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1. Introduction

It is well known that classical stochastic volatility models, where the volatility is allowed to be
a diffusion process, are able to capture the dependence of the implied volatility as a function
of the strike (the smile or the skew). Nevertheless, they can not explain its dependence with
respect to time to maturity (term structure). For example, empirical observations indicate that
the at-the-money skew slope is approximately O((T − t)−1/2) (here T − t denotes the time to
maturity), while the rate for these stochastic volatility models is O(1) (e.g., Lewis [1], Lee
[2], or Medvedev and Scaillet [3]). The introduction of jumps in the asset price dynamics is
a natural extension of classical stochastic volatility models proposed with the aim to capture
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this short-time behavior. Although the rate of the skew slope for models with jumps is still
O(1) (see Medvedev and Scaillet [3]), they allow flexible modelling, and generate skews and
smiles similar to those observed empirically (see Bates [4], Barndorff-Nielsen and Shephard
[5, 6], or Carr and Wu [7]).

In Alòs et al. [8], the authors considered general jump-diffusion stochastic volatility
models where the volatility is not necessarily a diffusion. They proved that for a volatility
process independent of price jumps (as in the Bates [4] case) the at-the-money skew slope
explodes if and only if the Malliavin derivative of the volatility process Dsσt also does when
s ↑ t. This allows us to consider new models—where the volatility is not required to be
Markovian nor to be a diffusion process—that capture the short-time explosion of skew
slopes. The basic idea in that work was to expand option prices around the classical Hull and
White expression by means of Malliavin calculus, following similar ideas as in Alòs [9]. This
gives us a decomposition of option prices that allows us to identify the effect of correlation
(between the volatility and the Brownian motion driving stock prices) and the effect of jumps
in the at-the-money skew slope when time to maturity tends to zero. This can be interpreted
as an answer of a demand in Fouque et al. [10, end of page 54].

In this paper, we study jump-diffusion stochastic volatility models allowing the
volatility process to be correlated also with the price jumps (see Bakshi et al. [11] and Duffie
et al. [12], among others). Our main goal in this work is to describe analytically the effect of
this extension in the at-the-money short-time behavior of the stochastic volatility. The idea
will be again to decompose option prices around the Hull and White term, now by using
Malliavin calculus for Lévy processes (see Solé et al. [13], Løkka [14] and Petrou [15]). In
comparison with the formula obtained in Alòs et al. [8], here we obtain an extra term because
the volatility depends now on the jump price. This representation allows us to show that the
existence of correlation between the volatility process and the price jumps does not have any
influence on the at-the-money skew of the implied volatility as time runs to expiry, confirming
an heuristic idea explained in Gatheral [16, page 70].

The paper is organized as follows. In Section 2, we give the main hypotheses and
notations. Section 3 is devoted to introduce the Malliavin calculus framework needed in the
remaining of the paper. In Section 4, we obtain the Hull and White formula. In Section 5,
we apply it to the problem of describing the at-the-money short time skew of the implied
volatility. Finally, Section 6 is devoted to the conclusions.

2. Main hypotheses and notations

We consider a log-price process, under the market chosen risk-neutral probability measure,
given by

Xt = x + (r − λk)t − 1
2

∫ t

0
σ2
sds +

∫ t

0
σs
(
ρdWs +

√
1 − ρ2dBs

)
+ Zt, (2.1)

where, t ∈ [0, T], x is the current log-price, r is the instantaneous interest rate, W and B are
independent standard Brownian motions, ρ ∈ [−1, 1], and Z is a compound Poisson process,
independent ofW and B, with intensity λ, finite Lévy measure ν, and with k := (1/λ)

∫
R
(ey −

1)ν(dy).
We assume that the process σ is adapted to the filtration generated byW and Z. So, in

this paper, generalizing Alòs et al. [8], we allow the volatility to have nonpredictable jump
times as advocated by Bakshi et al. [11] and Duffie et al. [12], among others.
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In the following, we denote by FW,FB, and FZ the filtrations generated by the
independent processesW,B, and Z, respectively. Moreover, we define F := FW ∨ FB ∨ FZ.

It is well known that if we price a European call with strike price K by the formula

Vt = e−r(T−t)E
[(
eXT −K)

+ | Ft

]
, (2.2)

where E denotes the expectation with respect to a risk-neutral measure, there is no arbitrage
opportunity. Thus Vt is a possible price for this derivative.

In the sequel, we use the following notation:

(i) The process vt := (Yt/(T − t))1/2, with Yt :=
∫T
t σ

2
sds, denotes the future average

volatility.

(ii) With BS(t, x, σ) we represent the classical Black-Scholes function with constant
volatility σ, current log stock price x, time to maturity T − t, strike price K, and
interest rate r. This function can be written as

BS(t, x, σ) = exΦ

(
x − x∗

t

σ
√
T − t

+
σ

2

√
T − t

)
− ex∗tΦ

(
x − x∗

t

σ
√
T − t

− σ

2

√
T − t

)
, (2.3)

where x∗
t = logK − r(T − t) is the future log-price at t and Φ is the cumulative

probability function of the standard normal law.

(iii) With N we denote the Poisson random measure on [0, T] × R such that Zt =∫
[0,t]×R

xN(ds, dx).Moreover, Ñ(ds, dx) :=N(ds, dx)−dsν(dx) is the compensated
Poisson random measure.

(iv) We consider the operator LBS(σ) := ∂t + (1/2)σ2∂2xx + (r − (1/2)σ2)∂x − r which
satisfies LBS(σ)BS(·, ·, σ) = 0.

3. Required tools of Malliavin calculus for Lévy processes

3.1. Introduction

In this section, we introduce the tools of Malliavin calculus for Lévy processes that we need
in the rest of the paper.

Consider a complete probability space (Ω,F,P) and let L = {Lt, t ∈ [0, T]} be a càdlàg
Lévy process with triplet (γ, σ, ν). See for example the book of Sato [17] for a general theory
of Lévy processes.

It is well known that L can be represented as

Lt = γt + σWt +
∫∫

(0,t]×{|x|>1}
xN(ds, dx) + lim

ε↓0

∫∫
(0,t]×{ε<|x|≤1}

xÑ(ds, dx), (3.1)

where W is a Brownian motion and N is the Poisson random measure associated to ν. It is
also known that FL = FW ∨ FN. See for example, Solé et al. [13].

In general, the construction of a Malliavin calculus, based on a chaos expansion, for
a certain process follows three main steps. First of all, to prove a chaotic representation
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property, secondly, to define formally the gradient and divergence operators, and finally, to
give their probabilistic interpretations.

In the last years, several approaches to the Malliavin calculus for Lévy processes have
been developed, with different probabilistic interpretations of gradient operators. Between
them, we mention the approach of Nualart and Schoutens [18], the approach of Solé et al.
[13], based on Itô [19], and the approach of Løkka [14] and Petrou [15]. In this paper,
we follow the last one, because in it, the form of the gradient operator simplifies strongly
our computations. As a tool for our results we develop in Sections 3.3 and 3.4 two transfer
formulas between the second and the third methods. Finally, let us remark that we are under
the conditions of Løkka’s approach because our Lévy measure ν is finite.

3.2. The chaotic representation property

Consider the space [0, T] × R with its Borel family of sets B([0, T] × R).We can introduce the
centered independent random measure given by

M(E) := σ
∫
E(0)

dWt +
∫∫

E′
Ñ(dt, dx), E ∈ B([0, T] × R

)
, (3.2)

where E(0) := {t ∈ [0, T] : (t, 0) ∈ E} and E′ := E − E(0) × {0}. Its variance is given by

μ(E) = σ2
∫
E(0)

dt +
∫∫

E′
dt ν(dx). (3.3)

Note that W can be seen as a centered independent Gaussian random measure on
[0, T], and Ñ(ds, dx) can be seen as a centered independent random measure on [0, T] × R0

where R0 = R − {0}. Thus we can write

M(ds, dx) = σ(W ⊗ δ0)(ds, dx) + Ñ(ds, dx), (3.4)

where δ0 is the Dirac’s delta, that is, a unitary mass on the point {0}.
In this context, we can define stochastic multiple integrals In with respect to M with

kernels in the Hilbert spaces

L
2
n := L2(([0, T] × R

)n
, B([0, T] × R

)n
, μ⊗n), (3.5)

in the usual way, and to prove that if {FX
t , t ∈ [0, T]} is the completed natural filtration of X,

for any random variable F ∈ L2(Ω,FX
T ,P) we have the chaotic representation

F =
∞∑
n=0

In
(
fn
)
, (3.6)

where the kernels are unique if we take them symmetric.
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3.3. The Malliavin-type derivative

Let us denote by D
1,2 the set of random variables in L2(Ω), of the form (3.6), such that∑∞

n=1nn!‖fn‖2L2
n
< ∞. The Malliavin derivative DMF of a random variable F ∈ D

1,2 is the

process {DM
t,xF, (t, x) ∈ [0, T] × R} defined by DM

t,xF :=
∑∞

n=1nIn−1(fn((t, x), ·)).
In order to give the probabilistic interpretation of this operator, we assume, in the

remaining, as in Solé et al. [13], that the underlying probability space is the canonical Lévy
space (ΩW × ΩN,FW ⊗ FN,PW ⊗ P

N). That is, (ΩW,FW,PW) is the canonical Wiener space
and (ΩN,FN,PN) is the canonical Lévy space of the compound Poisson process with Lévy
measure ν.Moreover, we assume thatW and Z are the canonical processes.

Let ω = (ωW,ωN) be an element of this space. So, ωW is a continuous trajectory null
at the origin and ωN is a sequence of (jump instant, jump size) pairs

ωN := ((t1, x1), (t2, x2), (t3, x3), . . .). (3.7)

From Petrou [15], we have

DM
t,0 =

1
σ
DW
t 1{σ>0}, (3.8)

whereDW
t denotes the classical Malliavin derivative with respect to the Brownian motionW

(e.g., Nualart [20]). Denote by D
W its domain.

In order to obtain the probabilistic interpretation of DM
t,x for x /= 0, we consider the

following transformation.
Given (t, x) ∈ [0, T] × R0, we can add to any ωN a jump of size x at instant t, denote

the new element

ωN
t,x := ((t, x), (t1, x1), (t2, x2), . . .), (3.9)

and write ωt,x := (ωW,ωN
t,x). So, for any (t, x) ∈ [0, T]×R0, we can define the operator Tt,xF :=

F(ωt,x). As it is shown in Solé et al. [13, Proposition 4.8] this is a well-defined operator.
For all F ∈ D

1,2, define

DN
t,xF = Tt,xF − F, x /= 0, (3.10)

and denote by D
N its domain.

This operator is related to DM. Indeed, in Solé et al. [13] is considered the random
measure

M(E) := σ
∫
E(0)

dWt +
∫∫

E′
xdÑ(t, x), E ∈ B([0, T] × R

)
. (3.11)

Observe that

M(E) = I1(h(x)1E(t, x)), (3.12)
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where

h(x) := x1{x /= 0} + 1{x=0}. (3.13)

Therefore, we obtain the transfer principle

DM
t,xF = h(x)DM

t,xF, (3.14)

for F ∈ D
1,2 and (t, x) ∈ [0, T] × R. Here DM is the annihilation operator used in Solé et al.

[13].
Thus, combining results from Solé et al. [13] and Alòs et al. [21] it is easy to show that

for F ∈ L2(Ω),

DNF ∈ L2([0, T] × R0, μ
)
, F ∈ D

W ⇐⇒ F ∈ D
1,2, (3.15)

and in this case DM
t,xF = DN

t,xF, x /= 0.
Observe that we have proved

DM
t,x = 1{σ>0}1{0}(x)

1
σ
DW
t + 1R0(x)D

N
t,x, (3.16)

which follows from (3.8) and (3.10).
Observe also that it is immediate from (3.10), to see that

DN
t,x(FG) = FD

N
t,xG +GDN

t,xF +DN
t,xFD

N
t,xG. (3.17)

Finally, we have D
1,2 = D

W ∩ D
N , due to Solé et al. [13, Section 2] and the equalities

(3.12) and (3.14).

3.4. The Skorohod-type integral

Let u ∈ L2(Ω × [0, T] × R,P ⊗ μ). For almost all (t, x) we have the chaotic decomposition (see
Section 3.2)

ut,x =
∞∑
n=0

In(fn(t, x, ·)), (3.18)

where fn ∈ L
2
n+1 is symmetric in the n last variables.

Let f̂n be the symmetrization in all n + 1 variables. Then, we define the Skorohod
integral of u by

δ(u) =
∞∑
n=0

In+1
(
f̂n
)
, (3.19)
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in L2(Ω), provided u ∈ Dom δM, that means

∞∑
n=0

(n + 1)!
∥∥f̂n∥∥2

L2
n+1
<∞. (3.20)

Moreover, if F ∈ D
1,2 and u ∈ Dom δM we have the duality relation

E
(
FδM(u)

)
= E

∫T

0

∫
R

u(t, x)DM
t,xFμ(dt, dx). (3.21)

So, in this sense, δM is the dual of the operator DM. Sometimes we will write δt(u)
instead of δ(u1[0,t]).

Note, also, that the transfer principle (3.14) allows us to establish a transfer principle
between δM and the divergence operator δM given in Solé et al. [13]. Namely,

δM(u) = δM
(
u

h

)
, u ∈ Dom δM. (3.22)

The following lemma is useful for our purposes. A version of this lemma in the pure
jump case is given in Di Nunno et al. [22, Theorem 3.13].

Lemma 3.1. Let F ∈ D
1,2 and u ∈ Dom δM such that u · (F+DMF ·1R0) ∈ L2(Ω×[0, T]×R, P⊗μ).

Then,

u · (F +DMF ·1R0) ∈ Dom δM ⇐⇒ FδM(u) −
∫
[0,T]×R

u(t, x)DM
t,xFμ(dt, dx) ∈ L2(Ω), (3.23)

and in this case

δM(u ·F) = FδM(u) − δM(
u ·DMF ·1R0

) −
∫
[0,T]×R

u(t, x)DM
t,xFμ(dt, dx). (3.24)

Proof. This result follows using relations (3.16) and (3.21); Alòs et al. [21, Lemma 2.4 and
Proposition 2.5] and the transfer formulas (3.14) and (3.22). Note that, in our case, F does not
need to be bounded. This is a consequence of the fact that if G is a bounded random variable
of L2(ΩN) and ν is finite, we have that G ∈ D

N and DNG is also bounded.

In order to give the relation between δM and the pathwise integral with respect toN,
we consider the following two sets.

Definition 3.2. We define L
1,2 := L2([0, T] × R;D1,2).

Observe that if u = {u(s, y) : (s, y) ∈ [0, T] × R} is a random field of L
1,2 we have,

in particular, that u and DMu are in L2(P ⊗ μ) and L2(P ⊗ μ ⊗ μ), respectively. Moreover
L
1,2 ⊆ Dom δM.
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Definition 3.3. We define L
1,2
− as the subset of L

1,2 of random fields u such that the following
P ⊗ μ -a.s. left-limits exist and belong to L2(P ⊗ μ)

u−(s, y) = lim
r↑s,x↑y

u(r, x),

D−u(s, y) = lim
r↑s,x↑y

DM
s,yu(r, x).

(3.25)

Proposition 3.4. Assume that u is a random field belonging to L
1,2
− . Assume

∫T

0

∫
R0

|u−(s, x)|N(ds, dx) ∈ L2(Ω), (3.26)

where
∫T
0

∫
R0
u(s, x)N(ds, dx) is the classical path-by-path integral defined by

∑
ΔZt /= 0u(t,ΔZt).

Then, T−u := u− +D−u ∈ Dom δM, and in this case,

δM((u− +D−u) ·1R0) =
∫T

0

∫
R0

u−(s, x)Ñ(ds, dx) −
∫T

0

∫
R0

D−u(s, x)ν(dx)ds, (3.27)

or equivalently,

δM
(
T−u · 1R0

)
=
∫T

0

∫
R0

u−(s, x)N(ds, dx) −
∫T

0

∫
R0

T−u(s, x)ν(dx)ds. (3.28)

Proof. Assume as a first step that u ∈ L
1,2
− is bounded. Then, DMu, u− and D−u are also

bounded on R0. In particular (3.26) is true.
We begin considering the following partition of [0,∞) × R :

0 = s0 < s1 < · · · < sn <∞ = sn+1,

−∞ = x0 < x1 < · · · < xm <∞ = xm+1.
(3.29)

Then, we can define

un,m(s, x) =
n∑
i=0

m∑
j=0

u(si, xj)1(si,si+1](s)1(xj ,xj+1](x). (3.30)
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Using Lemma 3.1, we have that for all n andm

δM
(
un,m ·1R0

)
+ δM

(
Dun,m ·1R0

)

=
n∑
i=0

m∑
j=0

u(si, xj)δM
(
1(si,si+1]1(xj ,xj+1]1R0

)

−
n∑
i=0

m∑
j=0

∫T

0

∫
R0

1(si,si+1](s)1(xj ,xj+1](x)D
M
s,xu(si, xj)ν(dx)ds.

(3.31)

First of all, observe that if r, s ∈ ]si, si+1] and x, y ∈ ]xj , xj+1], then (DM
s,yu

n,m)(r, x) =
u(si, xj , ωs,y)−un,m(r, x) and (DM

s,yu)(r, x) = u(r, x,ωs,y)−u(r, x) almost surely go to the same
limit whatever n andm go to infinity or r ↑ s and x ↑ y. By the theorem hypothesis this limit
is D−u.

Observe now that being u bounded, and having un,m the same bound, D−u and u−

are also L2-limits. So, using that δM is a closed operator, the left-hand side in (3.31) goes to
δM((u− +D−u) · 1R0) in L

2 if we prove that the terms on the right-hand side converge in L2 to
the limits defined by the proposition.

For the first term in the right-hand side, observe that δM coincides with the path-
by-path integral because the integrand is deterministic. Then, using u is bounded and the
dominated convergence theorem we obtain the expected L2-limit. For the second term, we
have also a direct application of dominated convergence theorem.

In order to prove the nonbounded case observe that we can assume that u is positive,
because the formula that we want to prove is linear. Then, for the general case, we simply
have to apply the result separately to the positive and negative parts.

So, let u ≥ 0 and uK = u∧K. Of course, uK ≤ u and uK converges increasingly to u.We
have, as a consequence of the first step, that

δM
(
(T−uK) ·1R0

)
=
∫T

0

∫
R0

u−K(s, x)N(ds, dx) −
∫T

0

∫
R0

T−uK(s, x)ν(dx)ds. (3.32)

Being u− and T−u in L2, we have that u−K and T−uK go up to u− and T−u in L2,
respectively. So, hypothesis (3.26), the monotone convergence theorem and the closeness of
the operator δM yield the result.

Remark 3.5. Notice from the proof of Proposition 3.4 that we can change the space L
1,2
− by a

similar space with left limits with respect to the time variable s but with right limits with
respect the space variable y.

Remark 3.6. Observe that T−u = u− when u is adapted to the filtration generated by N.
Therefore, in such case

∫ t

0

∫
R0

u−(s, y)Ñ(ds, dy) = δM
(
u−(·, ·)1[0,t]×R0(·, ·)

)
. (3.33)

That is, in this case, the pathwise and Skorohod integrals with respect to Ñ are the same.
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Observe that in the last two results there is no contribution of W because on R0 the
operator δM coincides with the Skorohod-type integral with respect to Ñ, as the following
result shows.

Lemma 3.7. Let δW and δN be the adjoint operators ofDW andDN , respectively, and u ∈ Dom δM.
Then u also belongs to Dom δW ∩Dom δN and

δM(u) = σδW(u·,0) + δN
(
u1R0

)
. (3.34)

Proof. This result is implied by (3.21) and (3.16).

3.5. The anticipating Itô’s formula

The basic tool for our results is the following anticipative Itô formula. Recall that the process
X is introduced in (2.1) and Y is the future average volatility, which is an anticipative process,
even σ is adapted.

Theorem 3.8. Let σ2 ∈ L
1,2 and F : [0, T]×R×[0,∞) → R be a bounded function in C1,2,2([0, T]×

R × [0,∞)) with bounded derivatives. Then,

F(t, Xt, Yt) − F(0, X0, Y0) =
∫ t

0
∂sF(s,Xs, Ys)ds +

∫ t

0
∂xF(s,Xs, Ys)

(
r − σ2

s

2
− λk

)
ds

+ δW,B
t (∂xF(·, X., Y.)σ.) −

∫ t

0
∂yF(s,Xs, Ys)σ2

sds

+ ρ
∫ t

0
∂2xyF(s,Xs, Ys)Λsds +

1
2

∫ t

0
∂2xxF(s,Xs, Ys)σ2

sds

+ δNt
(
T−u ·1R0

)
+
∫ t

0

∫
R0

T−u(s, x)ν(dx)ds,

(3.35)

where δW,B is the Skorohod integral with respect to the Brownian motion ρWs +
√
1 − ρ2Bs, Λs :=

(
∫T
sD

W
s σ

2
r dr)σs and u(s, x) := F(s,Xs− + x, Ys) − F(s,Xs−, Ys).

Proof. The proof is as in Alòs et al. [8] combined by Proposition 3.4 to treat the sum of jump
terms.

We apply it to the random field u(s, x) = F(s,Xs− + x, Ys) − F(s,Xs−, Ys). Here, the
independence betweenZ,B, andW , the fact that Y is a continuous process and the fact thatZ
is a compound Poisson process with a finite number of jumps on every compact time interval
play a key role.

Indeed, let Ti denote these jump instants. Then,

F
(
Ti+1, XTi+1 , YTi+1

) − F(Ti, XTi , YTi
)

=
∫T−

i+1

Ti

dF(s,Xs, Ys) + F
(
Ti+1, XTi+1 , YTi+1

) − F(Ti+1, XT−
i+1
, YTi+1

)
.

(3.36)
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The first term yields a standard Itô formula concerning continuous process, so Alòs
et al. [8] results apply and we get the six first terms in the right-hand side of the Theorem 3.8
formula. On other hand, the sum of second terms is the path by path integral

∫ t

0

∫
R0

u(s, x)N(ds, dx). (3.37)

Note here that F,X−, Y are left continuous so u = u−. Then, using Proposition 3.4 we get the
last sum is equal to:

δNt (T−u) +
∫ t

0

∫
R0

T−u(s, x)ν(dx)ds. (3.38)

4. The Hull and White formula

Now we have the following extension of the Hull and White formula.

Theorem 4.1. Let σ and X be as in Theorem 3.8. Then,

Vt = E(BS(t, Xt, vt) | Ft) +
ρ

2
E

(∫T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds | Ft

)

+ E

(∫T

t

∫
R0

e−r(s−t)(T−BS(s,Xs− + y, vs) − T−BS(s,Xs−, vs)ds ν(dy) | Ft

)

− λkE
(∫T

t

e−r(s−t)∂xBS(s,Xs, vs)ds | Ft

)
,

(4.1)

where G = (∂2xx − ∂x)BS.

Remark 4.2. Note that in the case that σ only depends on the filtration generated by W, we
have T− = Id. Consequently, in this case, we obtain the Hull andWhite formula given in Alòs
et al. [8].

Proof. This proof is similar to the one of the Theorem 4.2. in Alòs et al. [8]. Notice that
BS(T,XT , vT ) = VT . Then, from (2.2) we have

e−rtVt = E(e−rTBS(T,XT , vT ) | Ft). (4.2)

Now, our idea is to apply the Itô formula (Theorem 3.8) to the process e−rtBS(t, Xt, vt).
As the derivatives of BS(t, x, σ) are not bounded we use an approximating argument,
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changing vt by

vεt :=

√
1

T − t (Yt + ε), (4.3)

and BS(t, x, σ) by BSn(t, x, σ) := BS(t, x, σ)ψn(x), where ψn(Xt) := φ((1/n)x), for some φ ∈ C2
b

such that φ(x) = 1 for all x < 1 and φ(x) = 0 for all x > 2.Now, applying Theorem 3.8 between
t and T to function

F : (t, x, y) �−→ e−rtBSn

(
t, x,

√
y + ε
T − t

)
, (4.4)

and grouping terms according to the type of derivative we obtain

e−rTBSn
(
T,XT , v

ε
T

)

= e−rtBSn
(
t, Xt, v

ε
t

)
+
∫T

t

e−rsLBS(σs)BSn
(
s,Xs, v

ε
s

)
ds

− 1
2

∫T

t

e−rs∂σBSn
(
s,Xs, v

ε
s

)(σ2
s − (vεs)

2)
vεs(T − s) ds − λk

∫T

t

e−rs∂xBSn
(
s,Xs, v

ε
s

)
ds

+ δW,B(e−rs∂xBSn(s,Xs, v
ε
s

)
σs1(t,T](s)

)
+
ρ

2

∫T

t

e−rs∂2σxBSn
(
s,Xs, v

ε
s

) 1
vεs(T − s)Λsds

+ δNt
(
e−rs

(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

)))

+
∫T

t

∫
R0

e−rs
(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

))
ds ν(dy).

(4.5)

Notice that LBS(σs)BSn(s,Xs, v
ε
s) = (LBS(σs)BS(s,Xs, v

ε
s))ψn(Xs) +An(s),where

An(s) =
1
2
σ2
s

[
2∂xBS

(
s,Xs, v

ε
s

)
ψ

′
n(Xs) + BS

(
s,Xs, v

ε
s

)
(ψ

′′
n(Xs) − ψ ′

n(Xs))
]

+ rBS
(
s,Xs, v

ε
s

)
ψ

′
n(Xs).

(4.6)

Also note that the classical relation between the Gamma, the Vega, and the Delta gives
us that

∂σBS(s, x, σ)
1

σ(T − s) =
(
∂2xx − ∂x

)
BS(s, x, σ). (4.7)
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Then we can write

e−rTBSn
(
T,XT , v

ε
T

)

= e−rtBSn
(
t, Xt, v

ε
t

)
+
∫T

t

e−rs
[
(LBS(σs)BS)

(
s,Xs, v

ε
s

)
ψn(Xs) +An(s)

]
ds

− 1
2

∫T

t

e−rs
(
∂2xx − ∂x

)
BS

(
s,Xs, v

ε
s

)
ψn(Xs)

(
σ2
s −

(
vεs
)2)

ds

− λk
∫T

t

e−rs∂xBSn
(
s,Xs, v

ε
s

)
ds + δW,B(e−rs∂xBSn(s,Xs, v

ε
s

)
σs1(t,T](s)

)

+
ρ

2

∫T

t

e−rs
[(
∂x

(
∂2xx − ∂x

)
BS

)(
s,Xs, v

ε
s

)
ψn(Xs) +

(
∂2xx − ∂x

)
BS

(
s,Xs, v

ε
s

)
ψ

′
n(Xs)

]
Λsds

+ δNt
(
e−rs

(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

)))

+
∫T

t

∫
R0

e−rs
(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

))
ds ν(dy).

(4.8)

Hence, taking into account thatLBS(σs) = LBS(vεs)+(1/2)(σ
2
s−(vεs)2)(∂2xx−∂x) it follows

that (using the fact that LBS(vεs)BS(s,Xs, v
ε
s) = 0)

e−rTBSn
(
T,XT , v

ε
T

)

= e−rtBSn
(
t, Xt, v

ε
t

)
+
∫T

t

e−rsAn(s)ds

− λk
∫T

t

e−rs∂xBSn
(
s,Xs, v

ε
s

)
ds + δW,B(e−rs∂xBSn(s,Xs, v

ε
s

)
σs1(t,T](s)

)

+
ρ

2

∫T

t

e−rs
[(
∂x

(
∂2xx − ∂x

)
BS

)(
s,Xs, v

ε
s

)
ψn(Xs) +

(
∂2xx − ∂x

)
BS

(
s,Xs, v

ε
s

)
ψ

′
n(Xs)

]
Λsds

+ δNt
(
e−rs

(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

)))

+
∫T

t

∫
R0

e−rs
(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

))
ds ν(dy).

(4.9)

Now, taking conditional expectations we obtain that

E
(
e−rTBSn

(
T,XT , v

ε
T

) | Ft

)

= E

{
e−rtBSn

(
t, Xt, v

ε
t

)
+
∫T

t

e−rsAn(s)ds − λk
∫T

t

e−rs∂xBSn
(
s,Xs, v

ε
s

)
ds
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+
ρ

2

∫T

t

e−rs
[(
∂x

(
∂2xx − ∂x

)
BS

)(
s,Xs, v

ε
s

)
ψn(Xs) +

(
∂2xx − ∂x

)
BS

(
s,Xs, v

ε
s

)
ψ

′
n(Xs)

]
Λsds

+
∫T

t

∫
R0

e−rs
(
T−BSn

(
s,Xs− + y, vεs

) − T−BSn
(
s,Xs−, vεs

))
ds ν(dy) | Ft

}
.

(4.10)

Let us remark that continuity of BSn, vε and left continuity of X− imply that (T−BSn(s,
Xs− + y, vεs) = BSn(s,Xs− + y, T−vε(s, y)).

Finally, we obtain the result proceeding as in the proof of Theorem 3 in Alòs et al. [8].
That is, letting first n ↑ ∞, then ε ↓ 0 and using the dominated convergence theorem.

Remark 4.3. The additional term given by T−BS can be detailed as follows. Suppose that σ2
r =

f(Wu,Zu, u ≤ r). Then we can define

ṽ2
s = lim

t↑s,y↑x
1

T − t
∫T

t

Ts,x
(
σ2
r

)
dr. (4.11)

But for r > s, Ts,x(σ2
r ) = f(Wu,Zu + x1{s≤u}, u ≤ r),

ṽ2
s = lim

t↑s
1

T − t
∫T

t

f(Wu,Zu + x1{s≤u}, u ≤ r)dr = 1
T − s

∫T

s

σ̃2
r dr, (4.12)

where σ̃2
r = f(Wu,Zu + x1{s≤u}, u ≤ r).

For example, consider the following pure volatility jump case described in Álvarez
[23]. See also Espinosa and Vives [24]. For i ≥ 0, let Ti be the jump instants and ΔTiZ be the
jump sizes of process Z, with T0 = 0. Assume that the dynamic of σ is given by

σ2
t =

Nt∑
i=0

σ2
i 1[Ti,Ti+1[(t), (4.13)

with σ2
i = σ2

i−1 + f(ΔTiZ), for a certain function f. In this case, we have σ̃2
r = σ2

r + f(x)1{r≥s}(r)
and so, the explicit computation of ṽs gives ṽ2

s = v
2
s + f(x).

5. Short time behavior of the implied volatility

In this section, we show that the short-time behavior of the at-the-money implied volatility
is the same as in the case where the volatility σ is independent of the filtration of Z, even the
Hull and White formula is different in the last case (see Remark 4.2). This is a fact that must
be taken in account for pricing and hedging.

Let It(Xt) denote the implied volatility process. By definition it satisfies Vt =
BS(t, Xt, It(Xt)). Assume that σ ∈ L

1,2 is as in model (2.1). Proceeding as in Alòs et al. [8],
the derivative of the implied volatility with respect to the log-strike k = log K is

∂It
∂k

(
x∗
t

)
= −E

(∫T
t (∂xF(s,Xs, vs) − (1/2)F(s,Xs, vs))ds | Ft

)
∂σBS

(
t, x∗

t , It
(
x∗
t

))
∣∣∣∣
Xt=x∗t

, a.s., (5.1)
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where

F(s,Xs, vs) :=
ρ

2
e−r(s−t)∂xG(s,Xs, vs)Λs − λke−r(s−t)∂xBS(s,Xs, vs)

+
∫

R

e−r(s−t)
(
BS

(
s,Xs− + y, ṽs

) − BS
(
s,Xs− + y, ṽs

))
ν(dy).

(5.2)

Now, in order to study the limit of (∂It/∂k)(x∗
t ) as T ↓ t we need to introduce the

following hypotheses:

(H1) σ ∈ L
2,4
W = L4([0, T] × R;D2,4

W ).

(H2) There exists a constant α > −(1/2) such that, for all 0 < t < s < r < T,

E
((
DW
s σr

)2 | Ft

) ≤ C(r − s)2α,

E
((
DW
θ D

W
s σr

)2 | Ft

) ≤ C(r − s)2α(r − θ)−2α.
(5.3)

(H3) For every fixed t > 0, sups,r,θ∈[t,T]E((σsσr − σ2
θ
)2 | Ft) → 0 as T → t.

Theorem 5.1. Under the Hypotheses (H1)–(H3) we have

(1) assume that α in (H2) is nonnegative and that there exists aFt-measurable random variable
DW,+
t σt such that, for every t > 0,

sup
s,r∈[t,T]

∣∣E((DW
s σr −DW,+

t σt
) | Ft

)∣∣ −→ 0, (5.4)

a.s. as T → t; then

lim
T→ t

∂It
∂k

(x∗
t ) =

1
σt

(
λk + ρ

DW,+
t σt

2

)
, (5.5)

(2) assume that α in (H2) is negative and that there exists a Ft-measurable random variable
Lα,+t σt such that, for every t > 0,

1

(T − t)2+α
∫T

t

∫T

s

E
(
DW
s σr | Ft

)
dr ds − Lα,+t σt −→ 0, (5.6)

a.s. as T → t; then

lim
T→ t

(T − t)−α ∂It
∂k

(
x∗
t

)
=
ρ

σt
Lα,+t σt. (5.7)
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Proof. We can write

− ∂σBS
(
t, x∗

t , It
(
x∗
t

))∂It
∂k

(
x∗
t

)

=
ρ

2
E

(∫T

t

e−r(s−t)
(
∂x − 1

2

)
∂x

(
∂2xx − ∂x

)
BS(s,Xs, vs)Λsds | Ft

)∣∣∣∣
Xt=x∗t

+ E

(∫T

t

∫
R

e−r(s−t)
(
∂x − 1

2

)[
BS(s,Xs + y, ṽs) − BS(s,Xs, ṽs)

]
ν(dy)ds | Ft

)∣∣∣∣
Xt=x∗t

− λkE
(∫T

t

e−r(s−t)
(
∂x − 1

2

)
∂xBS(s,Xs, vs)ds | Ft

)∣∣∣∣
Xt=x∗t

= T1 + T2 + T3.

(5.8)

The term T2 is O(T − t) due to the fact that the following majoration is uniform on σ

|BS(t, x, σ)| + |∂xBS(t, x, σ)| ≤ 2ex +K. (5.9)

Now the result follows as in Alòs et al. [8, Proposition 6 and Theorem 7].

6. Conclusion

The Malliavin calculus for Lévy processes appears to be a natural tool to deal with the
future average volatility in jump-diffusion models where the volatility is correlated with both
Brownian motion and compound Poisson process driving the stock price process. Proceeding
as in Alòs et al. [8], this powerful calculus allows us to identify the effect of both correlations.
In particular, we have seen that the correlation with the asset price jumps has no effect on the
short-time behavior of the volatility skew.
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[6] O. E. Barndorff-Nielsen and N. Shephard, “Econometric analysis of realized volatility and its use in
estimating stochastic volatility models,” Journal of the Royal Statistical Society. Series B, vol. 64, no. 2,
pp. 253–280, 2002.

[7] P. Carr and L. Wu, “The finite moment log stable process and option pricing,” The Journal of Finance,
vol. 58, no. 2, pp. 753–778, 2003.
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