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One of the most important and applied concepts in graph theory is to find the edge cover, vertex
cover, and dominating sets with minimum cardinal also to find independence and matching sets
with maximum cardinal and their polynomials. Although there exist some algorithms for finding
some of them (Kuhn and Wattenhofer, 2003; and Mihelic and Robic, 2005), but in this paper
we want to study all of these concepts from viewpoint linear and binary programming and we
compute the coefficients of the polynomials by solving a system of linear equations with {0, 1}
variables.

1. Introduction

All graphs in this note are simple, connected, finite, and undirected, though it is probable that
some of the obtained results are extendable to general or directed graphs.

Let G = (V, E) be a simple and connected graph with |V | = n and |E| = m; then the
edge cover and edge dominating polynomials are of degree m, and the vertex cover and
dominating polynomials are of degree n, in which coefficient of xk is the number of edge
cover, edge dominating, vertex cover, and dominating sets with k elements, respectively. Also
the independence and matching polynomials are at most of degree n such that coefficient of
xk is the number of independence and matching sets with k elements, respectively, for some
positive integer k.

For some notation being not defined here we refer the reader to [1].
A set L ⊆ E is an edge cover if every vertex v ∈ V is incident to some edge of L.
A set Q ⊆ V is a vertex cover if every edge e ∈ E has at least one endpoint in Q.
A set S ⊆ V is an independent set if non of two vertex in S are not adjacent.
The maximum size of an independent set is named independence number.
A matching in graph G is a set M ⊆ E with no shared endpoints.
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In graphG a setD ⊆ V is a dominating set if every vertex number inD has a neighbor in
D, and finally a setW ⊆ E is an edge dominating set if every edge number inW has a neighbor
in W .

We set

Min|L| = β′,

Max|S| = α,

Min|Q| = β,

Max|M| = α′,

Min|D| = γ,

Min|W | = γ ′.

(1.1)

By [1],

(i) α + β = n,

(ii) α′ + β′ = n.

Also in every bipartite graph

(iii) α = β′,

(iv) α′ = β.

We denote the Adjacency matrix by A and Incidence matrix by R, in which A = [aij]n×n such
that

aij = the numbers of edges with endpoints vi and vj , (1.2)

and also R = [rij]n×m in which

rij =

⎧
⎨

⎩

1, vi is an endpoint of ej ,

0, otherwise.
(1.3)

We also define an Edge adjacency matrix B = [bij]m×m as follows:

bij =

⎧
⎨

⎩

1, ei is adjacent to ej ,

0, otherwise,
(1.4)

and bii = 0.
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From now on we set

V = (v1, v2, . . . , vn)t,

E = (e1, e2, . . . , em)t,

1n = (1, 1, . . . , 1)t1×n.

(1.5)

2. Edge Cover Set and Edge Cover Polynomial

As previous notations we have the following theorem for obtaining theminimum size of edge
cover set.

Theorem 2.1. One has

β′ = min
m∑

i=1

ei

subject to RE � 1n,

ei ∈ {0, 1}, where i = 1, 2, . . . , m.

(2.1)

Proof. Since an edge cover set of G is a set L of edges such that every vertex of G is incident
to some edge of L and we want to obtain the optimal size of the sets in covering problems, so
we will have a minimize problem; that is, the object function is β′ = min

∑m
i=1 ei; on the other

hand for each vi ∈ V at least one edge with endpoint vi must belong to L; in other words from
every row of matrix R at least one entry (ei)must be equal to 1. Therefore

r11e1 + r12e2 + · · · + r1mem ≥ 1,

r21e1 + r22e2 + · · · + r2mem ≥ 1,

...

rn1e1 + rn2e2 + · · · + rnmem ≥ 1,

ei ∈ {0, 1}, where i = 1, 2, . . . , m.

(2.2)

Definition 2.2. An edge cover polynomial is as follows:

L(x) = a0x
β′ + a1x

β′+1 + · · · + am−β′xm, (2.3)

where β′ is the same as in (2.1) and ai’s are the number of edge cover sets with β′ + i elements.



4 ISRN Algebra

Theorem 2.3. The coefficients a0, a1, . . . , am−β′ in edge cover polynomial are all of solutions of the
following system for i = 0, i = 1, . . . , i = m − β′, respectively,

RE ≥ 1n, (∗)

e1 + e2 + · · · + em = β′ + i,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.
(∗∗)

Proof. The first inequality (∗) is the condition for a set to be an edge cover set and (∗∗) for
each i causes that we have the edge cover sets with cardinality β′, β′ + 1, . . . , m, respectively,
and with this process we can compute a0, a1, . . . , am−β′ . It is trivial that am−β′ = 1 and this
completes the proof.

Algorithm 2.4 (For computation ai). One has the following.

Step 1. Solve

β′ = min
m∑

i=1

ei,

RE ≥ 1n,

ej ∈ {0, 1}, where j = 1, 2, . . . , m,

(2.4)

and obtain β′.

Step 2. For i = 0 tom − β′ − 1, compute all of solutions:

RE ≥ 1n,

e1 + e2 + · · · + em = β′ + i,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.

(2.5)

Step 3. Set ai to be equal to all solutions of Step 2.

3. Independence Set and Independence Polynomial

In an independence set S from every two adjacent vertices at most one of them belongs to S;
this means that for all ei ∈ Ewith end points vi and vj at most vi or vj belongs to S. Therefore
we have the following.
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Theorem 3.1. One has

α = max
n∑

i=1

vi

subject to RtV ≤ 1m,

vi ∈ {0, 1}, where i = 1, 2, . . . , n.

(3.1)

Definition 3.2. An independence polynomial is as follows:

S(x) = b0x
α + b1x

α−1 + · · · + bα−1x, (3.2)

where α is the same as in (3.1) and bi’s are the numbers of independence sets with α − i
elements.

Theorem 3.3. The coefficients b0, b1, . . . , bα−1 are all of solutions of the following system i = 0, i =
1, . . . , i = α − 1, respectively,

RtV ≤ 1m,

v1 + v2 + · · · + vn = α − i,

vj ∈ {0, 1}, where j = 1, 2, . . . , n.

(3.3)

Algorithm 3.4 (For computation bi). One has the following.

Step 1. Solve

α = max
n∑

i=1

vi,

RtV ≤ 1m,

vj ∈ {0, 1}, where j = 1, 2, . . . , n,

(3.4)

and obtain α.

Step 2. For i = 0 to α − 2, compute all of solutions:

RtV ≤ 1m,

v1 + v2 + · · · + vn = α − i,

vj ∈ {0, 1}, where j = 1, 2, . . . , n.

(3.5)

Step 3. Set bi to be equal to all solutions of Step 2 of course bα−1 = n.
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4. Vertex Cover Set and Vertex Cover Polynomial

We have the following theorem for vertex cover set.

Theorem 4.1. One has

β = min
n∑

i=1

vi

subject to RtV � 1m,

vi ∈ {0, 1}, where i = 1, 2, . . . , n.

(4.1)

Proof. Since a vertex cover set of G is a set Q of vertices such that every edge of G is incident
to some vertex of Q and we want to obtain the optimal size of the sets in covering problems,
so we will have a minimize problem; that is, the object function is β = min

∑n
i=1 vi; on the

other hand for each ei ∈ E with endpoint vi and vj at least one of them must belong to Q; in
other words from every row of matrix Rt at least one entry (vi)must be equal to 1. Therefore

r11v1 + r21v2 + · · · + rn1vn ≥ 1,

r12v1 + r22v2 + · · · + rn2vn ≥ 1,

...

r1nv1 + r2nv2 + · · · + rmnvn ≥ 1,

vi ∈ {0, 1}, where i = 1, 2, . . . , n.

(4.2)

Definition 4.2. A vertex cover polynomial is as follows:

Q(x) = c0x
β + c1x

β+1 + · · · + cn−βxn, (4.3)

where β is the same as in (4.1) and ci’s are the number of vertex cover sets with β+ i elements.

Theorem 4.3. The coefficients c0, c1, . . . , cn−β are all of solutions of the following system for i = 0,
i = 1, . . . , i = n − β, respectively,

RtV ≥ 1, (ı)

v1 + v2 + · · · + vn = β + i,

vj ∈ {0, 1}, where j = 1, 2, . . . , n.
(ıı)

Proof. The first inequality (ı) is the condition for a set to be a vertex cover set and (ıı) for each
i causes that we have the vertex cover sets with cardinality β, β + 1, . . . , n, respectively, and
with this process we can compute c0, c1, . . . , cn−β. It is trivial that cn−β = 1 and this completes
the proof.
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Algorithm 4.4 (For computation ci). One has the following.

Step 1. Solve

β = min
n∑

i=1

vi,

RtV ≥ 1m,

vi ∈ {0, 1}, where i = 1, 2, . . . , n,

(4.4)

and obtain β.

Step 2. For i = 0 to n − β − 1, compute all of solutions:

RtV ≥ 1m,

v1 + v2 + · · · + vn = β + i,

vj ∈ {0, 1}, where j = 1, 2, . . . , n.

(4.5)

Step 3. Set ci to be equal to all solutions of Step 2.

5. Matching Set and Matching Polynomial

In a matching set (M) from every two adjacent edges at most one of them belongs to M and
this means that for all ei, ej ∈ E with common endpoint vi at most ei or ej belongs to M.
Therefore we have the following.

Theorem 5.1. One has

α′ = max
m∑

i=1

ei

subject to RE ≤ 1n,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.

(5.1)

Definition 5.2. A matching polynomial is as follows:

M(x) = d0x
α′
+ d1x

α′−1 + · · · + dα′−1x, (5.2)

where α′ is the same as in (5.1) and di’s are the number of matching sets with α′ − i elements.
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Theorem 5.3. The coefficients d0, d1, . . . , dα′−1 are all of solutions of the following system, respec-
tively, i = 0, i = 1, . . . , i = α′ − 1,

RE ≤ 1n,

e1 + e2 + · · · + em = α′ − i,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.

(5.3)

Algorithm 5.4 (For computation di). One has the following.

Step 1. Solve

α′ = max
m∑

i=1

ei,

RE ≤ 1n,

ej ∈ {0, 1}, where j = 1, 2, . . . , m,

(5.4)

and obtain α′.

Step 2. For i = 0 to α′ − 2, compute all of solutions:

RE ≤ 1n,

e1 + e2 + · · · + em = α′ − i,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.

(5.5)

Step 3. Set di to be equal to all solutions of Step 2, i = 0, 1, . . . , α′ − 2, of course dα′−1 = 1.

6. Dominating Set and Dominating Polynomial

With the same argument in the previous sections we have the following theorem.

Theorem 6.1. One has

γ = min
n∑

i=1

vi,

subject to (A + In)V � 1n,

vi ∈ {0, 1}, where i = 1, 2, . . . , n.

(6.1)

Definition 6.2. A dominating polynomial is as follows:

D(x) = f0x
γ + f1x

γ+1 + · · · + fn−γxn, (6.2)

where γ is the same as in (6.1) and fi’s are the number of dominating sets with γ + i elements.
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Theorem 6.3. The coefficients f0, f1, . . . , fn−γ are all of solutions of the following system, respectively,
i = 0, i = 1, . . . , i = n − γ ,

(A + In)V ≥ 1n, (†)

v1 + v2 + · · · + vn = γ + i,

vj ∈ {0, 1}, where j = 1, 2, . . . , n.
(††)

Proof. The first inequality (†) is the condition for a set to be a dominating set and (††) for each
i causes that we have the dominating sets with cardinality γ, γ+1, . . . , n, respectively, andwith
this process we can compute f0, f1, . . . , fn−γ . It is trivial that fn−γ = 1 and this completes the
proof.

Algorithm 6.4 (For computation fi). One has the following.

Step 1. Solve

γ = min
n∑

i=1

vi,

(A + In)V ≥ 1n,

vi ∈ {0, 1}, where i = 1, 2, . . . , n,

(6.3)

and obtain γ .

Step 2. For i = 0 to n − γ − 1, compute all of solutions:

(A + In)V ≥ 1n,

v1 + v2 + · · · + vn = γ + i,

vj ∈ {0, 1}, where j = 1, 2, . . . , n.

(6.4)

Step 3. Set fi to be equal to all solutions of Step 2.

7. Edge Dominating Set and Edge Dominating Polynomial

With the same argument in previous sections we have Theorems 7.1 and 7.3.

Theorem 7.1. One has

γ ′ = min
m∑

i=1

ei

subject to (B + Im)E � 1m,

ei ∈ {0, 1}, where i = 1, 2, . . . , m.

(7.1)
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Definition 7.2. An edge dominating polynomial is a polynomial such as

W(x) = f ′
0x

γ ′ + f ′
1x

γ ′+1 + · · · + f ′
m−γ ′x

m, (7.2)

where γ ′ is the same as in (7.1) and f ′
i ’s are the number of edge dominating sets with γ ′ + i

elements.

Theorem 7.3. The coefficients f ′
0, f

′
1, . . . , f

′
m−γ ′ are all of solutions of the following system, respec-

tively, i = 0, i = 1, . . . , i = m − γ ′,

(B + Im)E ≥ 1m,

e1 + e2 + · · · + em = γ ′ + i,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.

(7.3)

Algorithm 7.4 (For computation fi). One has the following.

Step 1. Solve

γ ′ = min
m∑

i=1

ei,

(B + Im)E ≥ 1m,

ei ∈ {0, 1}, where i = 1, 2, . . . , m,

(7.4)

and obtain γ ′.

Step 2. For i = 0 tom − γ ′ − 1, compute all of solutions:

(B + Im)E ≥ 1m,

e1 + e2 + · · · + em = γ ′ + i,

ej ∈ {0, 1}, where j = 1, 2, . . . , m.

(7.5)

Step 3. Set f ′
i to be equal to all solutions of Step 2.
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