the UML sequence diagram in Figure 6. Having
variation events received in its message queue, the Analyzer
treats them in a loop. It asks for event data if the event is still
valid; that is, its timeout is not achieved. Then it uses the col-
lected data to verify the system constraints meeting through
the verifyConstraints() method. Since events occurrence is
aperiodic, this method’s occurrence kind is aperiodic too. If
constraints are not met, the analyzer asks for adaptation by
sending an AdaptationRequest to the Adaptation Controller of
the system. For more clarity, we can cite an example of real
scenario: when a task entry event occurs in the system, the
Analyzer performs a schedulability test to verify the real-time
constraints meeting. If tasks’ deadlines are not met, it asks for
adaptation by generating an adaptation request carrying new
context data.

4.3. Decision-Making Pattern. Different classifications of
decision strategies have been proposed in the literature. In
[3, 40, 42], authors proposed a classification in two types
according to the level of granularity and complexity of the
change: parametric and structural strategies. The parametric
strategy modifies parameters of system components which
have effect on the system behavior. It is a low-cost fine-grain
adaptation applied locally on system elements. However, the
structural strategy modifies the system structure such as com-
ponents allocation change and their activation/inactivation.
It is a high-cost coarse-grain adaptation that involves the
entire system. A self-adaptive system may have a parametric
or structural adaptation strategy or a combination of these.
This latter case is called hierarchical adaptation that has been
tackled by a number of research works like [12, 14] and has
been proven to be effective.

Name. RTE DecisionMaker.

Problem. The problem treated by this pattern is to decide what
artifact in an RTE system to adapt and how to adapt it to meet
a set of requirements and constraints.

Intent. When an adaptation decision is required, the RTE
DecisionMaker pattern decides what system elements to
change and how to meet requirements and constraints. This

International Journal of Reconfigurable Computing

pattern defines the adaptation strategy to apply. It can be
based on parameters tuning of system’s changeable elements,
the modification of system’s structure, or a hierarchical
adaptation coordinating both strategies.

Context. This pattern is used when an RTE system exhibits
new constraints or requirements due to change in its execu-
tion context. It is used in conjunction with the RTE Analyzer
pattern.

Motivation. When modeling a self-adaptive RTE system,
designers need to specify the adaptation strategy to use to
calculate the adaptation decision. The RTE DecisionMaker
pattern permits modeling of three types of adaptation strate-
gies.

Solution

Structural View. We designed the RTE DecisionMaker pattern
at a high abstraction level so that it is simple enough and
generic to permit the design of a hierarchical adaptation
decision-making by considering two different adaptation
strategies at once: the parametric fine-grain and the structural
coarse-grain strategies.

Participants. The structure of this pattern, depicted in
Figure 7 , is composed of two basic classes: a DecisionMaker
(DM) and a ConfigurationManager.

(i) DecisionMaker is the principal class of the pattern. It
is responsible for generating the adaptation decision
that best meets the requirements of an adaptation
request. It initiates a hierarchical decision-making
by cooperating with fine- and coarse-grain config-
urationmanagers. It asks for partial reconfiguration
decisions. Then it coordinates between them through
its coordinateDecision() method which generates the
final decision that is encapsulated in an Adaptation-
Plan and sent through the notifyPlan() method to
the Adaptation Controller of the system. The DM
is therefore an active class stereotyped as “RtUnit”
An illustrative example of the hierarchical adaptation
decision-making is the GRACE platform proposed
in [14]. Authors proposed a hierarchical adaptation
approach performing expensive global adaptations
occasionally at large system changes (e.g., applica-
tion entry or exit) and low-cost limited-scope per-
application adaptations frequently at the start of
every frame. Since we are in the context of RTE
systems, whose behavior needs to be predictable, the
overhead of adaptation activities has to be taken into
account while designing such systems. Adaptation
cost refers to the worst case execution time (WCET)
and required resources of adaptation modules. In
our case, the adaptation cost is equal to the cost
of deciding and acting modules which necessitate
time to find the best adaptation solution and then
apply the changes on the system. We suppose that
the cost of the other loop modules is negligible.
In order to capture the adaptation cost, we use

International Journal of Reconfigurable Computing

<RtUnit>» «NotificationResource>> <NotificationResource>> AdaptationController
A:Analyzer VarEvent RequestData
I I I
T T
Loop ! [For each variation in the qu?ue]
1 1
Alt i [If not varEvent timeout] 1
~L I
getEventData A!
EventData i

RN R S |

S — | '
<RtFeature>>verifyConstraints()

——————— +-| {occKind=periodic}

Alt [If not relevant timeout]

(exeKind=

ne?V()

:
<RtFeature, RtService>>requireAdapltation())
/

{occKind=aperiodic Ij

locallmmediate)}

/
/
/

S S

FIGURE 6: Behavioral view of the RTE Analyzer pattern.

the “ResourceUsage” stereotype which offers a set
of nonfunctional properties representing consumed
amounts of resources, such as the WCET taken from
a computing resource, the used memory, and the
consumed energy.

(ii) ConfigurationManager is the generalization of adapt-
ableSystem and ChangeableElement. It is an “RtUnit”
responsible for the management of adaptableElements
configurations. It delivers, when required, the next
mode that best responds to system requirements
using its getNextMode() method. It is stereotyped as
“ResourceUsage” to capture its adaptation cost.

(iil) AdaptableSystem represents the system to adapt as a
whole. Its behavior is specified using a UML state
machine which manages global system reconfigura-
tion through structural modifications.

(iv) ChangeableElement represents an element of the
adaptable system that is amenable to change. Similarly
to the AdaptableSystem, it owns a state machine
managing fine-grain reconfiguration of a Change-
ableElement which is based on simple parameters
modification.

Behavioral View. The behavior of the DecisionMaker pattern
is modeled using a sequence diagram illustrated in Figure 8
accompanied with state machines of the adaptable system
and changeable system elements. In fact, the configuration

selection is modeled by state machines composed of a set of
modes and transitions between them. The triggering of an
event ensures the transition from one mode to another.

To model global adaptation decision, we use MARTE
capabilities for reconfigurable systems modeling defined by
the modal behavior model of the CommonBehavior pack-
age [9]. A state machine, stereotyped as “ModeBehavior,”
is used to model the dynamics of the adaptable system
configurations. It is composed of a set of mutually exclusive
modes, stereotyped as “Mode,” each characterized by a
configuration, and transitions between modes, stereotyped
as “ModeTransition” As for the design of local adaptation
decision, we use the MARTE extension proposed in [43] for
the design of software fine-grain adaptation in RTE systems.
The behavior of a changeable element is controlled by a state
machine stereotyped as “SwAdaptor” which is composed of
a set of configurations stereotyped as “ElementaryMode” and
switching transitions stereotyped as “ElementaryModeTran-
sition” An elementary mode represents a quality level of the
changeable element. It is characterized by a combination of
configuration parameters and its implied output quality and
resources usage. These characteristics are to be compared to
change requirements and constraints in order to select the
best next mode. Examples of fine- and coarse-grain state
machines are found in [9, 43], respectively.

When the DM receives a valid adaptation request, it
processes the data that it captures to determine requirements
and constraints to take into consideration. Then it decides

10

AdaptationRequest

International Journal of Reconfigurable Computing

requestTime: DateTime
requestData: String * 1
timeOut: Integer

<«ResourceUsage, RtUnit>
DecisionMaker

exectTime: NFP_Duration
memUsage: NFP_DataSize
energyUsage: NFP_Energy

AdaptationPlan

dateTime: DateTime
planld: integer

time: NFP_Duration
planData: String

getPlanData()

<RtFeature>>processRequestData()
<RtFeature>>coordinateDecision()
<RtService, RtFeature>>notifyPlan()

1

<ResourceUsage, RtUnit>>
ConfigurationManager

exectTime: NFP_Duration
memUsage: NFP_DataSize
energyUsage: NFP_Energy

<RtFeature>>getNextMode()

T

«SwAdaptiveResource>>
ChangeableElement

AdaptableSystem

FIGURE 7: Structural view of the RTE DecisionMaker pattern.

whether a local, structural, or both decision strategies are
necessary and which elements of the system to change. If
local adaptation of a ChangeableElement is required, the
DM triggers mode switch of this element by invoking
the getNextMode() method, giving then requirements and
constraints to respect. The “ElementaryTransition” that best
meets constraints is then activated and the destination “Ele-
mentaryMode” is selected and returned back to the DM.
The same scenario is applied to the adaptable system which
returns back the next “Mode” of the whole system. Having
received destination modes decisions, the DM coordinates
between them, if needed, generates the final adaptation plan,
and notifies the system AdaptationController.

4.4. Acting Pattern
Name. RTE Actor.

Problem. Having an adaptation decision for an RTE system,
the RTE Actor pattern deals with the definition of who and
how to apply this decision.

Intent. This pattern permits refining of a final adaptation
plan into a set of adaptationactions, each to be applied

to a changeable element of an adaptable RTE system. It
defines the effector responsible for the application of an
adaptationaction.

Context. The RTE Actor pattern is used when an adaptation
plan needs to be applied to a RTE system.

Solution

Structural View. Figure 9 represents the structure of the RTE
Actor pattern.

Participants

(i) The Actor is an active class that is responsible for
analyzing the received AdaptationPlan in order to
refine it into a set of one or more AdaptationActions. It
also assigns each action to its specific Effector through
its assignEffector() method.

(ii) An AdaptationAction is an atomic activity permitting
the reconfiguration of a system ChangeableElement. It
is the generalization of two types of actions: Paramet-
ricAction and StructuralAction. The former consists
in parameters tuning of a system element. The latter
represents the set of possible structural modifications

International Journal of Reconfigurable Computing

1

-
-,
-
-,
-,

AdaptationRequest DecisionMaker ChangeableElement] AdaptableSystem | | AdaptationPlan |AdaptationController|
i i i
I I I
I I I
I I I
I I I
Alt | [If not AdaptionRequest: |
i TimeOut] i i
| getRequirements() | i
: 8 d ! {occKind= |
! requestData() ! aperiodic} i
s !
L , 1
I I
I I
I I
I
)

—
<RtFeature>>processRequestData(
1

N

T ¥
Alt [If local Adaptation is required]
<RtFeature>>getNextMode(constraints

<<ElementaryMode>>nextModel()

K

{occKind=
aperiodic}

Alt

[If local Adaptation is required]

<RtFeature>getNextMode(constraints)

<<Mode>>ne):ctM0de()

1
'
I
I
K T
I
1
!
1
I

|

new()

<RtFeature, RtServicle>>notifyP1an()

I
1
i
!
<<RtFeaIture>>coordinateDecisions()I
I
1
1
1
T
I
I
i
1

FIGURE 8: Behavioral view of the RTE DecisionMaker pattern.

that can be applied on a system component, such as
the addition/removal and activation/disactivation of
a component.

(iii) The Effector is an interface between the adaptation

decision and the adaptable system elements. It is a
real-time unit responsible for applying an adapta-
tionaction on its associated ChangeableElement. It is
therefore target specific. An Effector can be either a
HWEffector stereotyped as “HWI/O” or a SWEffector
implemented as a software task. The application of
an AdaptationAction is the main adaptation operation
having an effect on the adaptation costs. Therefore,
each Effector is stereotyped as “ResourceUsage” to
specify its resource consumption amounts when
applying an action in order to be taken into account
in the adaptation cost evaluation.

it assigns each adaptationaction to the appropriate Effector
which is responsible for its application on the associated
changeableElement via its applyAction() method.

4.5. Assessing Pattern

Name. RTE Assessor.

Problem. The RTE Assessor pattern deals with the issue of
adaptation cost-effectiveness. It treats the question of “How
well do we adapt?”

Intent. This pattern is used for evaluating and adapting a
self-adaptation loop controlling an RTE system in order to
enhance the self-adaptation capabilities to better deal with
context variations. It performs statistics and estimations and

Behavioral View. Figure 10 represents the behavior of the RTE

Actor pattern.

applies parameters tuning adaptation.

The actor performs the refinement of an AdaptationPlan, Context. This pattern represents the final module in the
if it is still valid, into a set of atomic AdaptationActions. Then, = RTE systems adaptation loop. It is therefore used when an

12

International Journal of Reconfigurable Computing

AdaptationPlan <RtUnit>
Actor
* 1
refine() assignEffector()
1
1 1
L. <«ResourceUsage, RtUnit>
% Effector
AdaptationAction exectTime: NFP_Duration
% | memUsage: NFP_DataSize
dateTime: DateTime ek e NI it 7
ChangeableElement
_— 1 1.%| applyAction()
; . StructuredAction <HW_I/O> «SwSchedulableResource>
ParametricAction HWEffector SWEftector
add()
remove()
tuneParameters() activate()
disactivate()

FIGURE 9: Structural view of the RTE Actor pattern.

adaptation loop design exists and is attached to an adaptable
RTE system, in order to control and adapt the loop.

Motivation. The execution context of RTE systems is con-
tinuously variable. New environmental changes may arise
during the system execution. Therefore, there is a need for
a control module that evaluates the cost-effectiveness of the
adaptation decisions, detects their inefficiency, and regulates
the adaptation parameters to meet the required performances
and better handle new context variations.

Solution

Structural View. We propose a simple and generic structure
of the assessing pattern depicted in Figure 11.

Participants

(i) AdaptationHistory is a repository of decisions histor-
ically generated by the different adaptation modules.
It can be the history of monitored status, generated
variation events, adaptation requests, or adaptation
decisions.

(ii) ControlParameter represents a parameter of an adap-
tation module which can be tuned in order to adapt
the adaptation loop to new context variations. It
can be, for example, the monitoring period or the
analyzing thresholds.

(iii) The Assessor performs statistics and estimations,
evaluates the performance of the adaptation loop,
and adjusts parameters of the latter to improve the
adaptation cost-effectiveness. It uses a repository of

AdaptationHistory to make statistics and evaluates
adaptation performance by calculating Metrics. It is
also responsible for generating an adaptation decision
through its assess() method and applying it on Con-
trolParameters through the adjust() method.

Behavioral View. The behavior of the RTE Assessor pattern is
represented by Figure 12. The Assessor evaluates performance
Metrics, such as adaptation cost, and analyzes a repository
of AdaptationHistory to make statistics. Based on these cal-
culations, it generates via the assess() method an assessment
Report according to which it adapts the adaptation engine
by acting on some Control Parameters through the adjust()
method. For example, having noticed a high adaptation
overhead, the Assessor augments the monitoring period
or raises the analyzing thresholds in order to guarantee
system stability. The Assessor is an RtUnit which may run
its job either periodically, at every predefined period, or
aperiodically after every adaptation loop execution. We give
the designer the liberty to choose the occurrence kind of the
assessment module.

Patterns Combination. The RTE Assessor pattern represents
an adaptation engine applied to an adaptable adaptation
loop. Therefore, it performs the adaptation operations of
the previously studied adaptation modules. After preparing
analysis data (statistics and metrics values), the Assessor
generates, via its assess() method, a Report which represents
the adaptation decision. The assess() method may implement
an adaptation strategy to decide which control parameters
to adapt and how. This issue is handled by a DecisionMaker

International Journal of Reconfigurable Computing 13
<<I;tg§;t>> AdaptationPlan Effector ChangeableElement

| | 1 1

1 | 1 1

1 | 1 1

1 | 1 1

1 \ 1 1

1 1 1

Alt | | : :

:[If not AdaptionPlan Timout] ! !

I <RtFeature>> refine() | | |

1 | 1 1

i {adaptationAction} i i i

I(““"““"“"': I I

1 \ 1 1

1 \ 1 1

1 I I I

[| 1 1

1 | 1 1

1 | 1 1

1 \ 1 1

1 \ 1 1

T I

Loop | 1 X i :

| For each AdaptationAction I |

i <<RtFeature$>assignEﬂ%ct0r() i i

! | s |

1 | 1 1

1 | 1 1

1 | 1 1

1 | 1 1

] 1 I I

1 | 1 1

1 | 1 !

i | i<RtFeatures>applyAction()

| | i |

! ! ! !

FIGURE 10: Behavioral view of the RTE Actor pattern.
. 5. Patterns Utilization
<RtUnit> Metric
Assessor This section includes three objectives: (i) illustrating the
el evaluate() utilization of the proposed patterns through case studies of
adjust() adaptive RTE systems, (ii) presenting the specification of
N a loop-based self-adaptive system using the five patterns,
and (iii) demonstrating different and independent use of the
¥ — patterns through a second case study.
Report AdaptationHistory
*

ldateTime: DateTime 0-1 5.1. Case Study 1 (Object Tracking Application). In this sec-
ControlParameter analyze() tion, we present a case study where we apply our patterns

FIGURE 11: Structural view of the RTE Assessor pattern.

module. It is therefore convenient for designers to replace this
method by the RTE DecisionMaker pattern. In this case, only
one adaptation strategy type is used: the parametric strategy,
which is applied to ControlParameters, which represent the
changeable elements of the adaptable loop. Furthermore, the
adjust() method, which performs the application of the adap-
tationPlan on the ControlParameters, can also be replaced
by the RTE Actor pattern which permits decomposing of
the adaptation decision into parametricActions, with each
being applicable to a ControlParameter. The possibility of
combining the RTE DecisionMaker pattern and the RTE Actor
pattern with the RTE Assessor pattern proves the reusability
and modularity of the proposed designs.

for the design of a dynamically adaptive object tracking
application proposed in [12]. We chose this case study because
it is one of the rare existing works that has dealt with almost
all modules of the adaptation loop, carrying adaptation at
different system layers and for both hardware and software
parts of an RTE system and dealing with the system stability
issue. However, this work has been developed at a low level,
thus lacking a high abstraction level modeling step, which is
the case of most state-of-the-art works in the field. Conse-
quently, to apply our patterns, we start by providing a table of
correspondence between adaptation concepts offered by the
patterns and those considered in the application example in
order to evaluate the generic aspect of the patterns’ solutions.
Then, we present a pattern-based structural model for the
case study to show how to append the proposed patterns to
the framework based self-adaptive system structure.

5.1.1. Case Study Overview. The authors of [12] present a self-
adaptive object tracking application, which was implemented
on an FPGA-based camera. The application is composed of
10 tasks which can be implemented in HW or in SW. An

14 International Journal of Reconfigurable Computing
Assessor Metric |AdaptationHistory| |ControlParameter|
I T T T
I i | i
| i | i
| I | I
1 1 1 :
T T 1
Loop| ! For each Metric ! ! !
: evaluate() : : |
I I
! MetricValues | ! i
mm e A 1 |
1 1 1 :
u 1
! mluzlyze() I{ !
| statistics H |
Kemm oo — T T - :
1 1
i assess() | ! i
I i | i
I i | i
I i | i
) I | I
I I 1 I
L 1 1 :
| report() | | !
| C | |
I | I I I
K-=—=-=-=-=-= - 1 1 1
i i | i
] : [:
Loop | 'Eor each control Parameter X |
1
| adjust() | !
: |
1 1
1 1
1 1

F1GURE 12: Behavioral view of the RTE Assessor pattern.

U(t): user references

- e
(ii) Execution time| ~ CTTrmeo—————- \ B
(iii) Lifetime i LCMs i
Metrics 1 | CID
Tasks
y(t+1) -

S: controlled system

Sensors o
] Lifespan (battery), —
Executlon time (OS), QoS (LCM)

FIGURE 13: Global structure of the closed-loop self-adaptive system proposed in [12].

electric toy train tracking scenario is proposed to illustrate
the system self-adaptivity. The scenario contains various
events provoking configuration decisions. The goal is to
design an embedded system able to respect a constraint
while optimizing secondary magnitudes. In this case study,
the regulated magnitude is the QoS indicating the tracking
accuracy and the optimized ones are power and execution
time.

This self-adaptive system is developed based on a cross-
layer adaptation approach for self-adaptive RTE systems
development. The authors propose a hierarchy of local and
global configurationmanagers (LCM/GCM), as depicted in
Figure 13, to separately deal with application-specific and
application-independent reconfigurations, respectively. The

LCM is responsible for local application algorithmic recon-
figurations. An LCM is defined for each application. The
GCM is responsible for architectural reconfigurations which
consist in tasks migration from software to hardware on a
multiprocessor heterogeneous architecture. Only one GCM
is defined for the whole system.

5.1.2. Patterns/Application Features Matching. The adaptation
features matching is summarized in Table 1. The train track-
ing application considers three context elements, the QoS
metric indicating the tracking error, the execution time,
and the battery life. The first regulated magnitude is the
application QoS. Three sensors, each corresponding to a

International Journal of Reconfigurable Computing

15

TaBLE 1: Adaptation concepts correspondence between the proposed patterns and the object tracking application.

Patterns feature

Case study instance

Context elements

Three magnitudes:
(i) application QoS (the tracking error);
(ii) execution time;

(iii) power consumption

Four observers:

(i) a task (T10);

Sensors (ii) SW timer of RTOS;
(iii) battery gauge component;
(iv) observer estimator
Adaptation period Configuration period Ne = 1; that is, a new configuration is evaluated after each application

iteration

Monitor + Analyzer

Local configurationmanager (LCM)

Monitoring Thresholds, irregular status

QoS reference (the tracking maximum error) is set to 10% and reduced to 2% within the critical
area to guarantee good reactivity. Task T10 provides the LCM with the application QoS metric
(error between prediction and object position):

(i) a value close to 0 but lower than the reference (10%) means a very high tracking quality — it
can be relaxed by reducing the application speed;

(ii) a value higher than the reference — the application rate must be increased with a faster
configuration.

Adaptation request

User requirements (e.g., QoS, power, and performance references) and magnitudes’ values

Decisionmaker

(i) LCM for application specific algorithmic configuration decisions

(ii) Global ConfigurationManager (GCM) for global architectural configuration decisions

Decision strategy

(i) LCM: algorithmic configuration selection using LCM rules; lists of configurations and
transition rules based on tasks metrics.

(i) GCM: selection of the closest solution below the user reference (QoS reference). A Borda vote
is used in the case of multiple solutions.

Adaptation Plan

Architectural configuration CID

Actor (refinement)

A mask-based CID analysis

AdaptationAction

Four cases result from the CID analysis:
(i) nothing to do;
(ii) requests to HAL to get new I/O information (physical addresses);

(iii) a reconfiguration message sent by a HW task to its legal representative (LR) to activate its SW
implementation;

(iv) the LR directly intercepts the new CID and activates the SW task

Effector

(i) HAL
(ii) HW task LR

Changeable elements

Tasks

Assessor

System stability and avoidance of reconfiguration

Performance Metrics

(i) System stability: use of proportional integrator

(ii) Requests to HAL to get new I/O information (PI) regulator (coefficients: kp = 0,25; ki = 0, 25)
and a least mean square (LMS) observer (coefficient: kL = 221

(ii) Reconfiguration avoidance: use of a minimum delay Tk required to accept the reconfiguration
overhead compared to expected benefits

Control Parameter

Configuration space restriction

16

magnitude, and a fourth one providing estimations of the
context behavior are used. A configuration period Ne is
defined to control the periodic execution of the adaptation
mechanism. An LCM compares user-defined references with
observed magnitudes’ values to detect irregular status. It then
generates a preliminary decision of application’s algorithmic
configuration and sends it to the GCM. The latter is respon-
sible for global architectural implementation decisions. It
decides the new system configuration according to user
requirements, magnitudes’ values, and the received LCM
local decision. The decision strategies of both GCM and LCM
are mode switch based. They use rules and conditions for
mode transitions. Therefore, their behavior can be modeled
using state machines. Six LCM rules are defined for the object
tracking application. An example of rule mentioned in the
paper is as follows.

[If the noise level is larger than a given threshold ('Th9), then
activate the adaptive threshold task T9.] As for the GCM, it
decides a new global configuration j such that

[yit+1)=maxk(yk(t+1)| yk(t+1) <u®)+x()],
ey

where yk(t + 1) is the controlled magnitude value for the
configuration k. u(t) is the magnitude reference and x(t) is
the output of the proportional regulator.

When the next configuration CID is determined, it
undergoes a refinement step through the execution of a mask-
based CID analysis by each task to get information about the
new configuration to run. The Adaptation Plan refinement
results in one of four predefined atomic AdaptationActions.
These actions are assigned to Effectors, which are the HAL and
the HW task legal representative (LR), to be applied on tasks.

The final functionality of case study’s control loop is the
performance evaluation of the self-adaptation behavior. Self-
adaptivity must have a negligible overhead compared to the
gain it brings. Performance Metrics used in the example are
system stability and avoidance of reconfiguration. A PI regu-
lator and a LMS observer are used to evaluate system stability.
The reconfiguration acceptance is related to a minimum delay
Tk required to accept the reconfiguration overhead compared
to expected benefits. TK is calculated as follows:

TR ER
1= max (IR, ER .)

T GT GE @
where TR is the reconfiguration delay, GT is the performance
gain between the new and the previous configuration, ER
is the energy required for a reconfiguration, and GE is the
energy gain.

An example of assessment decision is a restriction of
configuration space. If Tk < 0, then costly hardware
reconfigurations (SW — HW and HW — HW) are not
allowed.

We notice from the previous study that the adaptation
scenario of the case study is very similar, in both structure
and behavior, to our proposed patterns, used in conjunction
with each other in one model. We present in the next section
the pattern-based specification of the case study application

International Journal of Reconfigurable Computing

to show how our proposed patterns are used and combined
together.

5.1.3. Patterns Application to the Self-Adaptive Object Track-
ing System. The general structure of the closed-loop self-
adaptive object tracking system, presented in Figure 13, is
composed of 4 basic elements: the controlled system, a
control function, an observer, and user references. The corre-
sponding high-level pattern-based specification is presented
in Figure 14.

The controlled system S is composed of two configu-
rationmanagers (an LCM for the tracking application and
a GCM for the whole system) and a set of tasks and
sensors observing the controlled magnitude y(¢). The LCM
encompasses the monitoring and analyzing activities. There-
fore, it is modeled using the RTE Monitor and the RTE
Analyzer patterns. The observed ContextElements represent
the controlled magnitudes provided by sensors and tasks.
These magnitudes, together with user references, which are
represented by Thresholds, form the input of the LCM. The
output of this latter is an AdaptationRequest sent to the RTE
DecisionMaker pattern. Decision-making is insured mostly
by the GCM and partly by the LCM. Parametric adaptation
strategy, performed by the LCM, is applied to application
tasks which represent ChangeableElements of the adaptation
loop. The GCM is responsible for structural adaptation
strategy, applied for the AdaptableSystem, the coordination
between local and global configuration decisions, and the
generation of final Adaptation Plan which is an architectural
configuration CID.

The Adaptation Plan is the input of the RTE Actor pattern
responsible for the realization of the next configuration
CID. The refinement of the selected configuration, which is
performed by each task using a mask-based CID analysis, is
insured by an Actor. An AdaptationAction is generated for
each task. The Actor assigns actions to Effectors, which are the
HAL and the HW task LR. The latter apply actions on tasks,
which are modeled as ChangeableElements.

The remaining blocks in the case study structure are the
system observer O and the control function R. The observer
calculates estimates of controlled magnitude for the next time
slot in order to predict its evolution to anticipate the right
reconfiguration decision. It is a model-based estimator that
replaces new sensors measures when they are delayed or
even not available. It is therefore linked to ContextElements
and Threshold. As for the controller, it permits handling of
system stability and avoidance of reconfiguration based on a
PI regulator and a LMS observer. It performs the adaptation
loop assessment and is consequently modeled using the
RTE Assessor pattern. The Assessor evaluates performance
Metrics which are the system stability and the minimum
delay for reconfiguration acceptance. Metrics are evaluated
using different parameters such as controlled magnitudes
and adaptation cost. Relations between Metric and the
ContextElements are then added. The Assessor generates an
assessment Report which is applied on ControlParameter
such as the restriction of system configuration space. System
configurations are designed using the AdaptableSystem class.

International Journal of Reconfigurable Computing

17

,,,,,,,,,,,,,,,,, I

77777777 E—

1
!
!

QoSSensor HQOSContextElementl

ExecTSensorHExecTContextElement

\
|
|

PWContextElementH PWSensor

1
1
1
1
1
1
1
1
1
1
1
\

I

I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! !

DecisionMaker

---— Actor

- -~ Monitor
Analyzer --—- Assessor
- -+ DecisionMaker

FIGURE 14: Patterns application to the closed-loop self-adaptive object tracking system.

5.1.4. Discussion. We can derive from the previous sub-
sections that using a pattern-based specification for the
development of a RTE system presents advantages upon the
low-level development approach. Instantiating the patterns
for the target system has simplified the system specifica-
tion by hiding internal functional and technical details of
system elements and lowering the system model size. That
permits proving of the efficiency of the pattern-based solution
regarding the provision of a generic and clear model since
it is specified using standard modeling languages. Moreover,
the use of the monitoring, analyzing, and deciding patterns
permits, for instance, a better organization of both LCM
and GCM activities which promotes the modularity and
thus flexibility of the design. Additionally, the use of the
acting pattern permits the separation between the adaptation
functionalities (plan refinement and effectors assignment)
and the adaptable elements (tasks), thus offering a design that
is based on the external adaptation approach.

5.2. Case Study 2 (The Race Feedback Loop for Application
QoS Control). This section deals with the specification of the
control architecture of the resource allocation and control

engine (RACE) [44]. RACE is an adaptive resource manage-
ment framework for open distributed real-time embedded
(DRE) systems, such as the NASAs magnetospheric multi-
scale mission system. The RACE’s control engine employs a
feedback loop permitting adapting of the system in response
to variations in resource utilization and application QoS.

5.2.1. Patterns Application to the RACE Feedback Loop. In this
section, we only describe the specification of the application
QoS adaptation. Figure 15 illustrates the RACE’s adaptation
architecture. The feedback loop is composed of three prin-
cipal components: Monitor, Controller, and Effector. The
corresponding pattern-based specification is presented in
Figure 16.

(i) Monitors. A hierarchical monitoring architecture is con-
sidered. AppMonitors measure end-to-end application delay
using high resolution timers which periodically send the
collected QoS delays to the nodemonitor of the same node.
Each nodeMonitor tracks the QoS of all the applications
running on its node and sends it, also periodically, to the
centralizedMonitor. The latter tracks the overall system QoS

18 International Journal of Reconfigurable Computing
Target Resource Controller System Centralized
manager utilization QoS QoS monitor
System wide adaptation decisions
Resource Application
utilization CentralizedEffector QoS

Per-node system parameters

]

]

‘)

O

./

57g

=

-9 14

|:| Node

[] Effector

/\ Resource monitor

O—CO E-2-E application
O QoS monitor

FIGURE 15: Structure of the RACE’s feedback control loop [44].

I
AproSReq|—| AppMonitor |—| AppQoS |— AppSensor | |
!
I

|
!
!
|
\

B
i IzlaptationPlan

|AdaptationAction|—| Node |

_| Actor }—‘ Effector

i
i
i
i
i
i
i
i
i
\

DecisionMaker
-—-— Actor

- -~ Application monitor
== NodeMonitor
---— Centralized Monitor

FIGURE 16: Patterns application to the RACE feedback loop for application QoS control.

and sends it to the controller. The RTE Monitor pattern
can be applied hierarchically in the three levels (application,
node, and system). A HWSensor, which represents the high
resolution timer, is used to capture application QoS value.
AppMonitors of the same node notify a nodeSensor by their
application QoS. It is a SWSensor, such as a thread that is
continuously waiting for events or messages from AppMon-
itors to get their data and transfer them to its nodeMonitor.

The same entities are used for the CentralizedMonitor that is
used to generate the system QoS.

(ii) Controllers. The controllers are responsible for adapta-
tion decision-making. RACE disposes of several controllers
which implement different decision algorithms that manage
changes in the DRE system operational context. According to
the control algorithm used, the controller modifies different

International Journal of Reconfigurable Computing

configuration parameters of the system, such as applications
execution rates and platform-specific QoS parameters like
OS/middleware/network QoS settings for an application
based on its QoS characteristics and requirements. It can
also modify the allocation of resources to components.
We notice from this description that both parametric and
structural adaptation strategies are present in the studied
adaptation engine. It is therefore convenient to use the RTE
DecisionMaker pattern in the specification of the Controller.
The DecisionMaker generates an adaptation plan that permits
meeting of the system performance requirements sent by
the centralized-QoS-Monitor. Based on the control algo-
rithm it implements, the DecisionMaker selects the appro-
priate ConfigurationManager which permits modeling of the
event/condition/action tuples as well as configurations details
that are used to take reconfiguration decisions.

(iii) Effectors. The Effectors are responsible for modifying
system parameters according to the adaptation decisions.
Similarly to Monitors, Effectors are designed hierarchically.
A centralizedEffector calculates the values of some system
wide parameters. It also computes and transmits per-node
parameters for each nodeEffector in the system. The RTE
Actor pattern fits this task well. The Controller decisions
represent the input for the Actor. The Actor represents the
centralizedEffector. It examines adaptation decisions to refine
parameters into a set of per-node parameters represented
by adaptationActions and propagate them to nodeEffector
represented by Effectors. The node is the changeableElement
in this case.

5.2.2. Discussion. This case study permitted illustration of a
different context (DRE systems) for the proposed patterns
utilization. We equally presented a hierarchical structure of
the patterns use, thus demonstrating a different possible
combination of them and proving their independency.

6. Conclusion and Future Work

This paper deals with high abstraction level design of modular
self-adaptive RTE systems using design patterns. The modu-
lar structure of the adaptive system is based on an external
adaptation approach which separates the adaptable system
from the adaptation logic in order to promote modularity and
thus flexibility and maintainability of the model. The adapta-
tion logic is modeled using an extended version of the MAPE
loop. The extended loop is composed of the four common
adaptation modules, the Monitor, Analyzer, DecisionMaker,
and Actor, and an additional module, the Assessor, which
permits the evaluation of the adaptive behavior.

We developed five patterns representing generic model-
ing of the adaptation loop modules. The patterns take into
consideration the adaptation cost as well as concurrency
and real-time features of adaptation operations which are
key concerns in RTE systems design. Then, the proposed
patterns were used in the development of a MAPE loop-
based self-adaptive RTE system. We combined, in a first
case study, the five proposed patterns and applied them
to a relevant existing adaptive system, an object tracking

19

application implemented on an FPGA-based smart camera.
We also illustrated, through a second case study, the appli-
cation of the proposed patterns to another context with a
different combination in order to prove their reusability and
independency. The case studies showed the effectiveness of
using design patterns for high abstraction level modeling of
self-adaptive RTE systems. Such approach permits easing and
fastening of designers’ job by enabling the reusability and
flexibility of the design.

We plan in future work to integrate the proposed patterns
in an MDE-based approach for the automatic generation of
self-adaptive RTE systems. In particular, we aim at automat-
ically detecting our implemented patterns through applying
patterns recognition techniques.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Hallsteinsen, E. Stav, and J. Floch, “Self-adaptation for
everyday systems,” in Proceedings of the Ist ACM SIGSOFT
Workshop on Self-Managing Systems (WOSS '04), pp. 69-74,
ACM, New York, NY, USA, November 2004.

[2] A. Kofod-Petersen and M. Mikalsen, “Context: representation
and reasoning representing and reasoning about context in a
mobile environment,” Revue d'Intelligence Artificielle, vol. 19, no.
3, pp. 479-498, 2005.

[3] M. Salehie and L. Tahvildari, “Self-adaptive software: landscape
and research challenges, ACM Transactions on Autonomous
and Adaptive Systems, vol. 4, no. 2, article 14, 2009.

[4] B.Schitz, A. Pretschner, E. Huber, and J. Philipps, “Model-based
development of embedded systems,” in Advances in Object-
Oriented Information Systems, vol. 2426 of Lecture Notes in
Computer Science, pp. 298-311, Springer, 2002.

[5] M. B. Said, Y. H. Kacem, N. B. Amor, and M. Abid, “High
level design of adaptive real-time embedded systems: a survey;”
in Proceeding of the International Conference on Model-Driven
Engineering and Software Development (MODELSWARD '13),
pp- 341-350, Barcelona, Spain, February 2013.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Boston, Mass, USA, 1995.

[7] A. J. Ramirez and B. H. C. Cheng, “Design patterns for
developing dynamically adaptive systems,” in Proceedings of the
ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS '10), pp. 49-58, ACM, New York,
NY, USA, May 2010.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41-50, 2003.

[9] OMG Object Management Group, “A UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded systems,’
ptc/2011-06-02, Object Management Group, June 2011.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor et al., “An architecture-
based approach to self-adaptive software,” IEEE Intelligent
Systems and Their Applications, vol. 14, no. 3, pp. 54-62, 1999.

[11] T. Frikha, N. Ben Amor, I. Benhlima, K. Loukil, M. Abid, and J.
P. Diguet, “Self-adaptive on-chip system based on cross-layer

20

(17]

(19

(20]

(22]

(23]

[25]

(26]

adaptation approach,” International Journal of Reconfigurable
Computing, vol. 2013, Article ID 141562, 17 pages, 2013.

J. P. Diguet, Y. Eustache, and G. Gogniat, “Closed-loop-based
self-adaptive hardware/software-embedded systems: design
methodology and smart cam case study, Transactions on
Embedded Computing Systems, vol. 10, no. 3, article 38, 2011.

L. Ye, J. P. Diguet, and G. Gogniat, “Rapid application develop-
ment on multi-processor reconfigurable systems,” in Proceeding
of the International Conference on Field Programmable Logic and
Applications (FPL '10), pp. 285-290, Milano, Italy, September
2010.

V. Vardhan, W. Yuan, A. F. Harris I1I et al., “Grace-2: integrating
fine-grained application adaptation with global adaptation for
saving energy, International Journal of Embedded Systems, vol.
4,10. 2, pp. 152-169, 2009.

W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling
for multimedia applications,” ACM Transactions on Computer
Systems, vol. 24, no. 3, pp. 292-331, 2006.

N. P.Ngoc, W.van Raemdonck, G. Lafruit, G. Deconinck, and R.
Lauwereins, “A qos framework for interactive 3d applications,”
in Proceeding of the 10th International Conference on Computer
Graphics and Visualization (WSCG '02), pp. 317-324, Plzen-
Bory, Czech Republic, February 2002.

I. Rafiq Quadri, H. Yu, A. Gamatié, E. Rutten, S. Meftali, and
D. Jean-Luc, “Targeting reconfigurable FPGA based SoCs using
the UML MARTE profile: from high abstraction levels to code
generation,” International Journal of Embedded Systems, vol. 4,
no. 3-4, pp. 204-224, 2010.

I. R. Quadri, S. Meftali, and D. Jean-Luc, “High level modeling
of dynamic reconfigurable FPGAs,” International Journal of
Reconfigurable Computing, vol. 2009, Article ID 408605, 15
pages, 2009.

J. Vidal, E. de Lamotte, G. Gogniat, J. Diguet, and P. Soulard,
“UML design for dynamically reconfigurable multiprocessor
embedded systems,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE '10), pp. 1195-1200, Euro-
pean Design and Automation Association, Leuven, Belgium,
March 2010.

F. Krichen, B. Hamid, B. Zalila, and M. Jmaiel, “Towards
a model-based approach for reconfigurable dre systems,” in
Software Architecture, vol. 6903 of Lecture Notes in Computer
Science, pp. 295-302, 2011.

J. Zhang and B. H. C. Cheng, “Model-based development
of dynamically adaptive software,” in Proceeding of the 28th
International Conference on Software Engineering (ICSE '06), pp.
371-380, ACM, Shanghai, China, May 2006.

D. C. Schmidt, “Model-driven engineering,” IEEE Computer,
vol. 39, no. 2, pp. 25-31, 2006.

G. Gogniat, J. Vidal, L. Ye et al., “Self-reconfigurable embedded
systems: from modeling to implementation,” in Proceedings of
the International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA '10), pp. 84-96, Las Vegas, Nev,
USA, 2010.

Famous Project, “Anr famous overview;” http://www.lifl.fr/
~meftali/famous/.

N. Shankaran, J. S. Kinnebrew, X. D. Koutsoukas, C. Lu, D. C.
Schmidt, and G. Biswas, “An integrated planning and adaptive
resource management architecture for distributed real-time
embedded systems,” IEEE Transactions on Computers, vol. 58,
no. 11, pp. 1485-1499, 2009.

M. Mikalsen, N. Paspallis, J. Floch, E. Stav, G. A. Papadopou-
los, and A. Chimaris, “Distributed context management in a

(27]

(31]

(33]

[34]

[37]

(38]

(39]

International Journal of Reconfigurable Computing

mobility and adaptation enabling middleware (MADAM),” in
Proceeding of the ACM Symposium on Applied Computing (SAC
'06), pp. 733-734, Dijon, France, April 2006.

L. Capra, W. Emmerich, and C. Mascolo, “Carisma: context-
aware reflective middleware system for mobile applications,”
IEEE Transactions on Software Engineering, vol. 29, no. 10, pp.
929-945, 2003.

S. M. Sadjadi and P. K. McKinley, “A survey of adaptive middle-
ware,” Tech. Rep. MSU-CSE-03- 35, Department of Computer
Science, Michigan State University, East Lansing, Mich, USA,
2003.

L. Tan, “Model-based self-adaptive embedded programs with
temporal logic specifications,” in Proceeding of the 6th Interna-
tional Conference on Quality Software (QSIC '06), pp. 151-158,
Beijing, China, October 2006.

W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H. Kravets,
“Design and evaluation of a cross-layer adaptation framework
for mobile multimedia systems,” in Multimedia Computing and
Networking, vol. 5019 of Proceeding of SPIE, pp. 1-13, Santa Clara,
Calif, USA, January 2003.

T. Vogel and H. Giese, “Model-driven engineering of adaptation
engines for self-adaptive,” Tech. Rep. 66, Hasso Plattner Insti-
tute for Software Systems Engineering, University of Potsdam,
Potsdam, Germany, 2013.

N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair,
“Genie: supporting the model driven development of reflective,
component-based adaptive systems,” in Proceeding of the 30th
International Conference on Software Engineering (ICSE '08), pp.
811-814, ACM, New York, NY, USA, May 2008.

D. Schmidt, M. Stal, H. Rohnert, and E Buschmann, Pattern-
Oriented Software Architecture, vol. 2 of Patterns For Concurrent
and Networked Objects, Wiley, 2000.

D. Weyns, B. Schmerl, V. Grassi et al., “On patterns for decen-
tralized control in selfadaptive systems,” in Software Engineering
for Self-Adaptive Systems II, R. Lemos, H. Giese, H. Miiller, and
M. Shaw, Eds., vol. 7475 of Lecture Notes in Computer Science,
pp- 76-107, Springer, Berlin, Germany, 2013.

H. Gomaa and K. Hashimoto, “Dynamic self-adaptation for
distributed service-oriented transactions,” in Proceeding of the
ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 12), pp. 11-20, Zurich, Switzerland,
June 2012.

M. Puviani, G. Cabri, and F. Zambonelli, “A taxonomy of
architectural patterns for self-adaptive systems,” in Proceedings
of the International C+ Conference on Computer Science and
Software Engineering (C3S2E '13), pp. 77-85, ACM, New York,
NY, USA, July 2013.

A. Corsaro, D. C. Schmidt, R. Klefstad, and C. ORyan, “Virtual
component—a design pattern for memory-constrained embed-
ded applications,” in Proceedings of the 9th Conference on Pattern
Language of Programs (PLoP '02), 2002.

S. Dobson, S. Denazis, A. Fernandez et al., “A survey of auto-
nomic communications,” ACM Transactions on Autonomous
and Adaptive Systems, vol. 1, no. 2, pp. 223-259, 2006.

B. H. Cheng, R. de Lemos, H. Giese et al.,, “Software engineering
for self-adaptive systems,” in Software Engineering for Self-
Adaptive Systems: A Research Roadmap, vol. 5525 of Lecture
Notes in Computer Science, pp. 1-26, Springer, Berlin, Germany,
2009.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” Computer, vol. 37, no. 7, pp. 56—
64, 2004.

International Journal of Reconfigurable Computing

(41]

(42]

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns, John Wiley & Sons, New York, NY, USA, 1996.

J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Software
engineering for self-adaptive systems,” in Modeling Dimensions
of Self-Adaptive Software Systems, vol. 5525 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, 2009.

M. B. Said, Y. H. Kacem, N. B. Amor, M. Kerboeuf, and M. Abid,
“Fine-grain adaptation for real time embedded systems using
uml/marte profile,” in Proceeding of the Forum on Specification
Design Languages (FDL '13), pp. 1-8, Paris, France, September
2013.

N. Shankaran, D. C. Schmidt, X. D. Koutsoukos, Y. Chen, and C.
Lu, “Design and performance evaluation of configurable com-
ponent middleware for end-to-end adaptation of distributed
real-time embedded systems,” in Proceeding of the 10th IEEE
International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC '07), pp. 291-298,
Santorini Island, Greece, May 2007.

21

International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components

