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Abstract. 
We propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to arbitrary square-integrable claims in incomplete markets. In contrast to previous works based on PDE and BSDE methods, the main merit of our approach is the flexibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff. In particular, the methodology can be applied to multidimensional quadratic hedging-type strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. In order to demonstrate that our methodology is indeed applicable, we provide a Monte Carlo study on generalized Föllmer-Schweizer decompositions, locally risk minimizing, and mean variance hedging strategies for vanilla and path-dependent options written on local volatility and stochastic volatility models.
 


1. Introduction
1.1. Background and Motivation
Let  be a financial market composed by a continuous -semimartingale  which represents a discounted risky asset price process,  is a filtration which encodes the information flow in the market on a finite horizon ,  is a physical probability measure, and  is the set of equivalent local martingale measures. Let  be an -measurable contingent claim describing the net payoff whose trader is faced at time . In order to hedge this claim, the trader has to choose a dynamic portfolio strategy.
Under the assumption of an arbitrage-free market, the classical Galtchouk-Kunita-Watanabe (henceforth abbreviated as GKW) decomposition yields
								
							where  is a -local martingale which is strongly orthogonal to  and  is an adapted process.
The GKW decomposition plays a crucial role in determining optimal hedging strategies in a general Brownian-based market model subject to stochastic volatility . For instance, if  is a one-dimensional Itô risky asset price process which is adapted to the information generated by a two-dimensional Brownian motion , then there exists a two-dimensional adapted process  such that 
								
							which also realizes
								
In the complete market case, there exists a unique  and, in this case, , , is the unique fair price and the hedging replicating strategy is fully described by the process . In a general stochastic volatility framework, there are infinitely many GKW orthogonal decompositions parameterized by the set  and hence one can ask if it is possible to determine the notion of non-self-financing optimal hedging strategies solely based on the quantities (3). This type of question was firstly answered by Föllmer and Sondermann [1] and later on extended by Schweizer [2] and Föllmer and Schweizer [3] through the existence of the so-called Föllmer-Schweizer decomposition which turns out to be equivalent to the existence of locally risk minimizing hedging strategies. The GKW decomposition under the so-called minimal martingale measure constitutes the starting point to get locally risk minimizing strategies provided that one is able to check some square-integrability properties of the components in (1) under the physical measure. See, for example, [4, 5] for details and other references therein. See also, for example, [6], where Fölmer-Schweizer decompositions can be retrieved by solving linear backward stochastic differential equations (BSDEs). Orthogonal decompositions without square-integrability properties can also be defined in terms of the the so-called generalized Föllmer-Schweizer decomposition (see, e.g., [7]).
In contrast to the local risk minimization approach, one can insist on working with self-financing hedging strategies which give rise to the so-called mean variance hedging methodology. In this approach, the spirit is to minimize the expectation of the squared hedging error over all initial endowments  and all suitable admissible strategies :
								
							The nature of the optimization problem (4) suggests to work with the subset . Rheinlander and Schweizer [9], Gourieroux et al. [10], and Schweizer [11] show that if  and , then the optimal quadratic hedging strategy exists and it is given by , where
								
							Here  is computed in terms of ; the so-called variance optimal martingale measure, , realizes
								
							and  is the value option price process under . See also Černý and Kallsen [12] for the general semimartingale case and the works [13–15] for other utility-based hedging strategies based on GKW decompositions.
Concrete representations for the pure hedging strategies  can in principle be obtained by computing cross-quadratic variations  for . For instance, in the classical vanilla case, pure hedging strategies can be computed by means of the Feynman-Kac theorem (see, e.g., [4]). In the path-dependent case, the obtention of concrete computationally efficient representations for  is a rather difficult problem. Feynman-Kac-type arguments for fully path-dependent options mixed with stochastic volatility typically face not-well-posed problems on the whole trading period; highly degenerate PDEs arise in this context as well. Generically speaking, one has to work with non-Markovian versions of the Feynman-Kac theorem in order to get robust dynamic hedging strategies for fully path-dependent options written on stochastic volatility risky asset price processes.
In the mean variance case, the only quantity in (5) not related to GKW decomposition is  which can in principle be expressed in terms of the so-called fundamental representation equations given by Hobson [16] and Biagini et al. [17] in the stochastic volatility case. For instance, Hobson derives closed form expressions for  and also for any type of -optimal measure in the Heston model [18]. Recently, semiexplicit formulas for vanilla options based on general characterizations of the variance-optimal hedge in Černý and Kallsen [12] have been also proposed in the literature which allow for a feasible numerical implementation in affine models. See Kallsen and Vierthauer [19] and Černý and Kallsen [20] for some results in this direction.
A different approach based on linear BSDEs can also be used in order to get useful characterizations for the optimal hedging strategies. In this case, concrete numerical schemes for BSDEs play a key role in applications. In the Markovian case, there are several efficient methods. See, for example, Delong [6] and other references therein. In the non-Markovian case, when the terminal value is allowed to depend on the whole history of a forward diffusion, the difficulty is notorious. One fundamental issue is the implementation of feasible approximations for the “martingale integrand” of BSDEs. To the best of our knowledge, all the existing numerical methods require a priori regularity conditions on the final condition. See, for example, [6, 21–23] and other references therein. Recently, Briand and Labart [24] use Malliavin calculus methods to compute conditional expectations based on Wiener chaos expansions under some regularity conditions. See also the recent results announced by Gobet and Turkedjiev [25, 26] by using regression methods.
1.2. Contribution of the Current Paper
The main contribution of this paper is the obtention of flexible and computationally efficient multidimensional non-Markovian representations for generic option price processes which allow for a concrete computation of the associated GKW decomposition  for -square-integrable payoffs  with . We provide a Monte Carlo methodology able to compute optimal quadratic hedging strategies with respect to general square-integrable claims in a multidimensional Brownian-based market model. In contrast to previous works (see, e.g., [6] and other references therein), the main contribution of this paper is the formulation of a concrete numerical scheme for quadratic hedging (local risk minimization) under full generality, where only square-integrability assumption is imposed. As far as the mean variance hedging is concerned, we are able to compute pure optimal hedging strategies  for arbitrary square-integrable payoffs. Hence, our methodology also applies to this case provided that one is able to compute the fundamental representation equations in Hobson [16] and Biagini et al. [17] which is the case for the classical Heston model.
The starting point of this paper is based on weak approximations developed by Leão and Ohashi [27] for one-dimensional Brownian functionals. They introduced a one-dimensional space-filtration discretization scheme constructed from suitable waiting times which measure the instants when the Brownian motion hits some a priori levels. In the present work, we extend [27] in one direction: we provide a feasible numerical scheme for multidimensional -GKW decompositions under rather weak integrability conditions for a given . In order to apply our methodology for hedging, we analyze the convergence of our approximating hedging strategies to the respective value processes in a Brownian-based incomplete market setup. This allows us to perform quadratic hedging for generic square-integrable payoffs written on stochastic volatility models. The numerical scheme of this work can also be viewed as part of a more general theory concerning a weak version of functional Itô calculus (see [28, 29]) as introduced by Ohashi et al. [30]. We implement the multidimensional weak derivative operators defined in [30] in the pure martingale case to solve hedging problems in generic stochastic volatility models.
In this paper, the multidimensional numerical scheme for martingale representations lies in the exact simulation of an i.i.d sequence of increments of hitting times 
								
							where  for  and  as . The fundamental object which allows us to obtain a numerical scheme for  is the following ratio:
								
							for , where , , and 
								
							for . Here, there are  asset price processes driven by a -dimensional Brownian motion . By approximating the payoff  in terms of functionals of the random walks 
								
							we will take advantage of the discrete structure of the sigma-algebras in (37) to evaluate (8) by standard Monte Carlo methods. The information set contained in  is perfectly implementable by using the algorithm proposed by Burq and Jones [8]. We leave the implementation of simulation-regression method for a further study.
In order to demonstrate that our methodology is indeed applicable, we provide a Monte Carlo study on generalized Föllmer-Schweizer decompositions, locally risk minimizing and mean variance hedging strategies for vanilla and path-dependent options written on local volatility and stochastic volatility models. The numerical experiments suggest that pure hedging strategies based on generalized Föllmer-Schweizer decompositions mitigate very well the cost of hedging of a path-dependent option even if there is no guarantee of the existence of locally risk minimizing strategies. We also compare hedging errors arising from optimal mean variance hedging strategies for one-touch options written on a Heston model with nonzero correlation.
Lastly, we want to emphasize the fact that it is our chief goal is to provide a feasible numerical method which works in full generality. In this case, the price we pay is to work with weak convergence results instead of  or uniform convergence in probability. We leave a more refined analysis on error estimates and rates of convergence under Markovian assumptions to a future research.
The remainder of this paper is structured as follows. In Section 2, we fix the notation and we describe the basic underlying market model. In Section 3, we provide the basic elements of the Monte Carlo methodology proposed in this paper. In Section 4, we formulate dynamic hedging strategies starting from a given GKW decomposition and we translate our results to well-known quadratic hedging strategies. The Monte Carlo algorithm and the numerical study are described in Sections 5 and 6, respectively. The Appendix presents more refined approximations when the martingale representations admit additional hypotheses.
2. Preliminaries
Throughout this paper, we assume that we are in the usual Brownian market model with finite time horizon  equipped with the stochastic basis  generated by a standard -dimensional Brownian motion  starting from . The filtration  is the -augmentation of the natural filtration generated by . For a given -dimensional vector , we denote by  the  diagonal matrix whose th diagonal term is . In this paper, for all unexplained terminology concerning general theory of processes, we refer to Dellacherie and Meyer [31].
In view of stochastic volatility models, let us split  into two multidimensional Brownian motions as follows:  and . In this section, the market consists of  assets : one riskless asset given by 
						
					and a -dimensional vector of risky assets  which satisfies the following stochastic differential equation: 
						
Here, the real-valued interest rate process , the vector of mean rates of return , and the volatility matrix  are assumed to be predictable and they satisfy the standard assumptions in such way that both  and  are well-defined positive semimartingales. We also assume that the volatility matrix  is nonsingular for almost all . The discounted price  follows 
						
					where  is a d-dimensional vector with every component equal to . The market price of risk is given by 
						
					where we assume 
						
In the sequel,  denotes the set of -equivalent probability measures  such that, respectively, Radon-Nikodym derivative process is a -martingale and the discounted price  is a -local martingale. Throughout this paper, we assume that . In our setup, it is well known that  is given by the subset of probability measures with Radon-Nikodym derivatives of the form 
						
					for some -valued adapted process  such that  a.s.
Example 1. The typical example studied in the literature is the following one-dimensional stochastic volatility model:
							
						where  and  are correlated Brownian motions with correlation  and , , and  are suitable functions such that  is a well-defined two-dimensional Markov process. All continuous stochastic volatility models commonly used in practice fit into specification (17). In this case,  and we recall that the market is incomplete where the set  is infinity. The dynamic hedging procedure turns out to be quite challenging due to extrinsic randomness generated by the nontradeable volatility, specially with respect to to exotic options.
2.1. GKW Decomposition
In the sequel, we take  and we set  and , where
								
							is a standard -dimensional Brownian motion under the measure  and filtration  generated by . In what follows, we fix a discounted contingent claim . Recall that the filtration  is contained in , but it is not necessarily equal. In the remainder of this paper, we assume the following hypothesis.
(M) The contingent claim  is also -measurable.
Remark 2. Assumption (M) is essential for the approach taken in this work because the whole algorithm is based on the information generated by the Brownian motion  (defined under the measure  and filtration ). As long as the short rate is deterministic, this hypothesis is satisfied for any stochastic volatility model of form (17) and a payoff  where  is a Borel map and  is the usual space of continuous paths on . Hence, (M) holds for a very large class of examples founded in practice.
For a given -square-integrable claim , the Brownian martingale representation (computed in terms of ) yields 
								
							where  is a -dimensional -predictable process. In what follows, we set , , and
								
							The discounted stock price process has the following -dynamics: 
								
							and therefore the -GKW decomposition for the pair of locally square-integrable local martingales  is given by
								
							where
								
							The -dimensional process  which constitutes (20) and (23) plays a major role in several types of hedging strategies in incomplete markets and it will be our main object of study.
Remark 3. If we set  for  and the correspondent density process is a martingale, then the resulting minimal martingale measure  yields a GKW decomposition where  is still a -local martingale orthogonal to the martingale component of  under . In this case, it is also natural to implement a pure hedging strategy based on  regardless of the existence of the Föllmer-Schweizer decomposition. If this is the case, this hedging strategy can be based on the generalized Föllmer-Schweizer decomposition (see, e.g., Th. 9 in [7]).
3. The Random Skeleton and Weak Approximations for GKW Decompositions
In this section, we provide the fundamentals of the numerical algorithm of this paper for the obtention of hedging strategies in complete and incomplete markets.
3.1. The Multidimensional Random Skeleton
At first, we fix once and for all  and a -square-integrable contingent claim  satisfying (M). In the remainder of this section, we are going to fix a -Brownian motion  and with a slight abuse of notation all -expectations will be denoted by . The choice of  is dictated by the pricing and hedging method used by the trader.
In the sequel,  denotes the usual quadratic variation between semimartingales and the usual jump of a process is denoted by  where  is the left-hand limit of a cadlag process . For a pair , we denote  and . Moreover, for any two stopping times  and , we denote the stochastic intervals ,  and so on. Throughout this article,  denotes the Lebesgue measure on the interval .
For a fixed positive integer  and for each  we define  a.s. and
								
							where  is the -dimensional -Brownian motion as defined in (18).
For each , the family  is a sequence of -stopping times where the increments  are an i.i.d sequence with the same distribution as . In the sequel, we define  as the -dimensional step process given in a component-wise manner by
								
							where
								
							for , , and . We split  into  where  is the -dimensional process constituted by the first  components of  and  and the remainder of the -dimensional process. Let  be the natural filtration generated by . One should notice that  is a discrete-type filtration in the sense that
								
							where  and  for  and . In (27),  denotes the smallest sigma-algebra generated by the union. One can easily check that  and hence
								
							With a slight abuse of notation, we write  to denote its -augmentation satisfying the usual conditions.
Let us now introduce the multidimensional filtration generated by . Let us consider  where  for . Let  be the order statistics obtained from the family of random variables . That is, we set ,
								
							for . In this case,  is the partition generated by all stopping times defined in (24). The finite-dimensional distribution of  is absolutely continuous for each  and therefore the elements of  are almost surely distinct for every . The following result is an immediate consequence of our construction.
Lemma 4.  For every , the set  is a sequence of -stopping times such that
									
								for each  and .
Itô representation theorem yields 
								
							where  is a -dimensional -predictable process such that 
								
							The payoff  induces the -square-integrable -martingale , . We now embed the process  into the filtration  by means of the following operator:
								
							With a slight abuse of notation, we write  instead of . Since  is an -martingale, the usual optional stopping theorem and Lemma 4 yield the representation
								
							Therefore,  is indeed a -square-integrable -martingale and we will write it as
								
							where 
								
							and the integral in (35) is computed in the Lebesgue-Stieltjes sense. For a given  and , let us define . It is easy to see that
								
							for  and . Therefore,
								
Remark 5. Similar to the univariate case, one can easily check that  weakly and since  has continuous paths,  uniformly in probability as . See Remark  2.1 in [27].
Based on the Dirac process , we denote 
								
In order to work with nonanticipative hedging strategies, let us now define a suitable -predictable version of  as follows:
								
Remark 6. Let  be a contingent claim satisfying (M). Then for a given , we have
									
								One should notice that (41) is reminiscent from the usual delta-hedging strategy but the price is shifted on the level of the sigma-algebras jointly with the increments of the driving Brownian motion instead of the pure spot price. For instance, in the one-dimensional case , we have 
									
Identity (41) suggests a natural procedure to approximate pure hedging strategies by means of  at time zero. Additional randomness from, for example, stochastic volatilities is encoded by the set of information  which is determined by the Brownian motion hitting times coming from stochastic volatility.
In the next sections, we will construct feasible approximations for the gain process based on ratios (41). We will see that hedging ratios of form (41) will be the key ingredient to recover the gain process in full generality.
3.2. Weak Approximation for the Hedging Process
Based on (20), (22), and (23), let us denote
								
							In order to shorten notation, we do not write  in (43). The main goal of this section is the obtention of bounded variation martingale weak approximations for both gain and cost processes, given, respectively, by 
								
							We assume the trader has some knowledge of the underlying volatility so that the obtention of  will be sufficient to recover . The typical example we have in mind is generalized Föllmer-Schweizer decompositions and locally risk minimizing and mean variance strategies as explained in the Introduction. The scheme will be very constructive in such way that all the elements of our approximation will be amenable to a feasible numerical analysis. Under very mild integrability conditions, the weak approximations for the gain process will be translated into the physical measure.
The Weak Topology. In order to obtain approximation results under full generality, it is important to consider a topology which is flexible to deal with nonsmooth hedging strategies  for possibly non-Markovian payoffs  and at the same time justifies Monte Carlo procedures. In the sequel, we make use of the weak topology  of the Banach space  constituted by -optional processes  such that 
								
							where  and ,  such that . The subspace of the square-integrable -martingales will be denoted by . It will be also useful to work with -topology given in [27]. For more details about these topologies, we refer to the works [27, 31, 32]. It turns out that  and  are very natural notions to deal with generic square-integrable random variables as described in [27].
In the sequel, we recall the following notion of covariation introduced in [27, 30].
Definition 7. Let  be a sequence of square-integrable -martingales. One says that  has -covariation with respect to jth component of  if the limit 
									
								exists weakly in  for every .
The covariation notion in Definition 7 slightly differs from [27, 30] because  is not necessarily a sequence of pure jump -adapted process. In fact, since we are in the pure martingale case, we will relax such assumption as demonstrated by the following Lemma.
Lemma 8.  Let  be a sequence of stochastic integrals and . Assume that
									
								Then  exists weakly in  for each  with  if and only if  admits -covariation with respect to jth component of . In this case,
									
								for .
Proof. Let , , be a sequence of -square-integrable martingales. Similar to Lemma  4.2 in [30] or Lemma  3.2 in [27], one can easily check that assumption (47) implies that  is -weakly relatively sequentially compact where all limit points are -square-integrable martingales. Moreover, since  is a square-integrable -martingale, we will repeat the same argument given in Lemma  3.5 in [27] to safely state that 
									
								for any -weakly convergent subsequence where . The multidimensional version of the Brownian motion martingale representation theorem allows us to conclude the proof.
In the sequel, we make use of the following notion of weak functional derivative introduced in [27, 30].
Definition 9. Let  be a -square-integrable contingent claim satisfying (M) and one sets , . We say that  is weakly differentiable if 
									
								for each . In this case, we set .
In Leão and Ohashi [27] and Ohashi et al. [30], the authors introduce this notion of differential calculus which proves to be a weak version of the pathwise functional Itô calculus developed by Dupire [28] and further studied by Cont and Fournié [29]. We refer the reader to these works for further details. The following result is an immediate consequence of Proposition  3.1 in [30]. See also Th. 4.1 in [27] for the one-dimensional case.
Lemma 10.  Let  be a -square-integrable contingent claim satisfying (M). Then the -martingale , , is weakly differentiable and 
									
								In particular,
									
The result in Lemma 10 in not sufficient to implement dynamic hedging strategies based on , . In order to ensure that our hedging strategies are nonanticipative, we need to study the limiting behavior of  as . It turns out that they share the same asymptotic behavior as follows. In the sequel,  denotes the usual stochastic integral with respect to the square-integrable -martingale .
Theorem 11.  Let  be a -square-integrable contingent claim satisfying (M). Then
									
								weakly in . In particular,
									
								weakly in  for each .
Proof. We divide the proof into two steps. Throughout this proof  is a generic constant which may defer from line to line.
Step 1. In the sequel, let  and  be the optional and predictable projections with respect to , respectively. See, for example, [31, 33] for further details. Let us consider the -martingales given by
									
								where 
									
								We claim that . By the very definition, 
									
								Therefore, Jensen inequality yields
									
								We will write  in a slightly different manner as follows. In the sequel, for each , we set  and . Then, we will write
									
								The above identities, Lemma  3.1 in [30], (58), and Remark 5 yield
									
Step 2. We claim that for a given , , and  we have
									
								By using the fact that  is -optional and  is -predictable, we will use duality of the -optional projection to write 
									
								In order to prove (61), let us check that
									
								The same trick we did in (59) together with (57) yields 
									
								as  because  has continuous paths (see Remark 5). This proves (63). Now, in order to shorten notation, let us denote the expectation in (64) by . Since  is independent of  with , we will write
									
								where we set  and 
									
								Again, the independence between  and  together with estimate (60) and  yields
									
								Lemma  4.1 in [27], Cauchy-Schwartz inequality, and (68) yield 
									
								By the same reasoning,  as , and we conclude that (64) holds. Summing up Steps 1 and 2, we will use Lemmas 8 and 10 to conclude that (53) hold true. It remains to show (54) but this is a straightforward consequence of (48) in Lemma 8 and (61). This concludes the proof of the theorem.
Stronger convergence results can be obtained under path smoothness assumptions for representations . We refer the reader to the Appendix for further details.
4. Weak Dynamic Hedging
In this section, we apply Theorem 11 for the formulation of a dynamic hedging strategy starting with a given GKW decomposition
						
					where  is a -square-integrable European-type option satisfying (M) for a given . The typical examples we have in mind are quadratic hedging strategies with respect to a fully path-dependent option. We recall that when  is the minimal martingale measure, then (70) is the generalized Föllmer-Schweizer decomposition so that, under some -square-integrability conditions on the components of (70),  is the locally risk minimizing hedging strategy (see, e.g., [4, 7]). In fact, GKW and Föllmer-Schweizer decompositions are essentially equivalent for the market model assumed in Section 2. We recall that decomposition (70) is not sufficient to fully describe mean variance hedging strategies but the additional component rests on the fundamental representation equations as described in the Introduction. See also expression (110) in Section 6.
For simplicity of exposition, we consider a financial market  driven by a two-dimensional Brownian motion  and a one-dimensional risky asset price process  as described in Section 2. We stress that all results in this section hold for a general multidimensional setting with the obvious modifications.
In the sequel, we denote 
						
					where  for .
Corollary 12.  For a given , let  be a -square-integrable claim satisfying . Let 
							
						be the correspondent GKW decomposition under . If  and
							
						then 
							
						in the -topology under .
Proof. We have . To shorten notation, let  and  for . Let  be an arbitrary -stopping time bounded by  and let  be an essentially -bounded random variable and -measurable. Let  be a continuous linear functional given by the purely discontinuous -optional bounded variation process 
							
						where the duality action  is given by , . See Section  3.1 in [27] for more details. Then Theorem 11 and the fact that  yield 
							
						as . By the very definition,
							
						Then from the definition of the -topology based on the physical measure , we will conclude the proof.
Remark 13. Corollary 12 provides a nonantecipative Riemman-sum approximation for the gain process  in a multidimensional filtration setting where no path regularity of the pure hedging strategy  is imposed. The price we pay is a weak-type convergence instead of uniform convergence in probability. However, from the financial point of view this type of convergence is sufficient for the implementation of Monte Carlo methods in hedging. More importantly, we will see that  can be fairly simulated and hence the resulting Monte Carlo hedging strategy can be calibrated from market data.
Remark 14. If one is interested only in convergence at the terminal time , then assumption (73) can be weakened to . Assumption  is essential to change the -convergence into the physical measure . One should notice that the associated density process is no longer a -local-martingale and in general such integrability assumption must be checked case by case. Such assumption holds locally for every underlying Itô risky asset price process. Our numerical results suggest that this property behaves well for a variety of spot price models.
Of course, in practice both the spot prices and the trading dates are not observable at the stopping times so we need to translate our results to a given deterministic set of rebalancing hedging dates.
4.1. Hedging Strategies
In this section, we provide a dynamic hedging strategy based on a refined set of hedging dates  for a fixed integer . For this, we need to introduce some objects. For a given , we set , , for . Of course, by the strong Markov property of the Brownian motion, we know that  is an -Brownian motion for each  and is independent of , where  for . Similar to Section 3.1, we set  and 
								
							For a given  and , we define  as the sigma-algebra generated by  and , . We then define the following discrete jumping filtration: 
								
							In order to deal with fully path-dependent options, it is convenient to introduce the following augmented filtration: 
								
							for . The bidimensional information flows are defined by  and  for . We set . We will assume that they satisfy the usual conditions. The piecewise constant martingale projection  based on  is given by 
								
							We set  as the order statistic generated by the stopping times  similar to (29).
If  and ,, then we define 
								
							so that the related derivative operators are given by 
								
							where 
								
A -predictable version of  is given by 
								
							In the sequel, we denote
								
							where  is the volatility process driven by the shifted filtration  and  is the risky asset price process driven by the shifted Brownian motion .
We are now able to present the main result of this section.
Corollary 15.  For a given , let  be a -square-integrable claim satisfying . Let 
									
								be the correspondent GKW decomposition under . If  and 
									
								Then, for any set of trading dates , we have
									
								weakly in  under .
Proof. Let  be any set of trading dates where  is a fixed positive integer. To shorten notation, let us define
									
								for  and . At first, we recall that  is an i.i.d sequence with absolutely continuous distribution. In this one-dimensional case, the probability of the set  is always strictly positive for every  and . Hence,  is a nondegenerate subset of random variables. By making a change of variable on the Itô integral, we will write 
									
Let us fix . By the very definition, 
									
								Now we notice that Theorem 11 holds for the two-dimensional Brownian motion , for each  with the discretization of the Brownian motion given by . Moreover, using the fact that  and repeating the argument given by (77) restricted to the interval , we have
									
								weakly in  for each . This concludes the proof.
Remark 16. In practice, one may approximate the gain process by a nonantecipative strategy as follows. Let  be a given set of trading dates on the interval  so that  is small. We take a large  and we perform a nonantecipative buy-and-hold-type strategy among the trading dates , in the full approximation (90) which results in
									
								Convergence (89) implies that approximation (94) results in unavoidable hedging errors with respect to the gain process due to the discretization of the dynamic hedging, but we do not expect large hedging errors provided that  is large and  is small. Hedging errors arising from discrete hedging in complete markets are widely studied in the literature. We do not know optimal rebalancing dates in this incomplete market setting, but simulation results presented in Section 6 suggest that homogeneous hedging dates work very well for a variety of models with and without stochastic volatility. A more detailed study is needed in order to get more precise relations between  and the stopping times, a topic which will be further explored in a future work.
Let us now briefly explain how the results of this section can be applied to well-known quadratic hedging methodologies.
Generalized Föllmer-Schweizer. If one takes the minimal martingale measure , then  in (70) is a -local martingale and is orthogonal to the martingale component of . Due this orthogonality and the zero mean behavior of the cost , it is still reasonable to work with generalized Föllmer-Schweizer decompositions under  without knowing a priori the existence of locally risk minimizing hedging strategies. 
Local Risk Minimization. One should notice that if ,  under  and , then  is the locally risk minimizing trading strategy and (70) is the Föllmer-Schweizer decomposition under . 
Mean Variance Hedging. If one takes , then the mean variance hedging strategy is not completely determined by the GKW decomposition under . Nevertheless, Corollary 15 still can be used to approximate the optimal hedging strategy by computing the density process  based on the so-called fundamental equations derived by Hobson [16]. See (5) and (6) for details. For instance, in the classical Heston model, Hobson derives analytical formulas for . See (110) in Section 6.
Hedging of Fully Path-Dependent Options. The most interesting application of our results is the hedging of fully path-dependent options under stochastic volatility. For instance, if , then Corollary 15 and Remark 16 jointly with the above hedging methodologies allow us to dynamically hedge the payoff  based on (94). The conditioning on the information flow  in the hedging strategy  encodes the continuous monitoring of a path-dependent option. For each hedging date , one has to incorporate the whole history of the price and volatility until such date in order to get an accurate description of the hedging. If  is not path-dependent, then the information encoded by  in  is only crucial at time .
Next, we provide the details of the Monte Carlo algorithm for the approximating pure hedging strategy .
5. The Algorithm
In this section we present the basic algorithm to evaluate the hedging strategy for a given European-type contingent claim  satisfying assumption (M) for a fixed  at a terminal time . The core of the algorithm is the simulation of the stochastic derivative 
					for . Recall that  is a discrete jumping filtration generated by the i.i.d families of Bernoulli and absolutely continuous random variables given, respectively, by  and  which are amenable to an exact simulation by using Burq and Jones [8]. By considering the payoff  as a functional of , this section explains how to perform a concrete and feasible Monte Carlo method to obtain the hedging strategies .
In the sequel, we fix the discretization level .
Step 1 (simulation of the stopping times  and the step processes ) (1)One generates the increments  according to the algorithm described by Burq and Jones [8] and, consequently, the -stopping times  for every , such that all the -stopping times .(2)One simulates the i.i.d family  independently of , according to the Bernoulli random variable  with parameter  for . This simulates the step process  for .
In the next step we need to simulate  based on approximations of the discounted price process  as follows.
Step 2  (simulation of the discounted stock price process ). Suppose that, using Step 1, we have the partitions , the family , and the step processes  for . The following steps show how to compute approximations to the discounted stock price prices , , and the payoff function .(1)We consider the order statistics  generated by all stopping times as defined by (29). This is the finest partition generated by all partitions .(2)We apply some appropriate method to evaluate an approximation  of the discounted price  for , where  is a functional of the noisy . Generally speaking, we work with some Itô-Taylor expansion method driven by .(3)Based on the approximation for , we calculate the approximation for the payoff  as follows: .
Next, we describe the crucial step in the algorithm: the simulation of the stochastic derivative described by (41).
Step 3  (simulation of the stochastic derivative ). We recall that
						
					where , and  is given by 
						
					In the sequel,  denotes the realization of  by means of Step 1 and  denotes the realization of  based on the finest random partition . Moreover, any sequence  encodes the information generated by the realization of  until the first hitting time of the th partition. In addition, we denote  as the last time in the finest partition before . For each , let  be the unique random pair which realizes 
						
					Based on these quantities, we define  as the realization of the random variable , where  is given by (26).
In the sequel,  denotes the conditional expectation computed in terms of the Monte Carlo method.(1)For every  we compute
									where  in (99) denotes the realization of the Bernoulli variable .
(2)  We define the stochastic derivative
						
(3)  We compute  as
						
(4)  Repeat these steps several times and calculate the pure hedging strategy as the mean of all . Consider
						
Quantity (102) is a Monte Carlo estimate of .
Remark 17. The Monte Carlo simulation of (99) is performed by considering the payoff  as a functional  of the noisy  in terms of any Itô-Taylor/Euler-Maruyama scheme.
Remark 18. In order to compute the hedging strategy  over a trading period , one performs Algorithms 1, 2 and 3 (see Appendix) but based on the shifted filtration and the Brownian motions  for  as described in Section 4.1.
		    Data: Maturity Time , Discretization level 
	    Result: Vector of stopping times , family , step processes 
	(1)  Burq and Jones (, )     Vector of  -stopping times generated by 
	the algorithm described by Burq and Jones [8]
	(2)  Length()       is the length of  
	(3) 
	(4) 
	(5) for    to    do 
	(6)       Sample one element from Bernoulli ()
	(7)      


	Algorithm 1: Pseudocode of the stopping times  and step processes .

		Data: Partitions , Families  and Step Processes  for , Discretization
	         level , Number of Stocks 
	Result: Stock Prices , 
	(1)  Merge()      Create the finest partition    from the partitions  
	(2)  Length()      is the length of  
	(3) for    to    do 
	(4)        for    to    do 
	(5)             Itô-Taylor ()     Simulation of    in the finest
	                 partition    using some Itô-Taylor approximation method
	(6)       Approximation of    as a function of the simulated  


	Algorithm 2: Pseudocode of the stock price processes .

		Data: Partitions , Families , Step Processes , Maturity Time , Discretization
	         Level , Number of Dimensions , Number of Stocks , Number of Simulations of the
	         Conditional Expectation , Number of Simulations of the Stochastic Derivative 
	Result: Stochastic Derivatives , , Hedging Strategy 
	(1)  Merge()    Create the finest partition    from the partitions  
	(2) for    to    do 
	(3)   which ()      is the position of    in the finest partition  
	(4)      for    to    do 
	(5)            for   to  do
	(6)                  Computations of  
	(7)           concatenate ()    Vector of stochastic derivatives
	(8)              Create the vector of hedging strategy  
	(9)      mean()    Hedging strategy  


	Algorithm 3: Pseudocode of the stochastic derivative  and the hedging strategy .

Remark 19. In practice, one has to calibrate the parameters of a given stochastic volatility model based on liquid instruments such as vanilla options and volatility surfaces. With those parameters at hand, the trader must follow steps (99) and (102). The hedging strategy is then given by calibration and the computation of quantity (102) over a trading period.
6. Numerical Analysis and Discussion of the Methods
In this section, we provide a detailed analysis of the numerical scheme proposed in this work.
6.1. Multidimensional Black-Scholes Model
At first, we consider the classical multidimensional Black-Scholes model with as many risky stocks as underlying independent random factors to be hedged . In this case, there is only one equivalent local martingale measure, the hedging strategy  is given by (43), and the cost is just the option price. To illustrate our method, we study a very special type of exotic option: a BLAC (Basket Lock Active Coupon) down-and-out barrier option whose payoff is given by
								
							It is well known that, for this type of option, there exists a closed formula for the hedging strategy. Moreover, it satisfies the assumptions of Theorem A.2. See, for example, Bernis et al. [34] for some formulas.
For comparison purposes with Bernis et al. [34], we consider  underlying assets, % for the interest rate, and  year for the maturity time. For each asset, we set initial values , , and we compute the hedging strategy with respect to the first asset  with discretization level  and  simulations.
Following the work [34], we consider the volatilities of the assets given by %, %, %, %, and % and the correlation matrix defined by  for , where , and we use the barrier level . In Table 1, we present the numerical results based on the Algorithms 1, 2 and 3 for the pointwise hedging strategy  at time .
Table 1: Monte Carlo hedging strategy of a BLAC down-and-out option for a 5-dimensional Black-Scholes model.
	

		Hedging	St. error	LL	UL	True value	Difference	% error
	

	3	0.00376	2.37 × 10−5	0.00371	0.00380	0.00338	0.00038	11.15%
	4	0.00365	4.80 × 10−5	0.00356	0.00374	0.00338	0.00027	8.03%
	5	0.00366	9.31 × 10−5	0.00348	0.00384	0.00338	0.00028	8.35%
	6	0.00342	1.82 × 10−4	0.00306	0.00378	0.00338	0.00004	1.29%
	




Table 1 reports the difference between the true and the estimated hedging value, the , the %  valor, and the lower (LL) and upper limits (UL) of the 95% confidence interval for the empirical mean of the estimated pointwise hedging strategies at time . Due to Theorem A.2, we expect that when the discretization level  increases, we obtain results closer to the true value and this is what we find in Monte Carlo experiments, confirmed by the small % error when using . We also emphasize that when , the confidence interval contains the true value , and we can really assume the convergence of the algorithm.
In Figure 1, we plot the average hedging estimates with respect to the number of simulations. One should notice that when  increases, the standard error also increases, which suggests more simulations for higher values of .




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
	


Figure 1: Monte Carlo hedging strategy of a BLAC down-and-out option for a 5-dimensional Black-Scholes model.


6.2. Average Hedging Errors
Next, we present some average hedging error results for two well-known nonconstant volatility models: the constant elasticity of variance (CEV) model and the classical Heston stochastic volatility model [18]. The typical examples we have in mind are the generalized Föllmer-Schweizer, local risk minimization, and mean variance hedging strategies, where the optimal hedging strategies are computed by means of the minimal martingale measure and the variance optimal martingale measure, respectively. We analyze the one-touch one-dimensional European-type contingent claims as follows:
								
By using the Algorithms 1, 2 and 3, we compute the error committed by approximating the payoff  by . This error will be called hedging error. The computation of this error is summarized in the following steps.
Computation of the Average Hedging Error (1)We first simulate paths under the physical measure and compute the payoff .(2)Then, we consider some deterministic partition of the interval  into  (number of hedging strategies in the period) points  such that , for .(3)One simulates, at time , the option price  and the initial hedging estimate  through (100), (101), and (102) under a fixed . We follow the Algorithms 1, 2 and 3.(4)We simulate  by means of the shifting argument based on the strong Markov property of the Brownian motion as described in Section 4.1.(5)We compute  by
											(6)We compute the hedging error estimate  given by .(7)We compute the average hedging error given by  where  is the hedging error at the th scenario and  is the total number of scenarios used in the experiment.(8)We compute .
Remark 20. When no locally risk minimizing strategy is available, we also expect to obtain low average hedging errors when dealing with generalized Föllmer-Schweizer decompositions due to the orthogonal martingale decomposition. In the mean variance hedging case, two terms appear in the optimal hedging strategy: the pure hedging component  of the GKW decomposition under the optimal variance martingale measures  and  as described by (5) and (6). For the Heston model,  was explicitly calculated by Hobson [16]. We have used his formula in our numerical simulations jointly with  under  in the calculation of the mean variance hedging errors. See expression (110) for details.
6.2.1. Constant Elasticity of Variance (CEV) Model
The discounted risky asset price process described by the CEV model under the physical measure is given by
										
									where  is a -Brownian motion. The instantaneous Sharpe ratio is  such that the model can be rewritten as
										
									where  is a -Brownian motion and  is the equivalent local martingale measure. In this Monte Carlo experiment, we consider a total number of scenarios  equal to  with the following parameters: the barrier for the one-touch option in (104) is 105,  for the interest rate, ,  (month) for the maturity time, , , and  such that the constant of elasticity is . We simulate the average hedging errors by considering discretization levels . We perform , , , and  hedging strategies along the interval . We observe that, supposing  business days per month, we can assume that , , and  hedging strategies on the interval  correspond to one hedging strategy for every two days, one hedging strategy per day, and two hedging strategies per day, respectively. From Corollary 15, we know that this procedure is consistent.
Table 2 reports the average hedging errors for the one-touch option. It provides the standard error = standard deviation of , the % , the lower (LL) and upper limits (UL) of the 95% confidence interval for , and the price of the option. It is important to notice that when  increases, the percentage error  decreases, which is expected due to the weak convergence results of this paper. We also point out that for  all the 95% confidence intervals contain the zero. Moreover, we notice that as the number of hedging strategies increases, the standard error becomes smaller.
Table 2: Average hedging error of the one-touch option written on the CEV model.
	

		Hedging strategies	AV	St. error	LL	UL	Price	(AV)
	

	3	11	0.0449	0.0073	0.0305	0.0592	0.4803	9.34%
	3	16	0.0446	0.0063	0.0323	0.0569	0.4804	9.28%
	3	22	0.0441	0.0056	0.0332	0.0550	0.4804	9.18%
	3	44	0.0431	0.0044	0.0345	0.0516	0.4803	8.96%
	4	11	0.0213	0.0071	0.0017	0.0295	0.5062	4.22%
	4	16	0.0203	0.0064	0.0078	0.0327	0.5060	4.00%
	4	22	0.0167	0.0053	0.0062	0.0271	0.5061	3.29%
	4	44	0.0158	0.0038	0.0084	0.0232	0.5057	3.12%
	5	11	0.0067	0.0072		0.0209	0.5205	1.30%
	5	16	0.0056	0.0065		0.0073	0.5196	1.08%
	5	22	0.0050	0.0055		0.0157	0.5187	0.97%
	5	44	0.0044	0.0040		0.0122	0.5204	0.85%
	




6.2.2. Heston’s Stochastic Volatility Model
Here we consider two types of hedging methodologies: local risk minimization and mean variance hedging strategies as described in the Introduction and Remark 20. The Heston dynamics of the discounted price under the physical measure is given by
										
									where , ,  is a pair of two independent -Brownian motions, and  are suitable constants in order to have a well-defined Markov process (see, e.g., [16, 18]). Alternatively, we can rewrite the dynamics as
										
									where  and .
Local Risk Minimization. For comparison purposes with Heath et al. [4], we consider the hedging of a European put option  written on a Heston model with correlation parameter . We set , strike price , and  (month) and we use discretization levels , and . We set the parameters , , , , , and . The hedging strategy  based on the local risk minimization methodology is bounded with continuous paths so that Theorem A.2 applies to this case. Moreover, as described by Heath et al. [4],  can be obtained by a PDE numerical analysis.
Table 3 presents the results of the hedging strategy  by using Algorithms 1, 2 and 3. Figure 2 provides the Monte Carlo hedging strategy with respect to the number of simulations of order . We notice that our results agree with the results obtained by Heath et al. [4] by PDE methods. In this case, the true value of the hedging at time  is approximately . Table 3 provides the standard errors related to the computed hedging strategy and the Monte Carlo prices.
Table 3: Monte Carlo local risk minimization hedging strategy of a European put option with Heston model.
	

		Hedging	Standard error	Monte Carlo price	Standard error
	

	3		6.57 × 10−4	10.417	5.00 × 10−3
	4		1.28 × 10−3	10.422	3.35 × 10−3
	5		2.54 × 10−3	10.409	2.75 × 10−3
	







	
	
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
		
		
			
		
			
		
			
				
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
		
		
		
			
				
			
				
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
			
		
			
		
			
		
			
	


Figure 2: Monte Carlo local risk minimization hedging strategy of a European put option with Heston model.



Hedging with Generalized Föllmer-Schweizer Decomposition for One-Touch Option. Based on Corollary 15, we also present the averaging hedging error associated with one-touch options written on a Heston model with nonzero correlation. We consider a total number of scenarios  and we set , , , , , , , and  where the barrier is . We simulate the average hedging error along the interval  with discretization levels . We compute  and  hedging strategies in the period (which corresponds to one and two hedging strategies per day, resp.). The average hedging error results are summarized in Table 4. It provides the standard error (St. error) = standard deviation of , the price of the option, the lower (LL) and upper (UL) limits of the 95% confidence interval of , and the percentage error  related to .
Table 4: Average hedging error with generalized Follmer-Schweizer decomposition: one-touch option with Heston model.
	

		Hedging strategies	AV	St. error	LL	UL	Price	(AV)
	

	3	22	0.0422	0.0084	0.0258	0.0586	0.7399	5.70%
	3	44	0.0382	0.0067	0.0250	0.0515	0.7397	5.17%
	4	22	0.0210	0.0080	0.0053	0.0366	0.7733	2.71%
	4	44	0.0198	0.0082	0.0036	0.0360	0.7737	2.56%
	




To the best of our knowledge, there is no result concerning the existence of locally risk minimizing hedging strategies for one-touch options written on a Heston model with nonzero correlation. Nevertheless, as pointed out in Remark 20, it is expected that pure hedging strategies based on the generalized Föllmer-Schweizer decomposition mitigate very well the average hedging error. This is what we get in the simulation results. In Table 4, we see that as  increases, the percentage error  decreases. For , we also have a decrease in the standard error, but when , the standard error is almost the same (with a small increase).
Mean Variance Hedging Strategy. Here we present the average hedging errors associated with one-touch options written on a Heston model with nonzero correlation under the mean variance methodology. Again, we simulate the average hedging error along the interval  by using  as discretization levels of the Brownian motions. We perform  and  hedging strategies in the period (which corresponds to one and two hedging strategies per day, resp.) with parameters , , , , , , , and . The barrier of the one-touch option (104) is 105. There are some quantities which are not related to the GKW decomposition that must be computed (see Remark 20). The quantity  is not related to the GKW decomposition but it is described by Theorem 1.1 in Hobson [16] as follows. The process  appearing in (5) and (6) is given by
										
									where  is given by (see case 2 of Prop. 5.1 in [16]) 
										
									with , , and  where . The initial condition  is given by 
										
The average hedging error results are summarized in Table 5. It reports the standard error (St. error) = standard deviation of , the price of the option, the lower (LL) and upper (UL) limits of the 95% confidence interval of , and the percentage error  related to . Compared to the local risk minimization methodology, the results show smaller percentage errors for . Also, in all the cases, the results show smaller values of the standard errors which suggests the mean variance methodology provides more accurate values of the hedging strategy. Again, for a fixed value , when the number of hedging strategies increases, the standard error decreases.
Table 5: Average hedging error in the mean variance hedging methodology for one-touch option with Heston model.
	

		Hedging strategies	AV	St. error	LL	UL	Price	(AV)
	

	3	22	0.0674	0.0052	0.0572	0.0777	0.7339	9.19%
	3	44	0.0577	0.0044	0.0490	0.0663	0.7340	7.86%
	4	22	0.0143	0.0056	0.0034	0.0252	0.7767	1.84%
	4	44	0.0134	0.0038	0.0060	0.0209	0.7765	1.73%
	




Appendix

          This appendix provides a deeper understanding of the Monte Carlo algorithm proposed in this work when the representation  in (43) admits additional integrability and path smoothness assumptions. We present stronger approximations which complement the asymptotic result given in Theorem 11. Uniform-type weak and strong pointwise approximations for  are presented and they validate the numerical experiments in Tables 1 and 4 in Section 6. At first, we need some technical lemmas.
Lemma A.1.  Suppose that  is a -dimensional progressive process such that . Then, the following identity holds:
							
Proof. It is sufficient to prove for  since the argument for  easily follows from this case. Let  be the linear space constituted by the bounded -valued -progressive processes  such that (A.1) holds with  where . Let  be the class of stochastic intervals of the form  where  is a -stopping time. We claim that  for every -stopping times  and . In order to check (A.1) for such , we only need to show for  since the argument for  is the same. With a slight abuse of notation, any subsigma-algebra of  of the form  will be denoted by  where  is the trivial sigma-algebra on the first copy .
At first, we split  and we make the argument on the sets ,  . In this case, we know that  a.s and
							
						The independence between  and  and the independence of the Brownian motion increments yield
							
						on the set . We also have
							
						on the set . By construction  a.s and again the independence between  and  yields
							
						on . Similarly,
							
						on . By assumption  is an -stopping time, where  is a product filtration. Hence,  a.s on .
Summing up the above identities, we will conclude . In particular, the constant process  and if  is a sequence in  such that  a.s  with  bounded, then a routine application of Burkhölder inequality shows that . Since  generates the optional sigma-algebra, we will apply the monotone class theorem and, by localization, we may conclude the proof.
Strong Convergence under Mild Regularity. In this section, we provide a pointwise strong convergence result for GKW projectors under rather weak path regularity conditions. Let us consider the stopping times 
						
					and we set 
						
					Here, if  satisfies , we set  and for simplicity we assume that .
Theorem A.2.  If  is a -square-integrable contingent claim satisfying (M) and there exists a representation  of  such that  for some  and the initial time  is a Lebesgue point of , then
							
Proof. In the sequel,  will be a constant which may differ from line to line and let us fix . For a given , it follows from Lemma A.1 that
							
						We recall that  so that we will apply the Burkholder-Davis-Gundy and Cauchy-Schwartz inequalities together with a simple time change argument on the Brownian motion to get the following estimate:
							
						Therefore, the right-hand side of (A.11) vanishes if and only if  is a Lebesgue point of ; that is,
							
						The estimate (A.11), the limit (A.12), and the weak convergence of  to the initial sigma-algebra  yield 
							
						strongly in . Since , , we conclude the proof.
Remark A.3. At first glance, limit (A.9) stated in Theorem A.2 seems to be rather weak since it is not defined in terms of convergence of processes. However, from the purely computational point of view, we will construct a pointwise Monte Carlo simulation method of the GKW projectors in terms of  given by (41). This substantially simplifies the algorithm introduced by Leão and Ohashi [27] for the unidimensional case under rather weak path regularity.
Remark A.4. For each , let us define 
							
						One can show by a standard shifting argument based on the Brownian motion strong Markov property that if there exists a representation  such that  is cadlag for a given , then one can recover in a pointwise manner in -strong sense the th GKW projector for that . We notice that if  belongs to  and it has cadlag paths, then  is cadlag for each , but the converse does not hold. Hence the assumption in Theorem A.2 is rather weak in the sense that it does not imply the existence of a cadlag version of .
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