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1. Introduction

In this paper we consider the two-valued integrated telegraph signal with rightward
velocity c1 and leftward velocity -c2 (cl,c2 > 0) and rates 11,12 of the occurrence of
velocity switches, (1 when the current velocity is (- 1)i+ lci, 1,2).

The classical case (c1 c2 c;I 12 1) has been studied in many papers and
important probabilistic distributions and representations have been obtained indepen-
dently by various authors and by different methods (for example, Orsingher [8],
Foong [2], Foong and Kanno [3], Kabanov [4]).
When c1 :/: c and 11 12, the motion differs from that in the classical case in

that it displays a drift whose components have also been studied (see [1, 6, 7]). One
component of the drift depends on the different velocities and the other on the
different rates. These components differ substantially in the mathematical treatment
they necessitate.

In particular, when 11 12, the elimination of the drift requires the Lorentz
transformation of Special Relativity Theory. This was first noted by Cane [1] and
further examined in [6, 7] but nowhere has an accurate analysis of the transformation
and its probabilistic implications been carried out.

Here we discuss the random motion in the original frame of reference (x, t) and in
the related relativistic one, (x’, t’) where the drift has been eliminated.
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c1 c2The space coordinate x’ must move with velocity Vr 2
(’k2 1)(Cl + c2) "k2Cl Ale2

2(A2 + A1 A1 + A2
with respect to the original frame of reference and the

time t’ must either be speeded up or slowed down with respect to t, in order to elimi-
nate the drift.

2(Cl q_ c2),klA2In the frame (x’,t’), the particle moves with velocities c’- +
(,x I + ,x2)2

initially chosen with equal probability 1/2, and the switches from positive to negative
values and vice versa are governed by a homogeneous Poisson process with rate A’--
2Al,k2
1 +-2"

tTherefore, the probabilist, in the reference {a’, attributes to the random position
of the particle, a symmetric distribution p- p{a’, t’}. Returning to the original coor-
dinates and writing down the asymmetric distribution p- p(a,t requires careful
attention due to the fact that here, differently from the Special Relativity theory, the
adjustment of time depends on the random changes of the rates (and thus of the velo-
city of the particle}.

In the last section of the paper we obtain the distribution p- p(a, t} by means of
the usual approach, based on Fourier transforms. This also enables us to present the
characteristic function in the case where a general form of drift is assumed.

The reader can easily judge how significant the simpification using the relativistic
transformation is and how deep an insight into the intimate structure of the random
motion is afforded.

The relativistic approach also immediately yields the form of the flow function and
therefore the joint distributions of the position and of the velocity of the particle.

2. Features of Motion and the Governing Equation

We assume that at time t- 0, a particle starts from the origin and that its initial
velocity is the two-valued r.v.

{c 1

V(O)- 1 with probability
1c2 with probability

where Cl, c2 are positive, real numbers.
The current velocity V V(t), t > 0 switches from C1 to -c2 after an exponential-

ly distributed time (with parameter 1) and from -c2 to cI after a random time
with exponential distribution with parameter 2"

The time intervals separated by velocity changes are independent r.v.s (also inde-
pendent from V(0)).

Thus the particle moves forward with velocity c1 and backward with velocity -c2
and the changes are governed by a non-homogeneous Poisson process.

For the probabilistic description of the random position X- X(t)- f toV(s)ds we
need the following distributions

fl(x,t)dx Pr{X(t) dx, V(t)- Cl}
f2(x, t)dx Pr{X(t) dx, V(t) c2}.

(2.1)
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It is well known that the functions (2.1) are solutions of the following differential
system (see [5])

0fI 0f1
Ot c1-- + A2f2 1fl

Of2
Ot c2 + 1fl A2f2"

The system (2.2) by means of the transformation

P fl + f2’w fl- f2
can equivalently be written down as

Op_
Ot--

OW Cl -+- C2 0p
Ot 2 Ox

cI -c20p c1 -t-c20w
2 Ox 2 Ox

Cl C20W +
(2.3)

The distribution p(x, t)dx Pr{X(t)E dx} consists of a singular component con-

centrated in x- clt (with probability 1/2e-Alt) and in x--ct (with probability

1/2e- ,t) and an absolutely continuous part spread over the interval (-c2t clt).
The absolutely continuous part of the distribution is a solution of the second-order

hyperbolic equation (extracted from the differential system (2.3) by means of sub-
sequent differentiations and substitutions):

02p 02p 02p Op
ClC2-X2 + (C2 (A1 -4- A

Ot2 Cl)ozOt 2)-
(2.4)

+ [(C2 Cl)("1 + "2)- (’2 1)(Cl + C2)]-"
cOp cO2p

in (2.4) is clearly related to the drift of motion.The presence Ofx and
Equation (2.4), when cI c2 c and 1 A2 , reduces to the classical

telegraph equation

02p _202p Op (2.5)
Ot2

c Ox--- 2A--.

3. Efimination of the Drift by Means of a Relativistic Transformation

The elimination of the drift necessitates the use of the Lorentz transformation

x’- cx +
t’ 7x + 5t

(3.1)

where the constants c, 3, 7, 5 are to be determined in such a way that the coefficients

of Ox’Ot’
02p

and 0" vanish. In order to evaluate the four parameters in (3.1), clearly,
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two further conditions must be introduced.
We now have our first theorem.
Theorem 3.1: A linear transformation from the frame of reference (x,t) into

(x’, t’), capable of eliminating the drift in (2.4) is

Proof: We first remark that any transformation of the form

(3.2)

X’-- O/Xk "-
(c2 -Cl)(X1 +2(A2X2) +(X2A1)- 1)(Cl +c2)t ./

t’--’{x -- (’2 "1)(c c) (’2 --"1)(c12(A21)(Cl "- c2)
"/- c2)2t}

Op and
02p

eliminates the coefficients of -x ox’ot’"
Assuming that a 1 and that the Jacobian of (3.3) is equal to 1, we get that

2 2h2 h1

(3.3)

This completes the proof of (3.2).
Theorem 3.2: In force of the Lorentz transformation (3.2), equation (3.2) is

converted to the following telegraph equation with respect to the space-time
coordinates (x’, t’):

02p 4(c1 -I- c2)2h12A 02p 4hlA20p
Or,2 (hI + ,)4 Oz,2 h + h Ot--w" (3.4)

Proof: We first observe that in the frame (x’, t’), after the elimination of the drift,
equation (2.4) is transformed into the following one

02p 2 02p
{ CxC 

-t- {((C2 Cl)(h1 -- h2)- (h2 hl)(C1 -l- c2) -(hI -t-

In light of (3.2) we have that

a=l

3/ 2hlh2(c -4- C2)
(h2 ’1) (C2 -’t- Cl)
(h2 -4- "1) 2

(h22 h12)2(c2 el)
4h1,2(cl -- c2)

(3.6)
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and therefore

(3.7)

Substituting (3 7) into (3 5) and then dividing by (1 + 2)2

4A1A2
we ,readily obtain equa-

tion (3.4).
Remark 3.1: We are now able to infer from equation (3.4) some important

features of the random motion in the frame (x’, t’).
For an observer in this system (compare equation (3.4)with (2.5))of reference, the

particle moves with velocities

c’ +/-
2(cl -+- c2)"1"2

(A1 -- A2)2 (3.8)

and the switches between the two values (3.8) are governed by a homogeneous
Poisson process whose rate is

A’ 2A1A2
hi + a2. (3.9)

lemark 3.2: The connection between the velocities in (x, t) and in (x’, t’)is given
by the formula

which can be straightforwardly obtained from (3.2).
From (3.10) it is easy to see that

dx’ 2(Cl -- c2)’1A2if Cl, then c’-
(A1 -- "2)2

and
if dx dx’

dt c2’ then-c
2(c1 -t- C2),1A2
(, + A)

Remark 3.3: From (3.2) it is also possible to extract the relationship

dt’_ A- , dg (’1 " "2)2
c2- Cl ’22- "12 (3.11)dt -2A1A2(cl+c2) dt 41A2 c2+cl 4A1A2

dxwhich tells us how the time t’ changes with (as a function of the velocity -3T)" We
have the following picture:
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1 + 2 dx

dt’ --2-- f - Cl
(3.12)dt + A2 dx

1 f -3Y c.

Formula (3.12) shows that the times t’ and t grow at the same rate if )1 2"
This explains the fact that the part of the drift due to different rates must be

canceled by suitably speeding up (or slowing down) the clock in (x’, t’). For example,
if 1 > 2 (and the current velocity is c in (x, t) and c’ in (x’, t’)) the time t’ must be
speeded up in order to compensate for the fact that switches from cI to c2 occur more
frequently then those from c2 to c1.
mk 3.4: The connection between the interval of possible positions in (x, t) and

in (x’, t’) can be discussed observing that:

+’ c’’ 1
i+i

mark .: In the frame (’,’), the velocity I’1 is lwys inferior to the mean
of the velocities c and c. In fact we have, from (a.8), that

c’l Cl + c 41 <
cI + c

because 21I I + I.
mark .: If I I I, c c, the transformation (a.2) reduces to the

Galilean form

Z,__ z+(c2-c1)
2

c1 c2Thus the relative velocity v= and in (’,) the particle oscillates with

velocities c’ c + c
2

4. The Distribution of the Position in the Frame (x, t)

The Lorentz transformation discussed in Section 3 permits us to derive the distribu-
tion

p(x, t)dx Pr{X(t) e dx}

from that of p--p(x’,t’). By exploiting well known results in literature (see [3, 8])
we can express p(x’, t’) as follows:

2AIA2
A1 +A2

t’)- 4(c -- c2)A1A2

(1 +)

2"1)2 {’1 -- 2 /4(Cl -- C2)2"t’2 )Ai + A210 C1 "- C2 V "(-1 722 x2

(1--214(C1+C2)2 2 2’21z2 __’2+-I0 ’C1 --"C’ (/1 -- 2)4 (4.1)
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2"12 ,t

"1+32 { (2
5 x’+

2(c1 -t- c2),1,2t’
(’1 -t- )2 )2

2(c1+c2)’1 ) ((AI+A2)2A2t --5 x 2(Cl+C2)AIA2t’)}(al + ")

Clearly
1Io(x)

is the zero-order Bessel function with imaginary argument. In view of a result in [8]
we can also write the expression for the flow function w- w(x’,t’) in the following
way

2AIA2t
e

2 2 22

W(X’,t’)--
"kl +’k2 0 [’1-t-’2 /4(Cl +C2) 12t X,2
2 0Z,10/ (1 + 2)4 (4.2)

We now present what we consider the most important result in this paper.
Theorem 4.1" The distribution of the position of the particle in the frame (x,t)

re a ds

(A1 + A2)t A2 A1 (A2 hI)(C2 Cl)
2 + c--x + 2(c2 + Cl)

C1 -t-C2

[1 +/2I(2__V/,1.2./(x +c2t)(clt_x) )2 u\ c2-t-c1
v

+ -Io -c-2 -c- V/(x + c2t)(cl t x)

(c2
2 -I -2 -c V/(x + c2t)(clt- x)

-- 1/2e "lt((X Clt) nt- 1/2e "2t((Z -- c2t

for -c2t <_ x <_ cir.
Proof: Taking into account formula (3.2) we get that

222t’2 41,24(Cl -+- c2) "’1"2 x’2 ):i(x -- c2t)(clt x).
(’1 -+- ’2)4 (’1 + "2

(4.4)

Of fundamental importance is to obtain the connection between t’ and 0__ o
Ox Ot"

We first note that

Or’- Ot dt’ + 0- d---7 = 1’
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and thus
dt’ 0 cO 0 dx
dt Or’- 0- + Ox dt" (4.5)

By using Remark 3.3, from (4.5) we get"

AI+A2 0 O c O__
2A2 Ot 0-- -- lOx

1 + 2 ( 0 c cO
2,k

1 O cot 2-"

(4.6)

Summing the identities in (4.6) yields

()1 + "2)2 0 2 (:- -(C C2)0-212 c9t--7 1 (4.7)

which, together with (4.4), permits us to pass from the absolutely continuous
component of (4.1) to that of (4.3).

For the transformation of the singular component we must bear in mind that

and

A1 -- 2(x- clt)

X
__
Ct 21A2

Zl + t)

21)2 2 l,x )1 -- (C2 Cl)(2 1) t
)1 -- 2t’-

(Cl -- C2) 2
2t "- (C2 --Cl) "

Since the Dirac delta function is concentrated in x- cit and x- -c2t we have

2Al’k2
+ )2 1 2e 1

2 {((X’ - c’t’) -- (X’-- c’t’)} e ((X Clt) -- e ((X -- c2t2 2

This concludes the proof of Theorem 4.1.
ttemark 4.1: On the basis of the same reasoning it is possible to obtain the expres-

sion of the flow function in (x, t) from (4.2).
After some calculations we have that

dx’ dt’ 0 0 0 dx
dt’ dt cox’- Ot - cox dt" (4.8)

In view of Remark 3.3 and formula (3.8) we get

A1 0 0 0(Cl -- C2)1 -{- A2 cox’ N -- Cl-x
A2 0 0 0(Cl + C2]A

1 -b A2 cgx’ Ot

(4.9)

Subtracting the identities in (4.9) yields

0
Ox’- Ox
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and thus the flow function in the frame (x, t) can be written as

(A + A2)t A2 A1 (A2 A1)(c2 -Cl)+ +2 c2 + c1 2(c2 + c1)

OxO\ c2 + Cl vX + c2t)(clt- x)

for --c2t < x < Clt.
From (4.3) and (4.10) it is easy to obtain the distributions

p+w p-w
fl= 2

and f2-- 2

For example, the density of fl reads

1fl(x, t) 2(Cl -+- c2)e

(A1 + A2)t A2 Alx
2 + c2 + c1

(A2- A1)(c2 Cl)
2(c2 + c1)

A -1- A21o(  v/a a;-c- - V/(x + c2t)(clt x))

(4.10)

(4.11)

-t (2V/)l2V/(x + c2t)(clt- x))+ Io c2 + Cl

c2 I0 c2 + cl V/(X -- c2t)(clt x)

for -c2t < t < cl t.
Remark 4.2: We note that formulas (4.3), (4.10)and (4.11)coincide with the

well-known distributions when no drift is assumed (cI c2 c, A A2 A). Even
more important is the fact that

clt
p(x, )dx 1,t

c2t

whose verification involves intriguing, yet cumbersome, calculations. This will be
done in the next section since the necessary formulas will be extracted from general
ones.

It may appear strange that the distribution (4.3), in the special case where the
asymmetry is due only to different rates A1 :/= A2, Cl c2 c, is much simpler than in
the case where )1 /2 A, but C1 C2.

In effect, in this case, formula (4.3) reduces to

(,k + )2)t ,k
2 A1

p(x,t)_e- 2 + 2C xAI+A2 (V/2A2V/c2t2_x2)2c 2 I

+ff---iIo(YffclA2v/c2t2 (4.12)
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The reason for the simple structure of (4.12) is that the support of the distribution
is symmetric and the asymmetry of the distribution is due only to the factor

A2 A1exp 2 x.

5. Derivation of the Distribution P(x, t) by Solving an Initial-Value
Problem

The classical approach based on Fourier transforms permits us to obtain the charac-
teristic function

+
F(, t) / eifXdP(x, t) (5.1)

of the distribution

P(x,t)-P(X(t)<_x}.

Theorem 5.1" The characteristic function of the distribution (5.2) is

+ +t)

1+
V/(A1 -+- ,2)2 2(C1 -}- C2)2 -- 2i(cI + c2)(A2

+(1_ 1 -- ’2)2 --/2(Cl -- C2)2 %. 2ifl(Cl -- C2)(2 "1)

-V/(A1-t A2 )2-/32(cI +c2)2 -{-2i/3(c2-I-Cl)(A2

for E R and t >_O.
Proof: We first note that the Fourier transform of equation (2.4) is

d2F
dt2

+ {i/3(c2 -Cl) - (A2 -4- A1)}dFdt
-+-{i--2[(C2--Cl)(,2"qt-,’1)--()2--,’1)(C2+Cl)]- 2ClC2}- O.

It is straightforward that the general solution of (5.4) reads

r(/3, t) e [if(c2 cl) + (1 + A2 )1

(5.4)
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tv/ )2He- (X -4- A2) -/32(cI + 2 + 2ifl(c2 + Cl)(A2 A1)

2t/(A1 +A2)2-/32(Cl +c2)2 +2i/3(c2 +Cl)(X2-X1)J.+Ke

The constants H and K are evaluated using the fact that F must satisfy the
following initial conditions:

i(fl,0) 1

-dt ( t) 1/2i(c2 -Cl).
t--o

(5.6)

While the first condition immediately follows from the fact that p(x, 0) 5(x), the
second one involves much more analysis.

The features of motion described in Section 2 authorize us to write

EeiX(&t) 1/2e- ic2At(1 A2At + 1/2eiClAt(1 AIAt
clAt

(A1 + A2)At 1 f iOUdy (At)(C1 -4- 2- " e --I- O

c2At
since, in a small time elapse [0, At), either no velocity change occurs (and the parti-
cle, at time At, is at either endpoint of the interval [-c2At, clAt]) or one Poisson
event happens (and the particle is then uniformly distributed inside that interval).

From (5.7) and some calculations, we get

iflEeiX(At) 1 + --(c2 c1)/kt + O(/kt)

and thus

dF lim
EeiX(At)- l ifl

2dt o xt-o At (c2 cl)

as claimed in (5.6).
A little algebra permits us to calculate H and K and thus obtain (5.3).
For the inversion of the characteristic function, we need three integrals which can

be inferred from the relationship

ct

/ ei’Zlo(v/c2t2- x)dx -c{e
obtained in [9]

For the sake of simplicity, we write

A /(’1 +/2)2 fl2(Cl + C2)2 q- 2ifl(c2 + Cl)()2 "1)"

The formulas we must apply are
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cIt A2 A1

c’xeC2 + c1 Io \ -c-1 -c- V/(x + c2t)(clt x) dx

c2t

-//3(c2-c1) (A2-A1)(c2-cl)t{ tA -A}(cI

__
c2)e 2(c2 + c1) e2 e

A

(5.10)

cI A2 A1

07 C1 + c2 V/(x + c2t)(clt- x) dx (5.11)
c2t

i/3(c2-cl)t (A2 A1)(c2 -c1)

--(61--C2){-- i(c2 -(A2-AI)(C2-Cl)}-2(62__cl)e 2 2(c2+cl)t

{ tA } i[(c2-cl)t (A2-A1)(c2-cl)t{ Ae2 --e A clq-c2e 2 2(c2+cl) e -’t-e-A)f + 2
A2 A1 A2 A1

//3c1 e
4- ClClt c2 4-c---c2t

Cl e
c2 C2e [3c2te

The third formula we need is

c1 A2 A1

i eiJxec2+clmOIo(2VII\1t\2
0---- C1 + c2 V/(x + c2t)(clt x) dx

c2t
A2 A1 A2 A1

i[3clt c2 + c-1’Cl ic2t c2 +cC2-e e e e

(2-1)(c2-cl)t{ tA }2(c2+c1) e2 --e-n
A

(5.12)

Formulas (5.11) and (5.12) are closely connected by

cIt A2 A1

i eixeC2-t-clXOIo(2V/t112 v/( + c t)(cl t

c2t

fc2 c1 J
2

clt A2 A1

eixeC2 + c

c2t

x0/- 2 V/zI)2 )Ox t c1 + c2
V/(x + c2t)(clt-- x) dx

A2 A1
cltic1 te c2 + Cl il3c2t+e e

A2 A1
c2 + c1 c2t[

(5.13)
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i3(c2 c1) (A2 A1)(c2 c1)
c1--c2e 2 2(c2+cl e2tA__e_At+ 2

A2 A1 A2 A1
c2tcleicltec2 + clcIt c2 ic2te c2 + Cl

as a simple comparison between (5.11) and (5.12) shows.
With this at hand, the characteristic function (5.3) can be written as:

-(AI+A2)!{ i(c2-cl)( tA )Y(/, t) e 2 -A
2

e 2 e2 +e

i(c2 Cl)t e2 --A._ (A1 + A2)e 2 --e
(using (5.13) for the first term and (5.10) for the second one)

(x + )t (x x)( )
t

e 2 2(c2 + c1)
2

e

/
clt A2-A1

( )2A1A21 + c
+ eixe% + xIo Cl + c ( + ct)(ct ) dx

c2t
clt A2 A1

2 ixeC2+clx2l2 )+ c + c ot k Cl + c: ( + c:t)(clt- ) dx

c2t

c1 A2 AI
C +"C x2V/l2c2

Cl _[_ C2
e 1 v/(X + c2t)(Clt x) dxOx \ C1 -}- C2

c2t
A2 A1 A2 A1

c2-cI -ic2t c2+c1’c2c2-cI iclt c2+clclt __+ Cl _}_ c2
e e

Cl _}_ c2

A2 A1 A2 A1 J2Cl e//3cltec2 + clclt 2c2 c2tc
c2 + clc2-- Cl -}- C2 -- i -+" C2e

(A2 + A1)t (2 1)(c2 Cl+2 2(c2 + c1)
cI --c2

I /It A2 Alx/o(2V/l )1 /2 ifxeC2 + c 2

2
e

Cl + c2 v/(x -}- c2t)(clt- x) dx

c2t

(5.14)
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c2
Clt

C1

c2t

From this we immediately obtain again the distribution (4.3).
lmark 5.1: In order to prove that the distribution (4.3) integrates to one, we

only have to integrate the absolutely continuous part and use formulas (5.10), (5.11)
and (5.12) when 0. We present some details here

( + )t (- :)(c-c)+2 2(c2 + c1)
Pr{-c2t < X(t) < ct} e

c -t- c2

I j.clt A2-A1
A1 -- A2 c2 + c1

2
e

c2t
v/(X + c2t)(cIt x)

cI A2 A1

c2t
+ c t)(c t

c2 C1 c2 + c1
2

e. OX C1 -" C2
V/(x -- c2t)(clt-- X) dx

c2t

(2 + )1)
2

c --c2 [ A1 -{- ’2 (e(A1 + A2) -(A1 +
2--1

_
;)(cI + c.)

Cl - c2 (’2 "1)(c2 --Cl) (A1 - A2) (A1 +-- A1 -- "2 2(Cl -j I,e --
Cl -[- c2 e(A1 + A2)+ 2

"k2 A1 A2- A1
A2))_ Cl _62

c2 + cI clt c2 +c-----c2+

c2 --e

(5.15)
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2 1

2

A2 1
C2-cI c2+clclt C2-cl c2+cI c2t

2 + e

(observe that coefficients of e 2 cancel throughout)

(A2 -t- "l)t ’X2 1 2 ’Xl
e

c1-- U--c- (c
2 Cl)e(’kl + "k2) ------ec2-1- cl 2 ec2 -1-2 cl -t2

1 -1/2e- "lt -1/2e- "2t 1 P{X(t) + clt } P{X(t) c2t}.
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