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Unbalance response and stability analyses of a flexible rotor on three lobe journal
bearings on flexible supports are presented. The influence of the support structure was
included in the analyses using polynomial transfer functions. These transfer functions
were extracted from measured dynamic compliance data of the support structure,
measured at the bearing locations. Numerical predictions using polynomial transfer
functions and single mass supports are compared to the experimental data. Predictions
using the transfer function representation of the support structure show a clear im-
provement over the predictions using single mass supports without over-complicating
the problem. The predicted critical speeds are within 2.9% of the measured critical
speeds. The predicted stability threshold agrees with the measured stability threshold
within 1%. The effects of cross talk between supports and cross coupling between
horizontal and vertical directions are investigated. The cross talk between supports was
found to have a strong influence in the results while the influence of cross coupling
between the vertical and horizontal directions is negligible.

Keywords: Flexible supports; Rotating machinery; Experimental data; Stability; Unbalance
response; Fluid film bearings

INTRODUCTION

The work presented in this paper is part of a larger
study of the influence of flexible bearing supports
on unbalance response and stability of rotating
machinery (Vizquez, 1999). In this study, a flexible
rotor is supported by two fluid film bearings on

flexible supports. The dynamic behavior of the
support structure is measured experimentally and
included into the numerical analysis as polynomial
transfer functions. One set of tilting pad bearings
and two sets of three lobe bearings were used in
conjunction with 15 support configurations. The
rotor was tested for unbalance response and
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stability on all support configurations and the
three sets of fluid film bearings. It was not possible
to drive the rotor unstable with the set of tilting
pad bearings for the speed range of the experi-
mental apparatus and only unbalance response
was measured for this set of bearings.

This paper presents details for one of the
support configurations used by Vfizquez (1999)
with one of the set of three lobe bearings. Vizquez
summarized the results for this support configura-
tion but no details were given. The analysis was
also extended to include a study of the effects of
cross coupling between vertical and horizontal
directions and cross talk between supports.
The study started as an extension of the. work by

Lanes and Flack (1982). There, the authors carried
out an experimental study of the effects of three-
lobe bearing geometry on rotor stability. The ex-

perimental apparatus used for those experiments
was very similar to the one used here. The stability
thresholds were calculated assuming rigid supports
and compared with the experimental data. In all
cases, the stability analysis under-predicted the
measured stability threshold. It was proposed that
the support flexibility was responsible for the dif-
ference. However, the analytical tools to include
the support flexibility were not available at the
time. Gash (1976) had proposed a method to
include support flexibility into rotordynamic
analyses. However, the method worked for unba-
lance response but was not suitable for stability
analyses.

Hashish and Sankar (1984) developed the
equations for the finite element approach for
rotordynamic analysis, including bearing support
flexibility. Nicholas and Barrett (1986) presented
a method to include flexible support dynamics in
rotor-dynamic analysis. They derived an expres-
sion of equivalent bearing coefficients when the
bearing is mounted on flexible supports. The
supports were modeled as a single mass system,
represented by a single mass with springs and
dampers in the horizontal and vertical directions.

Further development permitted the use of
experimental data in unbalance response analyses
(Barrett et al., 1986; Nicholas et al., 1986). This

provided an improvement in the modeling of the
supports but this new technique could not be used
for stability analyses. Later, Rouch et al. (1989)
presented some work where experimental fre-
quency response functions (FRFs) were used to
model the foundation of a rotor system for forced
response analyses. The analysis was carried out
using the finite element approach and the founda-
tion characteristics were included frequency by
frequency.
Redmond (1995, 1996) showed that under cer-

tain circumstances, substantial errors might occur
when employing measured support data from
impedance tests with the rotor installed. A meth-
od was included to subtract the dynamic effect of
the rotor under these circumstances. The support
models were represented by single mass systems.

Lees et al. (1998) and Feng and Hahn (1998)
presented methods to obtain foundation dynamic
characteristics from machine unbalance response.

Vfizquez and Barrett (1998, 1999) presented a
method to include the dynamic characteristics of
bearing supports using transfer functions. These
transfer functions could be calculated from mea-

sured frequency response functions, mode shape
information or physical models of the support
structure. The support transfer functions can be
used in unbalance response and stability analyses.
The experimental work presented by Vfizquez
(1999) complements the development of the ana-
lytical tools and shows that polynomial transfer
functions can be used successfully to represent
flexible supports of rotating machinery.

EXPERIMENTAL APPARATUS

The test apparatus has been fully described by
Vfizquez (1999) and Vfizquez et al. (1999a, b). For
the sake of brevity, only the most important de-
tails will be repeated. The test apparatus consists
of a flexible shaft with three rigid disks equally
spaced between two three-lobe bearings on aniso-
tropic flexible bearing supports. The rotor has a
maximum diameter of 25.4mm and a minimum
diameter of 19.0mm. The disks are rigidly
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FIGURE Experimental apparatus.

attached to the rotor and have a diameter of
152.4 mm. The total rotor length is 654.0 mm with
a bearing span of 520.7 mm. The total weight of
the rotor is 12.64 kg. The first and second critical
speeds of the rotor are 2580rpm and 5100rpm.
A one-horsepower DC motor drives the rotor
through a flat belt and flexible coupling. Any
rotor speed up to 11000 rpm can be obtained. The
whole apparatus sits on top of a heated, oil-filled
reservoir clamped to a 900kg concrete block.
Figure shows the experimental apparatus.
The rotor is supported by two identical three-

lobe bearings. Table I shows the characteristics of
the bearings while Figure 2 shows the calculated
eight linear bearing stiffness and damping co-
efficient (Branagan, 1988). The bearings are
supported by flexible elements that connect the

rigid bearing housing to the oil reservoir. The
flexible element design was based on a beam con-
struction with stiffening plates connected at the

TABLE Bearing characteristics

Journal diameter (mm) 25.400 (4-0.0025)
Machined in pad radial clearance (mm) 0.1546 + 0.0017)
Bearing radial clearance (mm)
(clearance for a centered journal)
Bearing length (mm)
Bearing preload factor
Pivot offset factor
Lobe arc length (deg.)
Loading direction (deg.)
Static load (N)
Inlet pressure (kPa)
Inlet temperature (C)
Oil viscosity (Pa. s)@ 40C
Oil viscosity (Pa. s)@ 55C
Oil density (kg/m3)

0.0368 4- 0.0017)
12.700 4- 0.0025)
0.762 4- 0.023)
0.484 4- 0.012)

95(4-1)
0.0 4- 2.5)
62.2 + 0.1)
20.7 4- 0.1)
48.3 4- 0.5)

0.0262
0.0159
908
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FIGURE 2 Bearing stiffness and damping coefficients.

FIGURE 3 Bearing housing and flex’ible element.

ends. It was constructed of aluminum. The oil
drained from the bearing housing passed through
drainpipes in the flexible element to the oil re-
servoir located under the assembly. Figure 3
shows a detail of the bearing housing with the
flexible element. Figure 4 shows the design of
the flexible support element with the stiffening
plates. Changing the stiffening plates parametri-
cally varies the horizontal stiffness of the support
element. The stiffening plates used in this work
were made of aluminum with a width of 63.5 mm
and a thickness of 3.175 mm.

SUPPORTS FREQUENCY RESPONSE
FUNCTIONS

The dynamic characteristics of the supports were
determined at the bearing locations. Frequency
response functions (FRFs) of the support structure
were obtained by exciting the support structure at
the bearing housings and measuring the response.
The rotor was removed during these tests. Direct,
cross-coupled and cross talk FRFs were measured.
These FRFs were later used to calculate poly-
nomial transfer functions that would represent the
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support structure in the rotordynamic analyses.
Polynomial transfer functions can be calculated
using one of several system identification tech-
niques available (Maia and Silva, 1997; Ljung,
1999).
A total of 16 FRFs were measured for the

support structure. In matrix form they are or-

ganized as:

Xl dCxlxl dCxlyl dxlx2 dCxly2
Yl dCylxl dCylyl dCylx2 dCyly2
x2 dcx2xl dcx2yl dCx2x2 dcx2y2
Y2 dcy2xl dcy2yl dcy2x2 dcy2y2

DC(w)

fxl

where the numbers and 2 refers to supports
and 2 respectively. The components of this matrix
are measured one column at a time. That is, force
is applied at one support in one direction and the

responses for that column are measured simulta-
neously. Those FRFs that relate the displacement
at one support with the force applied at the same
support in the same direction are designated as
direct frequency response functions. FRFs relating
the response in one direction due to a force in the
other direction are designated as cross coupling.
Finally, those FRFs relating the response in one

support to a force applied at the other support are

designated cross talk.
The dynamic compliance matrix or FRF matrix

is symmetric because the support structure is a

passive system. Figures 5 through 7 show examples
of the measured FRFs.

Figure 5 shows direct and cross talk FRFs in the
horizontal direction. Notice that the direct FRFs
are very similar. This indicates that supports
and 2 have a similar behavior in the horizontal
direction. The cross talk FRFs are lined up on

top of each other. This corroborates that the
dynamic compliance matrix is indeed symmetric.
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FIGURE 5 Measured direct and cross talk dynamic compliance in the horizontal direction.
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FIGURE 6 Measured direct and cross talk dynamic compliance in the vertical direction.

These cross-talk FRFs have the same order of
magnitude as the direct FRFs, indicating a strong
influence between supports.

Figure 6 shows the direct and cross talk FRFs in
the vertical direction. Notice that the direct FRFs
of each support are different but the same order of
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magnitude. This indicates that the supports are
not as similar as expected, however, this does not
affect the experiments since no assumption was
made in the similarity of the supports. Again, the
cross-talk FRFs are identical as expected for a
passive system. Notice that the magnitude of the
FRFs in the vertical direction is an order of mag-
nitude smaller than the FRFs in the horizontal
direction. This indicates that the supports are
stiffer in the vertical direction, highlighting the
anisotropy of the supports.

Figure 7 shows some cross-coupling FRFs. The
magnitude of the FRFs is an order of magnitude
smaller than the magnitude of the cross talk FRFs
in the horizontal direction. From this, it is ex-

pected, and will be shown later, that the effect of
the cross coupling in the support structure is not
as strong as the cross talk between supports.
The frequency response functions were used to

compute polynomial transfer functions using the
method developed by Sanathanan and Koerner
(1963) and later used by GS.hler and Herzog
(1994). The computed transfer functions form the

transfer function matrix (TFM) of the support
structure as:

Xl Igxlxl gxlyl gxlx2 gxly2 fxl
Yl | gylxl gylyl gylx2 gyly2 fyl

I
X2 Igx2xl gx2yl gx2x2 gx2y2 fx2
Y2 LgyZxl gy2yl gyZx2 gyZy2 fy2

(2)

The TFM is defined as a function of the
complex frequency s and is valid in the whole
complex plane. The TFM has the same form as
Eq. (1). However, the elements of the matrix in
Eq. (1) are FRFs while each element of the TFM
is a ratio of two polynomials, of the form:

ansn q- an-1Sn-1 -+- q- als -+- ao
gij sm + bm_lam_ _+_... q_ bls q- bo

m>n (3)

In the case of these experiments, the polynomial
transfer functions were of order 24 (i.e., m 24).
This indicates that 12 modes were located in the
range of operation. As an example, Table II shows
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FIGURE 7 Measured cross coupling dynamic compliance.
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Power

TABLE II Polynomial coefficients for gxlxl

Numerator Denominator

s 7.9978E+ 50 1.0703E+ 57
s 1.0404E/ 48 1.8822E+ 54
s 4.3296E+ 47 6.8793E/ 53
s 6.4670E/ 44 1.1781E/ 51
s4 9.7153E/43 1.8147E+ 50
s 1.5267E+ 41 3.0735E+ 47
s 1.1547E/ 40 2.5336E/ 46
s 1.7489E/ 37 4.1132E/ 43
s 7.7874E/ 35 2.0145E/42
s 1.0469E+ 33 2.9580E/ 39
s1 3.0112E+ 31 9.2519E/ 37
s11 3.3275E+ 28 1.1495E+ 35
S
12 6.5359E+ 26 2.4278E+ 33

s13 5.4934E+ 23 2.3844E+ 30
S
14 7.5753E+ 21 3.5245E+ 28

s15 4.4595E+ 18 2.5587E+ 25
s16 4.4121E/ 16 2.7141E+ 23
s17 1.6934E+ 13 1.3984E/ 20
S
18 1.2666E+ 11 1.1190E/ 18

s19 2.8349E+ 07 3.9151E+ 14
s2 1.6561E/05 2.4477E+ 12
21 1.5627E/ 01 5.2719E+ 08

S
22 7.2548E- 02 2.6053E+06

S
23 1.0472E 06 2.6250E+ 02

s24 0.0000E+ 00 1.0000E+ 00

the polynomial coefficients for the transfer func-
tion gxlxl.

An equivalent support stiffness matrix is calcu-
lated from the TFM as:

[Ksup(S)]- [G(s)] -1 (4)

This equivalent support stiffness matrix is
frequency dependent and can be used to represent
the support structure for unbalance response and
stability analysis.

SINGLE MASS SUPPORTS

Single mass supports are the most common kind of
models used to represent flexible supports. They
consist of a mass with springs and dampers in the
vertical and horizontal directions. The equivalent
support stiffness matrix for this kind of supports
is written as:

where [Ms], [Cs] and [Ks] are the support struc-
ture mass, damping and stiffness matrices. For the
case of two flexible bearing supports (as is the
case here) the equivalent support stiffness matrix
is written as:

0 0 0

m 0 0

[00 0m20
0 0 m2

Cxlxl 0 0 0

0 Cylyl 0 0
+s

0 0 Cx2x2 0

0 0 0 Cy2y2

Kxlxl 0 0 0

0 Kylyl 0 0
q-

0 0 Kx2x2 0

0 0 0 Ky2y2

(6)

Equation (6) does not include cross coupling
between the vertical and horizontal directions or

cross talk between supports. This is the standard
practice for support structure modeling with single
mass supports because these coefficients are, at
best, difficult to estimate.
The single mass support models used in this

work the properties:

m =m2 12.7 kg
gxlxl 1.34 106 N/m
gyly 3.78 107 N/m
Cxlxl Cyly 0.00 N-s/m
Kx2x2 1.95 106 N/m
Ky2y2 3.21 107 N/m
Cx2xe Cyay2 0.00 N-s/m

The mass of the supports was determined by
weighing the rigid bearing housings and bearings.
The stiffness of the supports was calculated by
extrapolation of the FRF to zero frequency. This
operation can be done directly on the FRF plots.
An alternative way is to calculate the transfer
function matrix, derived in the previous section, at
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zero frequency or:

[Ks]- [G(0)]-’ (7)

This calculation of the support stiffness is
approximate and depends on the validity of the
extrapolation. The assumption is that the transfer
function of the supports is well behaved outside
the range of the experimental data.
The value for the support damping was assumed

to be zero. This is also a common practice since the
estimation of the damping is very difficult.
The support stiffness to bearing stiffness ratio

for support is between 0.16 and 0.23 for the
horizontal direction and between 3.96 and 9.80 for
the vertical direction. For support 2, the support
stiffness to bearing stiffness ratio is between 0.23
and 0.34 in the horizontal direction and between
3.36 and 8.33 for the vertical direction.

SUPPORT STIFFNESS
IN ROTORDYNAMIC ANALYSES

The previous two sections developed the calcula-
tion method of the equivalent support stiffness
matrix. This matrix has the same form for the
single mass supports and the transfer function
representation. This section will show how to
include this matrix into rotordynamic analyses.
We will assume that the reader is familiar with
rotordynamic analysis in general and the genera-
tion of the dynamic matrices for a rotor supported
on fluid film bearings (Ehrich, 1992). The equa-
tions of motion of a rotor on rigidly supported
fluid film bearings can be described as:

S2[Mr]{blr} at- s[G]{ur} at- [Kr]{blr}
+ [K(s)]{Ur} {f} (8)

where:

[Mr], [Kr] are the mass and stiffness matrices of the
rotor

[G] is the matrix of the gyroscopic effect

[Kb(s)] is the complex bearing coefficient matrix. It
includes the stiffness and damping coefficients of
all the bearings in the system. One can group the
rotor matrices into a single frequency dependent
matrix:

[Rotor(s)]{Ur} + [K,(s)]{Ur}= {f} (9)

Equation (9) is a general representation of the
rotor system on fluid film bearings. Other effects
can be added to this equation without loss of
generality. Flexible bearing supports can be added
to Eq. (9) as an additional level. The equations of
motion of the rotor on flexible supports are:

[ _[Kb(S)]s ,’[Kb(S)Js _qt_ [<up(S)] Us

(10)
0

Equation (10) represents the general equation of
motion for rotordynamic analysis. The sub-indices
in the bearing matrices indicate that the rows and
columns are adjusted to the proper size. For forced
response analyses:

s icu, {f} {}eict (11)

for this type of analysis, the frequency of vibration
is known and the goal is to find the displacements
{ur ]us} T. Unbalance response is a special case of
forced response where the excitation forces vary as

a function of the rotational speed.
For stability analyses:

s p + icOd, {f} {0} (12)

For this kind of analysis the goal is to calculate
the complex frequencies s. This analysis is usually
transformed into an eigenvalue problem where the
vibration frequencies s are the eigenvalues and the
displacement vectors {u us} r are the eigenvectors.
The sign of the real part of the eigenvalues
determines the stability of the system. If the real
part of all eigenvalues is negative, the system is
stable. If the real part of any of the eigenvalues is
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positive or zero, the system is unstable. Because resonances and does not show a peak at the
the bearing properties and the gyroscopic effects first critical speed of the rotor.
are speed dependent, stability must be calculated The analysis using the polynomial representa-
at different rotor speeds. In this framework, in- tion of the support structure shows good agree-
stability threshold is defined as the rotor speed ment with the experimental data. The predictions
where one or more of the eigenvalues have the real are comparable in all cases. Using all the trans-

part equal to zero. fer functions predicts the first critical speed at

2540rpm or 1.6% below the measured critical

speed. The prediction assuming independent sup-
UNBALANCE RESPONSE ports (no cross talk between supports) shows the

first critical speed at 2510rpm or 2.7% below
The unbalance response of the rotor was measured the measured critical speed. Finally, the analysis
by applying known unbalances to the rotor and ignoring the cross-coupling effects in the supports
measuring the response during rotor run-up from shows a critical speed at 2560 rpm or 0.7% below
1000rpm to 7000rpm. Data was recorded every the measured critical speed.
10rpm. The average acceleration of the rotor Figure 9 shows the measured and predicted
was 3.5rad/s2. For each unbalance distribution, unbalance response near the right disk for an

the unbalance response was measured twice. The unbalance of 22.86 g-mm at 30 (lead) on the left
second time, the unbalance weights were located disk and an unbalance of 22.86g-mm at 210
180 from the original location. The unbalance (lead) on the right disk. This unbalance distribu-
response of the rotor due to the applied unbal- tion was designed to excite the second critical
ance distribution is obtained by subtracting the speed. This figure shows the second critical speed
response of the second run from the response at 5100rpm. Coupling with the first mode of
of the first run and dividing the result by 2. vibration of the rotor causes the small response at

This operation eliminates the effects of mechanical 2580 rpm.
and electrical run-out, shaft bow and residual The predicted response using the single mass
unbalance, supports fails to accurately predict the second

Figure 8 shows the measured unbalance re- critical speed of the rotor, the second critical
sponse near the center disk for an unbalance of speed was predicted at 10030rpm. In the range
8.92g-mm located at 225 (lead)on the center of interest, this model predicts a response at
disk. This unbalance was designed to excite the 2910rpm.
first critical speed of the rotor. This figure shows The analysis using all the transfer functions
three peak responses. The peaks at 1900rpm and and ignoring the cross-coupling terms show the
4000 rpm correspond to structural resonances. The same response, indicating that the cross coupling
second response peak, at 2580rpm, is the first between the horizontal and vertical directions
critical speed of the rotor, does not have a large effect in this case. The

This figure shows unbalance response predic- predicted second critical is 5250rpm or 2.9%
tions using all the transfer functions, neglecting above the measured critical speed. The predicted
the cross-talk terms, neglecting the cross-coupling magnitude of the response is 3.0% below the
terms and using single mass supports. The pre- measured amplitude at the critical speed.
diction of the unbalance response using the The analysis with the supports considered
single mass supports does not agree with the independent of each other (no cross talk between
experimental data. This model predicts two supports) does not agree with the experimental
peak responses at the locations of the support data. The predicted second critical speed is
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5390rpm or 5.7% above the measured critical
speed while the predicted magnitude at the second
critical speed is 37.4% smaller than the measured
magnitude at the critical speed. This shows that
the cross talk between supports has a significant
effect in this experimental setup.

STABILITY

For stability analysis, the rotor was accelerated
until the stability threshold was reached. A spec-
tral map was created from 3000rpm until the
stability threshold of 9960rpm (+ 120rpm) with
a speed resolution of 120rpm and a frequency
resolution of 2 Hz (120 cpm). Figure 10 shows the
spectral map of the displacement signal at the
center disk during run-up.
The stability threshold was defined as the speed

where sub-synchronous vibrations were self-sus-
tained and grew in time. The definition of the
stability threshold is important in this case because
the system is lightly damped. Under this condition,
sub-synchronous vibrations may be present but

the overall vibration of the system does not in-
crease in time. Figure 10 shows the synchronous
vibration (1X) and the vibration at two times the
running speed (2X). The instability threshold is
clearly marked in the figure.

Figure 11 shows the stability map calculated for
the rotor bearing system using different support
models. The instability threshold was defined as
the speed at which the logarithmic decrement of
one or more of the eigenvalues of the system was
zero. The logarithmic decrement is defined as:

5 -2rr p-- (13)
COd

where p and aa are the real and imaginary parts
of the eigenvalue (defined in Eq. (12)).
The stability threshold measured from Figure 10

is included in Figure 11 for comparison. The pre-
diction using the single mass model of the supports
does not agree with the measured stability thresh-
old. Using polynomial transfer functions for the
support structure improves the prediction.
The stability analysis using all the transfer

functions predicts the stability threshold at
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FIGURE 10 Spectral map of the vibration displacement at the middle disk.
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10050rpm (0.9% above the measured stability
threshold and within the experimental uncer-
tainty). The stability analysis ignoring the cross

coupling in the support predicts the stability
threshold at 9946 rpm (0.01% below the measured
stability threshold and within the experimental
uncertainty). This again indicates that the support
cross coupling does not have a large effect in this
system.
The stability analysis assuming independent sup-

ports (no cross talk) predicts the stability thresh-
old at 7410rpm. This prediction does not agree
with the measured stability threshold, indicating
that the cross talk between supports has a sig-
nificant effect in this system.

SUMMARY AND CONCLUSIONS

An experimental apparatus with a flexible rotor
supported by two identical three-lobe bearings
on flexible supports was used in this research.
Frequency response functions of the support

structure were measured at the bearing locations
with the rotor removed. Polynomial transfer
functions were calculated from these frequency
response functions and used to represent the
support structure in rotordynamic analyses.
Numerical analyses using polynomial transfer

functions agreed with the experimental data. The
first critical speed was calculated within 1.6% of
the measured critical speed. The second critical
speed was calculated within 2.9% of the meas-
ured speed. The stability threshold of the rotor
was calculated within 0.9% of the measured sta-
bility threshold and within the experimental
uncertainty.

Cross coupling between the X and Y directions
does not have a large influence in the calculated
results. On the other hand, cross talk has an

important effect in the prediction of the second
critical speed and stability threshold.
For comparison purposes, the supports were

modeled using single mass supports. The models
were created using the mass of the bearing and
bearing housing and the estimated static stiffness
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of the supports. These models failed to capture
the support effects for unbalance response and
stability.
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