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Abstract. 
Ducted propellers, in decelerating duct configuration, may represent a possible solution for the designer to reduce cavitation and its side effects, that is, induced pressures and radiated noise; however, their design still presents challenges, due to the complex evaluation of the decelerating duct effects and to the limited amount of available experimental information. In the present paper, a hybrid design approach, adopting a coupled lifting line/panel method solver and a successive refinement with panel solver and optimization techniques, is presented. In order to validate this procedure and provide information about these propulsors, experimental results at towing tank and cavitation tunnel are compared with numerical predictions. Moreover, additional results obtained by means of a commercial RANS solver, not directly adopted in the design loop, are also presented, allowing to stress the relative merits and shortcomings of the different numerical approaches.


1. Introduction
Propeller design requirements are nowadays more and more stringent, demanding not only to provide high efficiency and to avoid cavitation, but including also requirements in terms of low induced vibrations and radiated noise. Ducted propellers may represent a possible solution for this problem; despite the fact that their main applications are devoted to the improvement of efficiency at very high loading conditions (near or at bollard pull), with accelerating ducts, decelerating duct application may result in improved cavitation behavior. Concepts and design methods related to these propulsors are well known since the early 70s [1], and many different works have been presented during years. Notwithstanding the rather long period of application (and study) of these propulsors, their design still presents many challenges, which need to be analyzed, including the evaluation of the complex interaction between duct and propeller, of the duct cavitation behavior, and of its side effects, such as radiated noise and pressure pulses.
These problems are amplified when decelerating, rather than accelerating, duct design is considered; one of the reasons for these difficulties is the higher complexity of the calculation of the duct decelerated flow, which makes the application of conventional lifting line/lifting surface design approaches less practicable or at least not sufficiently accurate. Moreover, a further problem is represented by the lack of experimental data for this type of nozzle configuration with respect to the more conventional (and widely studied) accelerating ones.
In order to alleviate the mentioned problems, in the present work, a hybrid design approach is presented. As a first step, the initial estimation of the blade geometry is performed, applying a fully numeric coupled lifting line/panel method solver [2]. Traditional approaches, based on Lerbs approximations [3], are in fact, unable to treat complex geometries, including the effect of the hub and, of course for these kind of propellers, of the duct. A more robust approach is thus required at least for their preliminary design, as well as improved analysis tools, capable to assess the complex viscous interactions that take place on the gap region between the propeller tip and the duct inner surface. This first step geometry is successively refined by means of a panel method coupled with an optimization algorithm, adopting an approach which already demonstrated successful results in the case of conventional CP propellers [4–6] with multiple design points. In the present case, the use of the panel code in the second design phase (geometry optimization) allows a more accurate evaluation of the cavity extension and of its influence on the propeller performances, thus leading to a better design. The theoretical basis of the design approach is reported in Section 2, while in Section 3 an application to a practical case is presented. Once the final geometry has been obtained, a thorough analysis of the propulsor functioning in correspondence of a wide range of operating conditions, covering design and off-design points (in terms both of load and cavitation indices), is presented. This analysis was carried out applying the same panel method adopted in the design loop and a commercial RANS solver [7] in order to appreciate the capability of the two approaches to correctly capture the ducted propeller performances (mechanical characteristics and cavity inception/extension). If an accurate geometrical description of the duct (within the potential approaches possible only with the employment of the panel method) is fundamental to capture the accelerating/decelerating nature of the nozzles, viscous effects at the duct trailing edge and at the blade tip can have, with respect to the free running propellers case, an even higher influence on the propeller characteristics. The load generated by the duct and the redistribution of load between the blade and the duct itself are, in fact, strongly dependent by the flow regime on the gap region. Sanchez-Caja et al. [8] and Abdel-Maksoud and Heinke [9] successfully predicted the open water characteristics of accelerating ducted propellers with RANS solvers, providing valuable information (beyond the potential codes capabilities) on the features of the flow in the gap region; potential panel methods, in order to simulate these complex phenomena, need the adoption of empirical corrections (like the orifice equation, as in [10]), which may also include the effect of boundary layer on the wake pitch [11] or simplified approaches, like the tip leakage vortex [12]. The accurate description of these phenomena, also through reliable viscous computations, could provide practical ideas for the design process in order to improve the robustness of the approach and the corrections to the potential flow computations.
In order to validate the numerical results, an experimental campaign at the towing tank and at the cavitation tunnel was carried out, as presented in Section 4. The comparison of numerical and experimental results in correspondence to the various operating conditions considered allows to stress the merits and the shortcomings of the various approaches, as discussed in Section 5.
2. Theoretical Background
2.1. Coupled Lifting Line/Panel Method Design Approach
In the case of lightly and moderately loaded free running propellers, operating in a nonuniform inflow, the fully numerical design approach is based on the original idea of Coney [2] for the definition, through a minimization problem, of the optimum radial circulation distribution. Traditional lifting-line approaches are, in fact, mainly based on the Betz criteria [3] for the minimum energy loss on the flow downstream of the propeller, and the satisfaction of this condition is realized by an optimum circulation distribution that is generally defined as a sinus series over the blade span. In the fully numerical design approach [2], instead, this continuous radial distribution of vorticity 
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along each lifting line that models each of the propeller blades is discretized with a lattice of vortex elements of constant strength. The continuous trailing vortex sheet that represents the blade trailing wake is therefore replaced by a set of 
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 horseshoe vortexes, each of intensity 
	
		
			
				Γ
				(
				𝑚
				)
			

		
	
 and each composed by two helical trailing vortexes, aligned with the hydrodynamic angle of attack and a bound vortex segment, on the propeller lifting line, as in Figure 1.


	
		
			
		
			
				
					
					
						
					
				
			
		
		
			
		
			
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
		
		
			
				
					
						
						
							
						
					
				
			
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
		
			
				
					
						
					
						
					
				
			
		
		
		
		
			
				
				
					
				
			
		
		
			
				
					
						
					
						
					
				
			
		
		
			
				
					
						
					
						
					
				
			
		
		
			
				
					
						
					
						
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
				
				
					
				
				
					
				
			
		
		
			
				
				
					
				
				
					
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
	
	
		
	
	
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	

Figure 1: Blade equivalent lifting line, reference system, and velocities convention.



With this discrete model the influence of the hub can be simply included by means of image vortexes [13], based on the well-known principle that a pair of two-dimensional vortexes of equal and opposite strength, located on the same line, induce no net radial velocity on a circle of radius 
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. The same result approximately holds in the case of three-dimensional helical vortexes, provided that their pitch is sufficiently high. As a consequence, in the case of propellers, the image helical vortexes representing the hub lay on cylinders whose radiuses can be calculated as
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 is the mean radius of the hub cylinder. This system of discrete vortex segments, bound to the lifting line and trailed in the wake, induces axial and tangential velocity components on each control point of the lifting line, defined as the mean point of each bound vortex segment, where boundary conditions are enforced. These self-induced velocities are computed applying the Biot-Savart law as the contribution, on each control point, of all the horseshoe vortexes modeling each blade:
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 are the total number of horseshoe vortexes representing the blades and their hub images. With this discrete model, the hydrodynamic thrust and torque characteristics of the propeller can be computed by adding the contribution of each discrete vortex on the line. In fact, under the assumption of pure potential and inviscid flow:
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							A variational approach [2] provides a general procedure to identify the set of discrete circulation values 
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 horseshoe vortexes) such that the propeller torque (as computed in (4)) is minimized, keeping contemporarily to a constant value (within a certain tolerance) the required propeller thrust 
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, which is a constrain of the problem. Introducing the additional unknown represented by the Lagrange multiplier 
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							Carrying out the partial derivatives, (5) leads to a nonlinear system of equations for the vortex strengths and for the Lagrange multiplier, because self-induced velocities depend, in turn, on the unknown vortexes strengths themselves. The iterative solution of the nonlinear system is obtained by the linearization proposed by Coney [2] in order to achieve the optimal circulation distribution that minimizes torque with the prescribed thrust.
This formulation can be further improved to design moderately loaded propellers and to include viscous effects. The initial horseshoe vortexes that represent the wake, frozen during the solution of (5), can be aligned with the velocities induced by the actual distribution of circulation and the solution iterated until convergence of the wake shape (or of the induced velocities themselves).
A viscous thrust reduction, as a force acting on the direction parallel to the total velocity and thus as a function of the self-induced velocities themselves, can be furthermore added to the auxiliary function 
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, and a further iterative procedure, each time the chord distribution of the propeller has been determined, can be set. In total, for the design of a single propeller, the devised procedure works with(i)an inner iterative approach for the determination of the optimal circulation distribution by the solution of the linearized version of (5),(ii)a second-level iterative approach to include the viscous drag on the optimal circulation distribution, by adding viscous contribution to the auxiliary function 
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,(iii)a third-level iterative approach to include the wake alignment and the moderately loaded case.
This design procedure outlined for free running propellers can be easily extended to treat the case of ducted propellers. As for the hub, the influence of the nozzle on the performances of the propeller can be included in the numerical lifting line model simply adding an appropriate set of image vortexes in place of the duct itself, in order to include its “wall” effect and the resulting loading of the blade tip region. With a formulation equivalent to that of (1), it is possible to define the radial location of the duct image vortexes, replacing the hub cylinder mean radius 
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The presence of the duct, however, influences the propeller performances not only in terms of additional load at the tip. The shape of the nozzle (for accelerating or decelerating configurations) induces very different inflow distributions on the propeller plane, which cannot be taken into account by means of the simple addition of the image vortexes that model the “wall” condition. The main responsibles of the modified inflow at the propeller plane are, in fact, the effective shape and the thickness of the nozzle that are neglected by the vortical approach. Moreover the nozzle contributes to the total propulsive thrust, and, therefore, the design of a ducted propeller has to include this additional term. To overcome the limitation of the original approach based only on a distribution of vortexes, an iterative methodology has been devised, in order to couple the numerical lifting line design approach (for the determination of the optimal circulation distribution and of the resulting propeller geometry) with a panel method, suited for a more accurate computation of the inflow velocity distribution on the propeller plane and for the evaluation of the duct thrust force. The coupling strategy between the two codes is schematically presented in Figure 2. With respect to the procedure outlined in the case of free running propellers, the coupling with the panel method modifies the inner and the outer iterative loops. The interaction between the propeller lifting line and the duct is, in fact, achieved through induced velocities. Every time a new circulation distribution has to be computed, the panel method provides the input inflow velocity distribution 
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 needed for the determination of the trailing vortexes shape on the propeller wake. The duct (without the propeller), operating on the mean inflow generated by the set of lifting line vortexes computed at the previous design iteration, is solved by the panel method, and the mean axial and tangential velocities induced on the propeller plane are used as the input inflow for the next design step. Furthermore, once a propeller geometry has been defined, not only the frictional forces are computed and the propeller thrust is updated but also the duct thrust/resistance is calculated (by the panel method applied to the entire propeller/duct problem) and the required propeller thrust is adjusted in order to achieve the total (propeller plus duct) propulsive thrust.


	
		
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
			
			
			
			
		
		
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	
		
			
				
				
				
			
		
	
	
		
			
				
				
				
				
				
				
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
				
				
				
				
				
				
				
				
				
				
			
			
				
				
				
				
				
				
				
				
				
				
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
	
	
		
	
	
		
	


	
		
		
			
		
			
		
		
		
			
		
			
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
				
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
				
					
				
			
		
	

Figure 2: Flow chart for the coupled lifting line/panel method design approach.


After the blade circulation and hydrodynamic pitch distribution have been defined, the design procedure proceeds to determine the blade geometry in terms of chord length, thickness, pitch, and camber distributions which ensure the requested sectional lift coefficient satisfying, at the same time, cavitation and strength constraints. For the calculation of blade stresses the method proposed by Connolly [14] has been preferred, while cavitation issues are solved in accordance with the approach developed by Grossi [15], in turn based upon an earlier work by Castagneto and Maioli [16] where minimum pressure coefficients on a given blade section with standard NACA shapes are semiempirically derived. A more detailed description of the design  procedure may be found in Gaggero et al. [17, 18].
2.2. Design by Optimization
The design of ducted propellers via lifting line approaches remains, however, problematic. Despite the lifting surface corrections that can be adopted for the definition of the blade geometry (through the empirical corrections proposed by VanOossanen [19] or by a dedicated lifting surface code), the influence of the blade and of the duct thickness, the nonlinearities linked with the cavitation, and the effects of the flow in the gap between the blade tip and the inner duct surface strongly affect the optimal propeller geometry. An alternative and successful way to improve the propeller performances is represented by optimization [4–6]. The design of the ducted propeller can be improved, in fact, adopting an optimization strategy, namely, testing thousands of different geometries, automatically generated by a parametric definition of the main geometrical characteristics of the propeller (eventually also of the duct), and selecting only those able to improve the performances of the initial configuration (e.g., in terms of efficiency and cavity extension) together with the satisfaction of defined design constraints (thrust identity, first of all). 
Panel methods, with their extremely high computational efficiency (at a sufficient level of accuracy with respect to RANS solvers), are the natural choice for the analysis of thousands of geometries: with respect to lifting line/lifting surface models, panel methods allow to directly compute the influence of the hub and, especially, of the duct, both in terms of the additional load on the blade tip region and in terms of the velocity disturbance on the whole propeller, avoiding the simplified representation of the duct only by vortex rings and sources. Also cavitation (at least sheet cavitation both on the back and on the face blade sides) can be directly taken into account, by means of a better computation of the pressure distribution instead than by semiempirically derived minimum pressure coefficients on standard blade sections.
For the improvement of the ducted propeller performances a panel method developed at the University of Genoa [20, 21] and specifically customized for the solution of cavitating ducted propellers with the inclusion of the tip gap flow corrections [10] has been adopted. Potential solvers are based on the solution of the Laplace equation for the perturbation potential  
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 [22], which is the counterpart of the continuity equation if the hypotheses of irrotationality, incompressibility, and absence of viscosity are assumed for the flow:
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Green's second identity allows to solve the three-dimensional problem of (6) as a simpler integral problem involving only the surfaces that bound the computational domain. The solution is found as the intensity of a series of mathematical singularities (sources and dipoles) whose superposition models the inviscid, cavitating flow on and around the propeller. Boundary conditions (dynamic and kinematic both on the wetted and the cavitating surfaces, Kutta condition at the trailing edge, and cavity bubble closure at bubble trailing edge) close the solution of the linearized system of equations obtained from the discretization of the differential problem represented by (6) on a set of hyperboloidal panels representing the boundary surfaces (Figure 3) of the hub, the blade, the duct, and the relative trailing wakes. An inner iterative scheme solves the nonlinearities connected with the Kutta boundary condition while an outer cycle solves the nonlinearities due to the unknown cavity bubble extension. As usual forces are computed by integration of the pressure field, evaluated by the Bernoulli theorem, over the propeller surfaces, while the effect of viscosity is taken into account with a  standard frictional line correction. With respect to the free running propeller case, the solution of the potential problem, when a ducted propeller is addressed, requires a special treatment of the flow on the gap region that could strongly influence the propeller tip loading and the distribution of load between the propeller and the duct itself. In present case a gap model with transpiration velocity (similar to that proposed by Hughes [10]) and the orifice equation are adopted. At first an additional strip of panels along the blade tip is introduced to close the gap between the propeller and the duct. Moreover, a wake strip of panels is added, for which the dipole strength is determined again from the Kutta condition. The existence of a transpiration velocity through the gap is obtained with a modification of the kinematic boundary conditions (
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 is the unknown pressure difference between the face and back side of the gap region. A further iterative scheme is, thus, required to force the boundary condition of (7) on the gap panels: as a first step, the problem is solved as if the gap was completely closed (
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), and the initial pressure difference is computed; in following steps, (7) is updated with the current value of pressure difference, and the potential problem is solved again until a certain convergence of the gap flow characteristics is achieved.


	
		
			
		
		
			
		
		
