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Several methods attempting rotor balancing without trial

runs have been published in the past. There are, however, no

reports of systematic application of these procedures to ®eld

balancing of large rotating machinery. This suggests that

some practical di�culties have still to be solved. An analysis

on such di�culties shows that balancing a rotor without trial

runs is not possible if the mode shapes are not known. Trial

runs are also necessary when the residual vibration at normal

operating speed, produced by the in¯uence of higher un-

balanced modes, is too high to allow continuous operation of

the machine. There are, also, additional di�culties related

with the angular position of the vibration transducers, which

allow the determination of the magnitude and phase of the

correction masses only if their position coincide with the

direction of the system principal axes of sti�ness. This paper

describes a balancing procedure incorporating all these

elements and its application to the balancing of an ex-

perimental rotor rig.

Keywords: Rotor balancing; Balancing of ¯exible rotors; Mixed modal
balancing; Balancing of rotors without trial runs

1. INTRODUCTION

Balancing a rotor consists in the compensation of an

eccentric mass distribution that generates large centrifugal

forces and high levels of vibration. This compensation is

done attaching correction masses in prede®ned balancing

planes. The objective of the balancing procedure is

to determine the magnitude and angular position of the

correction masses and their axial distribution along the

shaft.

Two di�erent strategies have been adopted giving origin

to the two families of balancing methods more widely used

until present days: the in¯uence coe�cient methods and the

modal balancing methods.

The in¯uence coe�cient methods are based on a cause ±

e�ect philosophy, their only assumption being a direct

proportion between the response of the rotor and the

unbalance. Several numerical techniques can be applied to

minimise a large number of vibration readings.

The basic consideration of the modal balancing method

is that the unbalance response of a rotor can be expressed

as a series of modal components, each one corresponding

to a degree of freedom with a characteristic natural

frequency and a mode shape. Similarly, the unbalance

forces may be expressed as a series of modal unbalances.

Thus, the de¯ection of the shaft is made up of contribu-

tions from the mode shapes of the system. the scale of each

mode shape being a�ected by a suitable scale factor, which

is a function of the corresponding modal unbalance. In this

method the unbalance is eliminated for each mode in turn,

taking care not to upset the vibration modes previously

balanced during the process.

One common characteristic of the two methods is

the large number of trial runs required to determine the

correction masses. In the in¯uence coe�cient method the

number of trial runs is de®ned by the number of balancing

planes and cannot be reduced. Additional runs may be

even necessary each time the rotor is not able to travel

through a critical speed.

Themodal balancingmethod requires at least one trial run

for each mode to be balanced, although additional runs may

be necessary to determine the mode shapes and to reduce the

in¯uence of highermodes.However, the number of trial runs

can be reduced correcting several modes at the same time,

although in the practice this is more easily said than done.

In recent years, attempts have been made to combine the

in¯uence coe�cient and the modal balancing methods,

giving place to a number of uni®ed balancing techniques.

These techniques, however, have not changed the mode-by-

mode approach used in the modal balancing method.
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Several researchers have considered the reduction or

complete elimination of trial runs. Some of the proposed

procedures are similar to the in¯uence coe�cient method,

but the trial runs are simulated in a computer using a

mathematical model of the rotor. The main di�culty in this

case is the determination of the support characteristics,

which have a predominant e�ect on the results of the

simulation. Experience has shown that these parameters

are di�cult to estimate without having to use elaborate

experimental procedures, and even then, the numerical

simulations are usually unable to replicate the response of

the rotor with su�cient accuracy to allow the determina-

tion of the required correction masses.

Other procedures used to eliminate the trial runs are closer

to the modal method. In this case the calculation of the

correctionmasses requires the previous determination of the

following parameters: (a) the modal vibration vectors for

each resonance, (b) the modal damping ratios, (c) the mode

shapes and (d) the equivalent mass of the rotor for each

mode. Di�erent authors have proposed speci®c procedures

for the determination of these parameters, but there are no

published reports describing the practical application of

such procedures to the balancing of large rotating machines

in the ®eld using no trial runs. This suggests that some of the

practical di�culties still need to be overcome, which keeps

the door open for further research on this area.

An analysis of such di�culties shows that a rotor cannot

be balanced if the mode shapes are not known. Trial runs

are also necessary when the residual vibration produced by

higher modes at normal operating speed is too high to

allow continuous operation of the machine. Furthermore,

there are additional di�culties related with the vibration

transducers, which need to be placed in the same direction

as the principal axes of sti�ness to allow the determination

of the correction masses. The following sections describe a

balancing procedure incorporating all these elements

together with its application to the balancing of an

experimental rotor.

2. BALANCING WITHOUT TRIAL RUNS

The response of a ¯exible rotor may be expressed as a series

of characteristic functions, so that

��z; t� �
Xn
r�1

qr�t� � 'r�z� �1�

where n is the number of vibration modes with a signi®cant

e�ect on the rotor response, qr(t) represents the r th

principal coordinate of the system and 'r(z) is the r th

characteristic function or mode shape for the free

undamped vibrations.

Similarly, the eccentricity distribution e(z) may be

expressed as a series of characteristic functions as shown

in the following equation.

e�z� �
Xn
r�1

"r'r�z� �2�

where the elements "r'r(z) represent the modal components

of eccentricity. Each one of these modal components

excites a single mode of vibration. Multiplying Eq. [2] by

�A(z)'r(z) and integrating along the shaft gives

"r �
1

mr

Z
�A�z�e�z�'r�z�dz �3�

The modal mass, mr, represents the equivalent mass of a

single degree of freedom that would generate a response

similar to that observed in r th mode of vibration.

The characteristic function in the previous equations

represents the shape adopted by the shaft in its r th mode of

vibration. This shape is de®ned as the ratio between the

vibration values along the shaft and a reference value. In

practice, this reference value is usually the corresponding

vibration measured by one of the transducers.

Thus, the characteristic function at each point along the

shaft is a ®xed parameter known as mode shape factor. If

the reference vibration transducer is located at z� zi, the

r th mode shape factor corresponding to the axial position

z� zj is given by

'r�zj� � �'r�ji �
�r�zj; t�

�r�zi; t�
�4�

The relative nature of the characteristic functions shows

that the modal component of eccentricity "r depends on the

de¯ection used as reference value. The same conclusion

applies for any modal parameter expressed as a function of

the mode shapes, such as the modal mass, for instance.

The vibrations in Eq. [4] represent modal components.

Use of global values would result in errors when

calculating the mode shape factors.

The vibration �ri produced by the r th modal component

of unbalance "ri at the position of the reference transducer is

�ri �


2
r"ri������������������������������������������

�1ÿ 
2
r �

2 � �2�r
r�
2

q � Ar�!� � "ri �5�

where 
r is the ratio between the rotation frequency and

the r th natural frequency and �r is the r th damping ratio.

The ampli®cation factor Ar(!) is the same at any point

along the shaft.

The rotor may be balanced in its r th vibration mode

adding a single mass to cancel the centrifugal force
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generated by the r th component of eccentricity. Consider-

ing a balancing plane located at z� zj, the correction mass

Urj is given by

Urj � ÿ
mri � "ri
Rj � �'r�ji

� ÿ

�
mri

Rj � Ar�!� � �'r�ji

�
� �ri �6�

where mri is the modal mass observed at the position of the

reference transducer and Rj is the radius of the balancing

plane.

Thus, the correction mass required to eliminate the r th

component of unbalance can only be found without

performing any trial runs if the elements between

parentheses in the right hand side of Eq. [6] can be

determined by some other means. The negative sign in this

equation indicates that the correction mass has to be

attached to the rotor at 180� from the position of the

unbalance force, which also needs to be found.

Once the single correction mass required to compensate

the original unbalance has been de®ned, it is necessary

to transform it into an equivalent set of masses, which

produces the same e�ect on the corresponding unbalance,

but produces no e�ect on other modes.

The following considerations show that, in principle, it is

possible to determine the correction mass without the

necessity of doing any trial runs. A trial run implies that

the rotor is taken from rest up to normal operating speed two

times: one without trial mass and one with the trial mass (or

masses). The di�erence between the two vibration signals is

the result of the added mass (or masses) and a numeric

relationship may be established between cause and e�ect.

Balancing a rotor without trial runs, on the other hand,

means that only the original measurement is done. It is

required, however, that the rotor reaches normal operating

speed in order to register the vibration levels that require

correction in the complete operating range. If the rotor

fails to reach normal operating speed due to high levels of

vibration, the concept of balancing without trial runs can

only be applied for the vibration modes below the

maximum rotating speed reached during the test. The

correction of the mode responsible for the high vibration,

however, will probably need one or more trial runs, unless

an accurate estimate of the corresponding modal param-

eters can be made.

Some of the parameters in Eq. [6] may be determined

from the vibration signals initially registered by the

transducers and some of them need to be calculated using

a computer model of the rotor. In any case, it is convenient

to consider Eq. [6] when the rotating frequency is the same

as the natural frequency.

One of the most important characteristics of unbalanced

rotors is that the angular position of the unbalance force

leads the displacement response by 90� when the rotating

frequency is the same as the natural frequency. Therefore,

identi®cation of the phase lag of the response at

the resonance will de®ne the angular position of both, the

modal component of the unbalance force and the

corresponding correction masses.

It is important to remember, however, that the phase

angle of the displacement response must be that of the

modal component of vibration. Therefore, it is necessary to

extract that modal component of vibration �ri from the

signal registered by the transducer.

Extraction of amplitude and phase of the modal

component of vibration may be done applying a technique

similar to that proposed by Kennedy and Pancu (1947).

This was already mentioned by Bishop and Parkinson

(1963), but their technique was based on a subjective and,

at the same time, accurate identi®cation of the points with

a maximum frequency spacing, which de®nes the position

of the natural frequency. This characteristic, however, is

only strictly true when the response contains the in¯uence

of a single mode of vibration, or is approximately true

when the vibration modes are well separated from each

other. Therefore, serious errors of appreciation may be

faced when the rotor exhibits mixed modal characteristics

in its response.

Fortunately, the latest progress in the theory of modal

analysis has produced a good number of specialised

computer programs that extract modal parameters from

the vibration response considering the interaction of many

degrees of freedom. Unfortunately, however, the majority

of computer programs developed for extraction of modal

parameters have been designed for their application to

structural analysis, such that their use in rotor dynamics is

not straightforward.

No commercial computer programs for extraction of

modal parameters in rotor-bearing systems were available

at the beginning of this work. Therefore, an experimental

program had to be used. This program provides the natural

frequency, the modal damping ratio, and the amplitude

and phase of the modal components of vibration.

Now, returning to the analysis of Eq. [6], the dynamic

ampli®cation factor for the resonance (that is for 
r� 1)

reduces to

Ar�!� �
1

2�r
�7�

The above equation shows that the ampli®cation factor

is completely de®ned for the resonance frequency, because

the damping ratio is one of the modal parameters extracted

from the unbalance response. Substituting Eq. [7] in Eq. [6]

transforms the expression for the correction mass into

Urj � ÿ
2 � �r �mri

Rj � �'r�ji
� �ri �8�
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which is only valid when the rotating frequency is the same

as the natural frequency.

Now consider the value of the modal mass. This

parameter is a function of the axial position from which

the behaviour of the rotor is observed, and it is given by

mr �

Z l

0

�A�z��'r�z��
2
dz �9�

The determination of the above integral is very di�cult

for systems other than simple beams. This is the point

where most authors suggest the use of a computer model to

determine the characteristic functions of the rotor. The use

of a discrete parameter model transforms Eq. [9] into

mr �
Xm
j�1

mj � �'r�zj��
2 �10�

where the series limit m represents the number of elements

in the model and mj is the mass of the j th model element.

The r th modal mass in Eq. [8] is that observed at the

position of the vibration transducer used as reference.

Therefore, the modal mass observed at the transducer

position is given by

mri �
Xm
j�1

mj � ��'r�ji�
2 �11�

The modal mass may be calculated using a computer

model of the rotor to determine the mode shapes. When the

use of a computer model does not provide satisfactory

results, the mode shape factors must be found using an

experimental procedure, such as the mass traversing

technique proposed by Lindley and Bishop (1963). In such

a case, however, we are not talking about balancing

without trial runs any longer.

Summarising, the correction mass required to compen-

sate the r th modal component of unbalance can only be

found without trial runs if all terms in the right hand side

of Eq. [8] may be determined beforehand. In this equation,

the radius of the balancing plane is a known geometric

parameter. The dynamic ampli®cation factor at the

resonance is de®ned by Eq. [7] and requires the determina-

tion of the modal damping ratio. The modal damping ratio

results from the extraction of modal parameters, which

also provides the magnitude and phase angle of the modal

component of vibration for the resonance. The phase angle

de®nes the angular position required for the correction

mass. The modal mass may be determined using a

computer model of the rotor to determine the mode shape

factors. Finally, the mode shape factors allow transforming

the single correction mass into a set of masses that produce

no e�ect on other modes.

Therefore, the main di�culty seems to lie on the

development of a suitable mathematical model able to

provide a fair approximation of the characteristic func-

tions. All the other parameters are obtained from the initial

vibration readings.

This has been analysed in some way by di�erent authors.

There is, however, an additional problem that has not been

identi®ed before. This problem is related to the angular

position of the vibration transducers with respect to the

principal axes of sti�ness for a rotor supported on

asymmetric bearings.

Parkinson (1965) analysed the behaviour of a symmetric

¯exible shaft rotating in asymmetric bearings and, from the

results of his analysis, he proposed a modi®ed balancing

procedure that considered the di�erences in mode shapes of

a pair of modes produced by the asymmetric characteristics

of the bearings. His procedure considered balancing the

rotor in two planes and he recommended using the

principal planes of the bearings, although he neither

justi®ed this recommendation nor mentioned how these

planes could be identi®ed in practice. Furthermore, he

considered the principal planes to be perpendicular to each

other, which is not necessarily the case for real bearings.

Analysis of the rotor response equations shows that

errors are introduced in the determination of the magni-

tude and phase of the resonance vibration vector if the

transducer is not aligned with the principal axis of sti�ness

of the mode to be corrected. This is a serious limitation

because the positions of the principal axes of sti�ness are

not know and they are not necessarily the same for all

modes. This problem was analysed in detail by Preciado

(1998). Some considerations on this subject are included in

the following section.

3. EFFECTS OF TRANSDUCERS ORIENTATION

According to modal theory, there is a phase lag of 90�

between the displacement response and the unbalance force

in a rotor operating at its natural frequency. The above

statement also applies in the case of a rotor supported in

asymmetric bearings, but only when the vibration transdu-

cer is located in the direction of one of the principal axes of

sti�ness. For any other direction the phase lag of the

resonance vector is no longer 90� and errors are introduced

when calculating the angular position of the correction

masses (Preciado, 1998).

A principal axis of sti�ness is the direction for which no

cross coupling terms exist and the corresponding di�er-

ential equation of motion uncouples from the other

principal coordinate. There are two such axes for each

mode of vibration, which means that the resonances are

twice as many as in the case of symmetric bearings. The

corresponding modes for these principal axes are usually
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known as horizontal and vertical modes of the shaft, even

when the directions of the principal axes are neither truly

horizontal nor truly vertical.

In practice, however, there is no guarantee that

the location of the transducers will coincide with the

directions of the principal axes. In fact, practical experience

shows that the transducers usually capture the in¯uence

of the principal modes corresponding to both principal

axes.

Moreover, the characteristics of real bearings are such

that the principal axes are not necessarily perpendicular to

each other. Apart from the increased complexity of the

vibration signals, the above considerations have conse-

quences that require deeper analysis.

It is possible to ®nd the Nyquist plot that would be

generated by a transducer located in an arbitrary angular

position q. For this, it is necessary to have the vibration

signals registered by two transducers located at angles

other than 0� and 180� between each other.

Consider two transducers located in the directions x and

r, as shown in Figure 1. The two transducers are supposed

to be at the same axial position along the rotor. The angle

between the two transducers (�) is usually, but not

necessarily, equal to 90�. Consider also another transducer

located at � degrees from x. The direction of this new

transducer is identi®ed as q in Figure 1. The response of the

rotor in terms of the reference coordinates x ± y is given by

the following expressions.

x � Xc cos!tÿ Xs sin!t

y � Yc cos!tÿ Ys sin!t
�12�

Similarly for the directions r and q,

r � Rc cos!tÿ Rs sin!t

q � Qc cos!tÿ Qs sin!t
�13�

The amplitude of vibration registered by a transducer is

the maximum value of displacement, which is obtained

substituting the value of !t that nulli®es the ®rst derivative

of the displacement with respect to time. This value of !t is

also the relative phase angle � of the vibration signal, as

measured by a transducer that observes a ®xed mark on the

shaft. For example, for the x direction,

dx

dt
� ÿ!Xc sin!tÿ !Xs cos!t � 0 �14�

FIGURE 1 Reference system.
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Therefore, the relative phase angle for the vibration

measured by the transducer in the x direction is given by

�x � tan ÿ1

�
ÿ

Xs

Xc

�
�15�

Applying a coordinate transformation, it is possible to

demonstrate that the amplitude of vibration for the

transducer in the q direction is given by

q �
x sin �� ÿ �� � r sin �

sin �
�16�

which is a function of the displacements measured by the

transducers in the x and r directions. Remembering from

Eq. [8] that the correction mass is a function of the

measured resonance vibration, it is clear that the magni-

tude of the correction mass will be a�ected by the angular

position of the transducer.

Now, the relative phase angle for q is the value of !t for

which the ®rst derivative of Eq. [16] with respect to time

vanishes. It may be shown that

�q � tan ÿ1

�
ÿ

Xs sin �� ÿ �� � Rs sin �

Xc sin �� ÿ �� � Rc sin �

�
�17�

Equation [17] may be applied to a vibration mode

orthogonal to the r direction. In this case, the sine and

cosine components are such that Rs�Rc� 0. Therefore,

Eq. [17] reduces to

�q � tan ÿ1

�
ÿ

Xs

Xc

�
�18�

which is identical to Eq. [15]. This demonstrates that the

relative phase angle is independent of the angular position

of the transducer. From the balancing point of view this is

a rather surprising conclusion, because the angle of the

correction masses is a function of both, the transducer

location and the relative phase angle for the resonance.

That is to say

� � �� & � 90� �19�

where � is the angle required for the correction mass and &

is the angular position of the transducer. These two angles

are measured on the shaft with respect to the ®xed mark

used for the generation of the reference pulse.

Equation [19] indicates that a change in the angular

position of the transducer should be accompanied by a

change in the relative phase angle. That is if the correction

angle is to be maintained. However, comparison of Eqs.

[15] and [18] shows that the relative phase angle is

independent of the transducer position. Therefore, we have

to accept the fact that only one measuring direction

provides the right angular location for the correction

masses. This measuring direction should be that of the

principal axis of sti�ness, otherwise the error introduced

will be equal to the angle between the transducer and the

principal axis, as can be seen from the analysis of Eq. [19].

Of course, the above considerations are only relevant

when trying to ®nd the correction masses without

performing any trial run. If trial runs are used as part of

the balancing process, the correction masses are found by

the principle of cause and e�ect and deviations of the rotor

response from the theory of modal analysis, produced by

improper alignment of vibration transducers, become

irrelevant.

4. BALANCING OF A ROTOR RIG

The section describes step by step the balancing of the

experimental rotor rig shown schematically in Figure 2.

The shaft rotates clockwise when seen from the driven

end. The rotor passes only one pair of modes before

FIGURE 2 Schematic representation of the experimental rotor rig used to validate the balancing procedure without trial runs.
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becoming unstable. Thus, only one balancing plane is

necessary and no decomposition of correction masses into

modal sets is required. The measured critical speeds were

2056 r/min and 2101 r/min.

Figure 3 shows the measuring positions used during the

balancing. The vibration signals were recorded in horizon-

tal and vertical directions in order to identify the location of

the principal axes of sti�ness. The measuring position

located near the free end bearing was selected as the

reference point for the determination of mode shapes and

modal masses. It was decided to use the central balancing

plane in order to maximise the in¯uence of errors in the

determination of mode shapes with a numerical model.

The correction mass necessary to compensate the ®rst

modal component of unbalance is given by Eq. [8]. The

only known parameter in this equation is the radius of the

balancing plane (100mm). The ®rst step in the balancing

procedure consisted in measuring the rotor response during

run-down. Figures 4 and 5 show the Nyquist plots for the

free end obtained with the original unbalance. The plots for

the driven end are not included. The Nyquist plot for the

horizontal direction clearly shows the in¯uence of two

resonances. The plot for the vertical direction, on the other

hand, shows almost no in¯uence of the ®rst resonance,

which means that the corresponding principal axis is

almost vertical.

FIGURE 3 Measuring positions and balancing plane.

FIGURE 4 Rotor response with original unbalance.
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The transducer observing the reference mark, identi®ed

with the letter T in the bottom right corner in each

diagram, was located in the lower part of the rotor. The

angle between this transducer and the horizontal transdu-

cer was 87� in the direction of rotation.

The next step consisted in the use of a program for

extraction of the modal parameters and the determination

of the principal axes of sti�ness. The results are presented

in Table I.

From the data for the higher resonance, the angular

location of the correction mass with respect to the reference

mark is given by Eq. [19]. Thus, for a transducer located at

87� with respect to the horizontal direction (i.e., &� 174�

with respect to the reference mark) we have that

� � ÿ82� � 174� � 90� �20�

� � 182� �21�

measured anticlockwise from the reference mark on the

shaft, when seen from the driven end (i.e., against the shaft

rotation).

Then, the mode shape of the rotor was obtained using a

computer program based on the transfer matrix technique.

The model was developed using the geometric data of the

rotor. The supports sti�ness values were adjusted such that

the natural frequency calculated and the critical speed

measured were the same. Also, the mode shape factor

between the two vertical transducers was the same as the

value found with the computer program.

The natural frequency calculated by the program using

the above sti�ness values was equal to 2101.32 r/min. The

corresponding mode shape factors between the two measu-

ring positions was calculated as 1.004, which compared

against the measured value of 1.102 gives a di�erence of

8.9%. Also, from the program results, the mode shape

factor between the central balancing plane and the free end

measuring position was found to be:

�'�ct � 2:394 �22�

The modal mass observed at the transducer position was

then calculated using Eq. [11] with the mode shape

determined by the computer program. This resulted in

mt �
Xm
j�1

mj � ��'r�jt�
2 � 499:58 kg �23�

Introducing numerical values into Eq. [8] gives the

correction mass required at the central balancing plane.

Uc �
�0:02351��499:58 kg�

�0:100m��2:394�
�236� 10ÿ6 m� �24�

FIGURE 5 Rotor response with original unbalance.

TABLE I Modal parameters

Position of the principal axis 335� 87�

Natural frequency 2055.59 r/min 2101.37

Modal damping ratio 0.07964 0.02351

Resonance vector amplitude 110 mm p±p 263mm p±p

Resonance vector phase lag 35� ÿ82�
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Uc � 12:9 g �25�

The number two was dropped because the resonance

vibration is expressed in peak to peak instead of zero to peak

units. The negative sign was not considered in the calcula-

tions because it indicates only that the correctionmass has to

be placed in antiphase with the unbalance position.

Thus, the correction mass required to balance this rotor

was found to be 12.9 grams at 182� from the reference mark

on the shaft against the direction of rotation. There was no

hole at that angular position in the balancing plane.

Therefore, the correction mass was transformed into a pair

of masses: 6.3 grams at 150� and 8.5 grams at 210�, which

make a total of 12.86 grams at 185�.

Errors should be expected from the di�erence between

the magnitude and phase of the calculated and the attached

masses. Also, the di�erences observed between the calcu-

lated and the measured mode shapes should a�ect the

results, as well as the possible errors introduced during the

extraction of modal parameters.

Figure 6 shows the Bode diagram for the vertical

direction in the free end, before and after the attachment

of the correction mass. The residual horizontal signal is not

shown because it had too much noise. Besides, it did not

reach more than ®ve microns.

The resonance vectors for the vertical direction before

and after the addition of the correction masses are shown

in Table II.

It is possible to use these results to determine a modi®ed

correction mass using an in¯uence coe�cient procedure.

Comparison between this modi®ed correction mass and the

calculated correction mass should give a good estimation

of the accuracy of the procedure described in the previous

paragraphs.

The di�erence vector between the vibrations measured

before and after the balancing is 269.71 mm at 101�.

Therefore, according to the result of the balancing, the

mass required to completely eliminate the vibration vector

at the resonance is equal to 12.40 grams at 182�.

From here, the error in the magnitude of the correction

mass calculated with the procedure previously described is

of just 3.7%. There is, however, no di�erence in the

required angular position. This assumes that the modi®ed

correction mass would in fact, completely eliminate the

vibrations produced by the original unbalance.

Unfortunately, due to the limited capacity of the rotor

rig, the experiment considered only one pair of modes.

Nevertheless, the experiment shows that the proposed

procedure works in practice.

5. CONCLUSION

Modal theory indicates the possibility of identifying the

unbalance components from the rotor response eliminating

FIGURE 6 Vibration recorded at the free end bearing before and after the balancing.

TABLE II Resonance vectors for the vertical direction

Before the balancing 260.08 mm at ÿ82�

After the balancing 16.22mm at 153�
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the necessity of trial runs. The process requires the mode

shapes, the modal damping ratios, the modal masses and

the amplitude and phase of the resonance vectors for each

mode of vibration within the speed range of the rotor.

A single mass is required to correct a vibration mode,

but it would excite other modes of vibration. Thus, a set of

masses is required to correct a mode without upsetting the

unbalance condition in other modes. The transformation

of the individual correction masses into sets of masses re-

quires the knowledge of the mode shapes. These mode

shapes are also used to determine the modal masses of the

rotor.

The parameters required to compensate each modal

component. which include the modal damping and the

amplitude and phase of the resonance vectors, are obtained

directly from the measured vibrations.

The equation that gives the angle required for the

correction mass is a function of the transducer angular

position and the phase angle. However, the phase angle

does not change even if the position of the transducer is

modi®ed. The analysis presented in Section 3 shows that a

transducer will render the correct angular position for the

balancing mass only if it coincides with the corresponding

principal axis of sti�ness.

Also, the magnitude of the correction mass is a direct

function of the magnitude of the resonance vector, which

changes for di�erent observers around the shaft. The

analysis presented in Section 3 demonstrates that the only

measuring position that gives the right amplitude for the

resonance vector is that of the corresponding principal axis

of sti�ness.

Balancing without trial runs is only possible if the mode

shapes of the rotor are known and the rotor is able to travel

through the lower critical speeds without reaching vibra-

tion amplitudes above the maximum tolerated values.

The described balancing procedure can only compensate

the unbalance distribution of modes with natural frequen-

cies located below the maximum rotating speed of the

machine. Compensation of higher modes requires addi-

tional balancing runs.

The application of the procedure to the balancing of an

experimental rotor shows that balancing without trial runs

is not only a theoretical, but also a practical possibility.

The dynamic characteristics of the rotor rig, however, did

not cover all the situations possible to ®nd in the ®eld.

Therefore, more work is required to verify the applicability

of the proposed balancing procedure to rotors with more

general characteristics.

NOMENCLATURE

A(z) cross section area

Ar(!) r th dynamic ampli®cation factor

er(z) mass eccentricity distribution

mj local mass at z� zj
mr r th modal mass

qr(t) r th principal coordinate

Rj shaft radius at z� zj
Urj correction mass for the r th mode at z� zj
�(z, t) vibration response

x ± y reference coordinates

Xs, Xc sine and cosine components of x

Ys, Yc sine and cosine components of y

z axial coordinate

"r r th modal component of eccentricity

�r r th damping ratio

� angle of a transducer relative to the x axis

� density

� angle between two transducers

& angular position of an arbitrary transducer

� angle required for the correction masses

� phase angle

'r(z) r th mode shape for free undamped vibrations

('r)ji r th mode shape factor at z� zj

r r th frequency ratio
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