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1. Introduction

The relationship between mathematical programming and classical calculus of variation
was explored and extended by Hanson [6]. Thereafter variational programming prob-
lems have attracted some attention in literature. Duality for multiobjective variational
problems has been of much interest in the recent years, and several contributions have
been made to its development (see, e.g., Bector and Husain [2], Nahak and Nanda [9],
Mishra and Mukherjee [7]). Using parametric equivalence, Bector et al. [1] formulated
a dual program for a multiobjective fractional program involving continuously differen-
tiable convex functions. Recently Nahak and Nanda [10] proved the duality theorems of
multiobjective variational control problems under (F,ρ)-convexity assumptions.

In this paper, under pseudoinvexity assumptions on the functions involved, duality
theorems are proved for multiobjective variational control problems. The duality of mul-
tiobjective fractional variational control problems is also considered by relating the pri-
mal problem to a parametric multiobjective variational control problem.

2. Notations and preliminaries

Let I = [a,b] be a real interval and let f : I×Rn×Rn×Rm×Rm→Rp and let g : I×
Rn×Rn×Rm×Rm→Rm be continuously differentiable functions. Consider the func-
tion f (t,x(t), ẋ(t),u(t), u̇(t)), where x : I → Rn with derivative ẋ and u : I → Rm with
derivative u̇. Here t is the independent variable, u(t) is the control variable and x(t)
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is the state variable. u is related to x via the state equation h(t,x(t), ẋ(t),u(t), u̇(t)) = 0,
where h : I ×Rn ×Rn ×Rm ×Rm → Rn. For x, y ∈ Rn by x ≤ y, we mean xi ≤ yi, for all
i. All vectors will be taken as column vectors. The symbol (·)T denotes for the trans-
pose. For a real valued k(t,x(t), ẋ(t),u(t), u̇(t)), denote the partial derivative of k with
respect to t, x, and ẋ, respectively, by kt, kx, and kẋ such that kx = (∂k/∂x1, . . . ,∂k/∂xn),
kẋ = (∂k/∂ẋ1, . . . ,∂k/∂ẋn). Similarly, we write the partial derivative of the vector functions
f and g using matrices with p and m rows instead of one row. Partial derivatives with
respect to u and u̇ are defined analogously. The control problem is to transfer the state
variable from an initial state α at x = a to a final state β at x = b so as to extremize a given
functional subject to constraints on the control and state variables. Let S(I ,Rn) denote
the space of piecewise smooth functions x with norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞, where the
differentiation operator D is given by

v =Dx⇐⇒ x(t)= α+
∫ t
a
v(s)ds, (2.1)

and α is a given boundary value. Therefore D = d/dt except at discontinuities. Consider
the following multiobjective variational control primal problem as follows.

Minimize
∫ b
a
f (t,x(t), ẋ(t),u(t), u̇(t))dt

=
(∫ b

a
f 1(t,x(t), ẋ(t),u(t), u̇(t))dt, . . . ,

∫ b
a
f p(t,x(t), ẋ(t),u(t), u̇(t))dt

) (P)

subject to

x(a)= α, x(b)= β, (2.2)

g(t,x(t), ẋ(t),u(t), u̇(t))≥ 0, t ∈ I , (2.3)

h(t,x(t), ẋ(t),u(t), u̇(t))= 0, t ∈ I. (2.4)

Let X denote the set of feasible points of (P).

Definition 2.1. A point (x∗,u∗) in X is said to be an efficient solution of (P) if for all (x,u)
in X ,

∫ b
a
f i
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)
dt

≥
∫ b
a
f i(t,x(t), ẋ(t),u(t), u̇(t))dt, ∀i∈ {1, . . . , p},

=⇒
∫ b
a
f i
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)
dt

=
∫ b
a
f i
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt, ∀i∈ {1, . . . , p}.

(2.5)
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We introduce the following problem (D) as the dual of (P).

Maximize
∫ b
a

[
f
(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTg(t,x(t), ẋ(t),u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),u(t), u̇(t)
)]
dt

=
(∫ b

a

[
f 1(t,x(t), ẋ(t),u(t), u̇(t)

)−μTg(t,x(t), ẋ(t),u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),u(t), u̇(t))
]
dt, . . . ,

∫ b
a

[
f p
(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTg(t,x(t), ẋ(t),u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),u(t), u̇(t)
)]
dt

)

(D)

subject to

x(a)= α, x(b)= β, (2.6)

[
τT fx

(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTgx(t,x(t), ẋ(t),u(t), u̇(t)
)−λThx(t,x(t), ẋ(t),u(t), u̇(t)

)]

=D
[
τT fẋ

(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTgẋ(t,x(t), ẋ(t),u(t), u̇(t)
)

− λThẋ
(
t,x(t), ẋ(t),u(t), u̇(t)

)]
,

(2.7)[
τT fu

(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTgu(t,x(t), ẋ(t),u(t), u̇(t)
)

− λThu
(
t,x(t), ẋ(t),u(t), u̇(t)

)]= 0,
(2.8)

p∑
i=1

τi = 1, μ(t)≥ 0, (2.9)

where μ∈Rm, λ∈Rn, and Rp
+ denotes the nonnegative orthant of Rp. Let H denote the

set of feasible points of (D).

Definition 2.2. For a scalar-valued function k(t,x(t), ẋ(t),u(t), u̇(t)), the functional
∫ b
a k(t,

x(t), ẋ(t),u(t), u̇(t))dt is said to be pseudoinvex in x, ẋ, and u on [a,b] with respect to η
and ξ if there exist vector functions η(t,x(t),x∗(t), ẋ(t), ẋ∗(t),u(t), u̇(t))∈Rn with η = 0
at t if x(t)= x∗(t) and ξ(t,x(t),x∗(t), ẋ(t), ẋ∗(t),u(t),u∗(t))∈Rm such that

∫ b
a

[
ηT
(
t,x(t),x∗(t), ẋ(t), ẋ∗(t),u(t),u∗(t)

)
kx
(
t,x(t), ẋ(t),u(t), u̇(t)

)

+
d

dt
ηT
(
t,x(t),x∗(t), ẋ(t), ẋ∗(t),u(t),u∗(t)

)
kẋ
(
t,x(t), ẋ(t),u(t), u̇(t)

)
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+ ξ
(
t,x(t),x∗(t), ẋ(t), ẋ∗(t),u(t),u∗(t)

)
ku
(
t,x(t), ẋ(t),u(t), u̇(t)

)]
dt ≥ 0

=⇒
∫ b
a

[
k
(
t,x∗, ẋ∗,u∗, u̇∗

)− k(t,x, ẋ,u, u̇
)]
dt ≥ 0.

(2.10)

A vector function is said to be pseudoinvex with respect to η and ξ if all its components
are pseudoinvex with respect to the same η and ξ.

3. Duality theorems

We wil now prove that problems (P) and (D) are a dual pair subject to pseudoinvexity
conditions on the objective and constraint functions.

Theorem 3.1 (weak duality). Let (x,u) ∈ X and (x∗, u̇∗,λ,μ,τ) ∈H . If
∫ b
a [τT f − λTh−

μTg] is pseudoinvex with respect to η and ξ, then the following cannot hold:

∫ b
a
f i
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

≤
∫ b
a

[
f i(t,x∗(t), ẋ∗,u∗(t), u̇∗(t))− λTh(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μTgi(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)]
dt, ∀i∈ {1,2, . . . , p},

∫ b
a
f i
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

≤
∫ b
a

[
f i
(
t,x∗(t), ẋ∗,u∗(t), u̇∗(t)

)− λTh(t,x∗(t), ẋ∗ (t),u∗(t), u̇∗(t)
)

−μTg(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)]
dt, for at least one j ∈ {1,2, . . . , p}.

(3.1)

Proof. Let (x,u) satisfy (2.2)–(2.4), (x∗, u̇∗,λ,μ) satisfy (2.6)–(2.9). Now

∫ b
a

{
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fx

(
t,x∗, ẋ∗,u∗, u̇∗

)]
+
d

dt
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)

×
[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)]
+ ξ
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fu

(
t,x∗, ẋ∗,u∗, u̇∗

)]

+η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[− λThx(t,x∗, ẋ∗,u∗, u̇∗
)]

+
d

dt
η(t,x,x∗, ẋ, ẋ∗,u,u∗)

×
[
− λThẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)]
+ ξ
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[− λThu(t,x∗, ẋ∗,u∗, u̇∗
)]

+η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[−μTgx(t,x∗, ẋ∗,u∗, u̇∗
)]

+
d

dt
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)
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×
[
−μTgẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)]
+ ξ
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[−μTgu(t,x∗, ẋ∗,u∗, u̇∗
)]}

dt

=
∫ b
a

{
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fx

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThx(t,x∗, ẋ∗,u∗, u̇∗
)

−μTgx
(
t,x∗, ẋ∗,u∗, u̇∗

)]

+
d

dt
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThẋ(t,x∗, ẋ∗,u∗, u̇∗
)

−μTgẋ
(
t,x∗, ẋ∗,u∗, u̇∗

)]

+ ξ
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fu

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThu(t,x∗, ẋ∗,u∗, u̇∗
)

−μTgu
(
t,x∗, ẋ∗,u∗, u̇∗

)]}
dt

=
∫ b
a
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

) d
dt

[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThẋ(t,x∗, ẋ∗,u∗, u̇∗
)

−μTgẋ
(
t,x∗, ẋ∗,u∗, u̇∗

)]
dt

−
∫ b
a

d

dt
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThẋ(t,x∗, ẋ∗,u∗, u̇∗
)

−μTgẋ
(
t,x∗, ẋ∗,u∗, u̇∗

)]
dt

(
by (2.7) and (2.8)

)

= η(t,x,x∗, ẋ, ẋ∗,u,u∗
)[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThẋ(t,x∗, ẋ∗,u∗, u̇∗
)

−μTgẋ
(
t,x∗, ẋ∗,u∗, u̇∗

)]

×
∣∣∣∣
b

a
−
∫ b
a

d

dt
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)

×
[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThẋ(t,x∗, ẋ∗,u∗, u̇∗
)−μTgẋ(t,x∗, ẋ∗,u∗, u̇∗)

]
dt

+
∫ b
a

d

dt
η
(
t,x,x∗, ẋ, ẋ∗,u,u∗

)[
τT fẋ

(
t,x∗, ẋ∗,u∗, u̇∗

)− λThẋ(t,x∗, ẋ∗,u∗, u̇∗)

−μTgẋ
(
t,x∗, ẋ∗,u∗, u̇∗

)]
dt = 0

(3.2)

(by integration by parts and since η(t,x∗,x∗, ẋ∗, ẋ∗,u,u∗)= 0). So by pseudoinvexity of∫ b
a [τT f − λTh−μTg]dt, we have

∫ b
a

{
τT f

(
t,x(t), ẋ(t),u(t), u̇(t)

)− λTh(t,x(t), ẋ(t),u(t), u̇(t)
)

−μTg(t,x(t), ẋ(t),u(t), u̇(t)
)}
dt

≥
∫ b
a

[
τT f

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− λTh(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

−μTg(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)]
dt,

(3.3)
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conditions (2.3) and (2.4) give

∫ b
a
τT f

(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

≥
∫ b
a

[
τT f

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− λTh(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

−μTg(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)]
dt.

(3.4)

So the following cannot hold:

∫ b
a
f i
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

≤
∫ b
a

[
f i
(
t,x∗(t), ẋ∗,u∗(t), u̇∗(t)

)− λTh(t,x∗(t)ẋ∗ (t),u∗(t), u̇∗(T)
)]
dt

−μTg(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)
dt, ∀i∈ {1,2, . . . , p},

∫ b
a
f i
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

≤
∫ b
a

[
f i
(
t,x∗(t), ẋ∗,u∗(t), u̇∗(t)

)− λTh(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

−μTg(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)]
dt, for at least one j ∈ {1,2, . . . , p}.

(3.5)

�

Assume that the necessary constraints for the existence of multipliers at an extreme
value of (P) are satisfied, thus for every efficient (x∗,u∗) of (P) there exists a piecewise
smooth μ0 : I →Rm, μ(t) such that

F = μT0 f
(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTg(t,x(t), ẋ(t),u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),u(t), u̇(t)
) (3.6)

satisfies

Fx = d

dt
Fẋ, Fu = 0,

μTg = 0, μ(t)≥ 0.
(3.7)

It is assumed from now on that the minimizing solution (x∗,u∗) of (P) is normal, that is,
μ0 is nonzero, so that without loss of generality, we can take μ0 = 1.

Theorem 3.2 (strong duality). Under the pseudoinvexity conditions of Theorem 3.1, if
(x∗,u∗) is an efficient solution for (P), then there exists a piecewise smooth μ : I → Rm,
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such that (x∗,u∗,λ,μ,τ) is an efficient solution of (D) and the extreme values of (P) and (D)
are equal.

Proof. Since (x∗,u∗) is an efficient solution of (P), there exists, μ(t) : I → Rm, such that
for t ∈ I ,
[
τT fx

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)−μTgx(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hx
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

= d

dt

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)−μTgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]
,

(3.8)

[
τT fu

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)−μTgu(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hu
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]= 0,
(3.9)

μTg
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)= 0, (3.10)

p∑
i=1

= 1, μ≥ 0. (3.11)

From (3.8), (3.9), and (3.11), it follows that (x∗,u∗,λ,μ) is feasible for (D). From (3.10)
it follows that extreme values of (P) and (D) are equal. By Theorem 3.1, (x∗,u∗,λ,μ,τ) is
efficient for (D). �

For validating the converse duality theorem (Theorem 3.3), we make the assumption
that X2 denotes the space of piecewise twice the differentiable functions x : I → Rn for
which x(a) = x(b) = 0 is equipped with the norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞ + ‖D2x‖∞, and
U2 denotes the space of u : I →Rm with norm ‖u‖ = ‖u‖∞, defining (D = d/dt) as before.
The problem (D) may be rewritten in the following form.

Minimize −φ(x,u,λ,μ
)= (−φ1(x,u,λ,μ

)
,−φ2(x,u,λ,μ

)
, . . . ,−φp(x,u,λ,μ

))
(3.12)

subject to

x(a)= α, x(b)= β,

Θ
(
t,x, ẋ, ẍ,λ,u, u̇,μ, μ̇

)= 0, t ∈ I ,
μ(t)≥ 0, t ∈ I ,

(3.13)

where

φi(x,u,μ,λ)=
∫ b
a

[
f i
(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTg(t,x(t), ẋ(t),u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),u(t), u̇(t)
)]
dt, i= 1,2, . . . , p,
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Θ≡Θ
(
t,x, ẋ, ẍ,λ,u, u̇,μ, μ̇

)

=
[
τT fx

(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTgx(t,x(t), ẋ(t),u(t), u̇(t)
)

− λT(t)hx
(
t,x(t), ẋ(t),u(t), u̇(t)

)]

−D
[
τT fẋ

(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTgẋ(t,x(t), ẋ(t),u(t), u̇(t)
)

− λT(t)hẋ
(
t,x(t), ẋ(t),u(t), u̇(t)

)]= 0, t ∈ I
(3.14)

with ẍ =D2x(t).
Consider Θ(t,x, ẋ, ẍ,λ,u, u̇,μ, μ̇) as defined above and a map ψ : X2 × Y ×Rp

+ → A,
where Y is the space of piecewise differentiable function u : I → Rm, and A is a Banach
space. A Fritz John theorem [4, 5] for infinite dimensional multiobjective programming
problem may be applied to problem (D) along with the analysis outlined in [8] or [3] for
the derivation of optimality conditions. It suffices to assume that the Frechet derivative
ψ′ = (ψx,ψy ,ψλ) has a (weak∗) closed range.

Theorem 3.3 (converse duality). If (x∗,u∗,λ,μ) is an efficient solution of (D), and if
(i) ψ′ has a (weak∗) closed range;

(ii) f , g and h are twice continuously differentiable;

(iii)
∫ b
a [ f ix −D f iẋ ]dt, i= 1,2, . . . ,p, is linearly independent; and

(iv) (β(t)TΘx −Dβ(t)TΘẋ +D2β(t)TΘẋ)β(t)= 0⇒ β(t)= 0, t ∈ I ,
then (x∗,u∗) is an efficient solution of (P), and the objective values of (P) and (D) are equal.

Proof. See Bector and Husain [2]. �

4. Fractional variational control problems

Now we are in a position to study duality in multiobjective fractional variational control
problems. Following Mishra and Mukherjee [7], we give the multiobjective fractional
control problem as follows.

(Primal) Minimize

∫ b
a f
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt∫ b

a g
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

=
⎛
⎝
∫ b
a f

1
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt∫ b

a g1
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

, . . . ,

∫ b
a f

p
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt∫ b

a g
p
(
t,x(t), ẋ(t),u(t), u̇(t)

)
dt

⎞
⎠

(P1)
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subject to

x(a)= α, x(b)= β,

hj
(
t,x(t), ẋ(t),u(t), u̇(t)

)= 0, j = 1,2, . . . ,n,

k j(t,x(t), ẋ(t),u(t), u̇(t))≥ 0, j = 1,2, . . . ,m.

(4.1)

We assume g(t,x(t), ẋ(t),u(t), u̇(t)) > 0 and f (t,x(t), ẋ(t),u(t), u̇(t))≥ 0.
The equivalent parametric form of the problem is the following.

Maximize

∫ b
a

[
f
(
t,x(t), ẋ(t),u(t), u̇(t)

)− vTg(t,x(t), ẋ(t),u(t), u̇(t)
)]
dt

=
(∫ b

a

[
f 1(t,x(t), ẋ(t),u(t), u̇(t)

)− vTg(t,x(t), ẋ(t),u(t), u̇(t)
)]
dt, . . . ,

∫ b
a

[
f p
(
t,x(t), ẋ(t),u(t), u̇(t)

)− vTg(t,x(t), ẋ(t),u(t), u̇(t)
)]
dt

)

(Pv)

subject to

x(a)= α, x(b)= β,

hj
(
t,x(t), ẋ(t),u(t), u̇(t)

)= 0, j = 1,2, . . . ,n,

k j
(
t,x(t), ẋ(t),u(t), u̇(t)

)≥ 0, j = 1,2, . . . ,m.

(4.2)

Lemma 4.1. Let (x∗,u∗) be efficient for (P1). Then there exists v ∈Rp
+ such that (x∗,u∗)

is also efficient for (Pv).

Proof. See [3]. �

Remark 4.2. The converse of Lemma 4.1 also holds provided we assume

vi
∗ =

∫ b
a f

i
(
t,x∗, ẋ∗,u∗, u̇∗

)
dt∫ b

a gi
(
t,x∗, ẋ∗,u∗, u̇∗

)
dt
. (4.3)

So the dual of the above primal problem is given by (D1).

(Dual) Maximize
∫ b
a

{
τT f

(
t,x, ẋ,u, u̇

)− vTg(t,x, ẋ,u, u̇
)− λTh(t,x, ẋ,u, u̇

)−μTk(t,x, ẋ,u, u̇
)}
dt

(D1)
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subject to

x(a)= α, x(b)= β, (4.4)

[
τT fx

(
t,x, ẋ,u, u̇

)− vTgx(t,x, ẋ,u, u̇
)− λ(t)Thx

(
t,x, ẋ,u, u̇

)−μ(t)Tkx
(
t,x, ẋ,u, u̇

)

= d

dt

[
τT fẋ

(
t,x, ẋ,u, u̇

)− vTgẋ(t,x, ẋ,u, u̇
)− λ(t)Thẋ

(
t,x, ẋ,u, u̇

)

−μ(t)Tkẋ
(
t,x, ẋ,u, u̇

)]
,

(4.5)

τT fu
(
t,x, ẋ,u, u̇

)− vTgu(t,x, ẋ,u, u̇
)− λ(t)Thu

(
t,x, ẋ,u, u̇

)−μ(t)Tku
(
t,x, ẋ,u, u̇

)= 0,
(4.6)

p∑
i=1

τi = 1, μ(t)≥ 0. (4.7)

Theorem 4.3 (weak duality). Let (x,u) be feasible for (P1) and (x∗,u∗,μ,v,τ) be feasible

for (D1). If
∫ b
a [τT f − vTg − λTh− μTk]dt is pseudoinvex with respect to η and ξ, then the

following cannot hold:

∫ b
a

[
f i
(
t,x, ẋ,u, u̇

)− vTg(t,x, ẋ,u, u̇
)]
dt

≤
∫ b
a

[
f i
(
t,x∗, ẋ∗,u∗, u̇∗

)− vTg(t,x∗, ẋ∗,u∗, u̇∗
)− λTh(t,x∗ẋ∗,u∗, u̇∗

)

−μTk(t,x∗, ẋ∗,u∗, u̇∗
)]
dt, ∀i∈ {1,2, . . . , p},

∫ b
a

[
f i
(
t,x, ẋ,u, u̇

)− vTg(t,x, ẋ,u, u̇
)]
dt

<
∫ b
a

[
f i
(
t,x∗, ẋ∗,u∗, u̇∗

)− vTg(t,x∗, ẋ∗,u∗, u̇∗
)− λTh(t,x∗, ẋ∗,u∗, u̇∗

)

−μTki(t,x∗, ẋ∗,u∗, u̇∗
)]
dt, for at least one j ∈ {1,2, . . . , p}.

(4.8)

Proof. Let (x,u) be feasible for (P1) and (x∗,u∗,μ,v,τ) feasible for (D1). For simplifica-
tion, denote Z1 = (t,x(t),x∗(t), ẋ(t), ẋ∗,u(t),u∗(t)),

∫ b
a

{
η(Z1)τT fx

(
t,x∗(t), ẋ∗(t),u(t), u̇∗(t)

)
+
d

dt
η(Z1)

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

+ ξ(Z1)τT fu
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

+η(Z1)
[− vTgx(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

+
d

dt
η(Z1)

[− vTgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)]
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+ ξ(Z1)
(
− vTgu

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

))

+η(Z1)
(
− λT(t)hx

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

))

+
d

dt
η(Z1)

[
− λT(t)hẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

+ ξ(Z1)
[
− λT(t)hu(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

+η(Z1)
[
−μT(t)kx

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

+
d

dt
η(Z1)

[
−μT(t)kẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]

+ ξ(Z1)
[
−μT(t)ku

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]}
dt

=
∫ b
a
η(Z1)

{
τT fx

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vTgx(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hx
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)kx
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)}
dt

+
∫ b
a

d

dt
η(Z1)

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)−vTgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)kẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]
dt

+
∫ b
a
ξ(Z1)

[
τT fu

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vTgu(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hu
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)ku
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]
dt

=
∫ b
a
η(Z1)

d

dt

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vTgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)kẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t))
]
dt

+
∫ b
a

dη

dt

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)kẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]
dt,

(
by (4.5) and (4.6)

)

= η
[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)−μT(t)kẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]∣∣∣b
a

−
∫ b
a

dη

dt

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)
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− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)kẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]
dt

+
∫ b
a

dη

dt

[
τT fẋ

(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)− vgẋ(t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)
)

− λT(t)hẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)

−μT(t)kẋ
(
t,x∗(t), ẋ∗(t),u∗(t), u̇∗(t)

)]
dt = 0.

(4.9)

(By integration by parts and since (η(t,x∗,x∗, ẋ∗, ẋ∗,u,u∗)= 0.)

So by pseudoinvexity of
∫ b
a [τT f − vTg − λTh−μTk]dt, we have

∫ b
a

[
τT f

(
t,x, ẋ,u, u̇

)− vTg(t,x, ẋ,u, u̇
)− λT(t)h

(
t,x, ẋ,u, u̇

)−μT(t)k(t,x, ẋ,u, u̇)
]
dt

≥
∫ b
a

[
τT f

(
t,x∗, ẋ∗,u∗, u̇∗

)− vTg(t,x∗, ẋ∗,u∗, u̇∗
)− λT(t)h

(
t,x∗, ẋ∗,u∗, u̇∗

)

−μT(t)k
(
t,x∗, ẋ∗,u∗, u̇∗

)]
dt,

(4.10)

but
∫ b
a −μT(t)k(t, ẋ,u, u̇)≤ 0, hence

∫ b
a

[
τT f

(
t,x, ẋ,u, u̇

)− vTg(t,x, ẋ,u, u̇
)]
dt

≥
∫ b
a

[
τT f

(
t,x∗, ẋ∗,u∗, u̇∗

)− vTg(t,x∗, ẋ∗,u∗, u̇∗
)− λT(t)h

(
t,x∗, ẋ∗,u∗, u̇∗

)

−μT(t)k
(
t,x∗, ẋ∗,u∗, u̇∗

)]
dt.

(4.11)

Hence the following cannot hold:

∫ b
a

[
f i(t,x, ẋ,u, u̇)− vTg(t,x, ẋ,u, u̇

)]
dt

≤
∫ b
a

[
f i(t,x∗, ẋ∗,u∗, u̇∗)− vTg(t,x∗, ẋ∗,u∗, u̇∗

)− λTh(t,x∗ẋ∗,u∗, u̇∗
)

−μTki(t,x∗, ẋ∗,u∗, u̇∗
)]
dt, ∀i∈ {1,2, . . . , p},

∫ b
a

[
f i
(
t,x, ẋ,u, u̇

)− vTg(t,x, ẋ,u, u̇
)]
dt

<
∫ b
a

[
f i
(
t,x∗, ẋ∗,u∗, u̇∗

)− vTg(t,x∗, ẋ∗,u∗, u̇∗
)− λTh(t,x∗ẋ∗,u∗, u̇∗

)

−μTki(t,x∗, ẋ∗,u∗, u̇∗
)]
dt, for at least one j ∈ {1,2, . . . , p}.

(4.12)

�
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Once weak duality has been established, strong and converse dualities follow. For com-
pleteness, we state the results for strong and converse dualities. We assume that the nec-
essary constraints for the existence of multipliers at an extreme value of (P1) are satisfied.
Thus for every efficient (x∗,u∗) to (P1), there exists a piecewise smooth λ0 : I →Rm, such
that

F = λT0 f
(
t,x(t), ẋ(t),u(t), u̇(t)

)− vTg(t,x(t), ẋ(t),u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),u(t), u̇(t)
)−μTk(t,x(t), ẋ(t),u(t), u̇(t)

) (4.13)

satisfies

Fx = d

dt
Fẋ, Fu = 0,

μTk = 0, μ(t)≥ 0.

(4.14)

It is assumed from now on that the minimizing solution (x∗,u∗) of (P) is normal, that is,
λ0 is nonzero, so that without loss of generality, we can take λ0 = 1.

Theorem 4.4 (strong duality). Under the pseudoinvexity and the condition of Theorem 4.3,
if (x∗,u∗) is an efficient solution for (P1), then there exists a piecewise smooth λ (t): I → Rn,
such that (x∗(t),u∗(t),λ(t),μ(t),v) is an efficient solution of (D1) and the extreme values of
(P1) and (D1) are equal.

Proof. Very similar to that of Theorem 3.2.
For the the converse duality theorem (Theorem 4.5), we make the assumption as be-

fore (see Theorem 3.3), that is, X2 denotes the space of piecewise twice differentiable
functions x : I →Rn for which x(a)= x(b)= 0 is equipped with the norm ‖x‖ = ‖x‖∞ +
‖Dx‖∞ +‖D2x‖∞, andU2 denotes the space of u : I →Rm with norm ‖u‖ = ‖ ·‖∞, defin-
ing (D = d/dt) as before. The problem (D1) may be rewritten in the following form.

Minimize −φ(x,u,λ,μ
)= (−φ1(x,u,λ,μ),−φ2(x,u,λ,μ

)
, . . . ,−φp(x,u,λ,μ

))
(4.15)

subject to

x(a)= α, x(b)= β,

Θ
(
t,x, ẋ, ẍ,λ,μ,u, u̇

)= 0, t ∈ I ,
μ(t)≥ 0, t ∈ I ,

(4.16)

where

φi(x,u,λ,μ)=
∫ b
a

[
f i
(
t,x(t), ẋ(t),λ,μ,u(t), u̇(t)

)− vTg(t,x(t), ẋ(t),λ,μ,u(t), u̇(t)
)

− λTh(t,x(t), ẋ(t),λ,μ,u(t), u̇(t)
)

−μT(t)k
(
t,x(t), ẋ(t),λ,μ,u(t), u̇(t)

)]
dt, i= 1,2, . . . , p,

Θ≡Θ
(
t,x(t), ẋ(t), ẍ(t),λ,μ,u(t), u̇(t)

)
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=
[
τT fx

(
t,x(t), ẋ(t),u(t), u̇(t)

)− vTgx(t,x(t), ẋ(t),u(t), u̇(t)
)

− λT(t)hx
(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTkx(t,x(t), ẋ(t),u(t), u̇(t)
)]

=D
[
τT fẋ

(
t,x(t), ẋ(t),u(t), u̇(t)

)− vTgẋ(t,x(t), ẋ(t),u(t), u̇(t)
)

− λT(t)hẋ
(
t,x(t), ẋ(t),u(t), u̇(t)

)−μTkẋ(t,x(t), ẋ(t),u(t), u̇(t)
)]

(4.17)

with t ∈ I and ẍ =D2x(t). �

Now, following Bector and Husain [2] and analogously for the control case, we are in
a position to deal with the converse duality.

Theorem 4.5 (converse duality). If (x∗,u∗,λ,μ,v) is an efficient solution of (D1), and if
(i) ψ′ has a (weak∗) closed range;

(ii) f , g and h are twice continuously differentiable;

(iii) { ∫ ba ( f ix − viTgix)−D( f iẋ − viTgxi)dt, i= 1,2, . . . ,p, is linearly independent; and
(iv) (β(t)TΘx −Dβ(t)TΘẋ +D2β(t)TΘẋ)β(t)= 0⇒ β(t)= 0, t ∈ I ,

then (x∗,u∗) is an efficient solution of (P1), and the objective values of (P1) and (D1) are
equal.

Proof. Very similar to that of Theorem 3.3. �
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