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This paper gives a characterization of uniform matroids by means of locked subsets. Locked
subsets are 2-connected subsets, their complements are 2-connected in the dual, and the minimum
rank of both is 2. Locked subsets give the nontrivial facets of the bases polytope.

1. Introduction

Sets and their characteristic vectors will not be distinguished. We refer to Oxley [1] for the
terminology about matroids and to Schrijver [2] for the terminology about polyhedra.

Let E be a finite set, and let M be a matroid defined on E. If M is 2-connected, then
we will say that a proper subset L of E; that is, Ø/=L/=E, is locked if L is nonseparable or
2-connected in M,E \ L is nonseparable or 2-connected in M∗ and r(L) ≥ max{2, 2 + r(E)− |
E \ L|} or min{r(L), r∗(E \ L)} ≥ 2. Observe that L is locked in a matroid M if and only
if M | L and M/L are both connected and min{r(L), r∗(E \ L)} ≥ 2. Locked subsets give
the nontrivial facets of the bases polytope. We will denote the class of these subsets by
Λ(M) or Λ. If M is not 2-connected, then M = M1 ⊕ M2 ⊕ · · · ⊕ Mk where each Mj is 2-
connected, j = 1, 2, . . . , k, and the class of locked subsets Λ(M) is the union of such classes
in each 2-connected component involved in the direct sums. Locked subsets were introduced
by Chaourar ([3–5]) to describe some facets of the cone and the polytope generated by the
matroid bases. We will denote the 2-sum of two matroids M and N using the basepoint {e}
byM⊕eN orM⊕2N if there is no confusion. Since 2-sums withU1,2 andU1,1 are, respectively,
identity and deletion, then we will consider only proper 2-sums without U1,2 norU1,1.

Let M be the class of matroids obtained by means of 1-sums (or direct sums) and
(proper) 2-sums of uniform matroids together with all minors of such matroids. Since
(M ⊕N)∗ = M∗ ⊕N∗ and (M⊕2N)∗ = M∗⊕2N

∗ (see [1]), then M is closed under the taking
of duals. It is also clear that M is closed under the taking of minors.
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If M is not a 3-connected matroid, then, using a theorem of Oxley (see [1]), M can
be constructed from 3-connected minors of it by a sequence of the operations of 1-sum and
2-sum.

The purpose of this paper is to characterize uniform matroids by means of locked
subsets. There are exactly five 3-connected matroids of rank 3 on a 6-element set. These
matroids can be obtained from M(K4) by relaxing zero, one, two, three, or four circuit-
hyperplanes. The matroids are, respectively, M(K4), the rank-3 whirl W3, Q6, P6, and the
uniform matroid U3,6 (see [1]).

The remaining of the paper is organized as follows: in Section 2, we will give a
characterization of uniformmatroids bymeans of locked subsets, two consequences are given
in Section 3, and the conclusion is given is Section 4.

2. The Characterization

We will need to three lemmas in this section.

Lemma 2.1. |Λ(M∗)| = |Λ(M)|.

Proof. Direct from the definition of a locked subset.

Lemma 2.2. Let N be a 3-connected minor of a 2-connected matroid M. If Λ(N)/=Ø, then
Λ(M)/=Ø.

Proof. Using duality and Lemma 2.1, it suffices to prove that, if Λ(M \e)/=Ø, then Λ(M)/=Ø.
Suppose that L is locked in M \ e. We establish that L ∪ {e}, when e ∈ closure (L), or

L, when e /∈ closure (L), is locked in M. If L spans e in M, then M | (L ∪ {e}) is connected
because e is not a loop ofM. As

M/(L ∪ {e}) = (M/L)/e = (M/L) \ e = (M \ e)/L (2.1)

is connected, it follows that L ∪ {e} is locked in M. If L does not span e in M, then e is not
a loop of M/L. Therefore, M/L is connected because (M/L) \ e = (M \ e)/L is connected
(remember that L is locked in M \ e). Thus, L is locked inM.

The following last lemma of this section was proved by Walton [6] and we give here a
new proof based on locked subsets.

Lemma 2.3. LetM be a 3-connected matroid having no isomorphic minor to any ofM(K4),W3, Q6,
and P6. Then M is uniform.

Proof. Suppose by contradiction that M is not uniform. It follows that there exists a subset
F of M such that |F| = r(M) and F contains a circuit C. Without loss of generality, we can
suppose that |C| = 3 because, if it is not, we can contract some elements of C keeping C as
a circuit and decreasing its cardinality. Now we delete all elements of F − C. Let N be the
obtained matroid.

Case 1. If rN(E − C) = r(N), then let B be a base of N included into E − C. If |B| > 3, then
contract some elements of B keeping B as a base and C as a circuit with |B| = |C| = 3. C is
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a locked subset of the matroid N | (B ∪ C) because C is 2-connected, B is a cocircuit, and
r(C) = r∗(B) = 2. Thus, N | (B ∪ C) is one of the excluded minors, a contradiction.

Case 2. If rN(E − C) < r(N), then N is a series extension of a uniform matroid. By induction
on |E(M)|, the matroid U, obtained by contracting one element in the series closure S, is
uniform. But S intersect C so there are two parallel elements e and f inU. Since r({e, f}) = 1,
then r(U) = 1, a contradiction.

Here we give our main result.

Theorem 2.4. IfM is a 3-connected matroid, then the following assertions are equivalent:

(i) M is a uniform matroid,

(ii) Λ(M) = Ø.

Proof. (i)⇒(ii) Using the fact that there is a unique closed and 2-connected subset which is E.
(ii)⇒(i) Using Lemma 2.2, any minor N of M verifies Λ(N) = Ø. So M has no

isomorphic minor to any of M(K4),W3, Q6, and P6, because any of these excluded minors
has at least one locked subset (circuit of rank 3). By Lemma 2.3, M is uniform.

Note that (i) implies (ii), in Theorem 2.4, even if M is not 3-connected.

3. Some Consequences

We will give two corollaries of our characterization.
The first one is a characterization by excluded minors and is almost a restatement of

Lemma 2.3, and Walton should be credited for this result:

Corollary 3.1. The following assertions are equivalent for a matroid M:

(i) M is a minor of 1-sums and 2-sums of uniform matroids,

(ii) M has no isomorphic to any of M(K4),W3, Q6 and P6.

Proof. (i)⇒(ii) By contradiction, suppose that M has one isomorphic to any of the excluded
minors. Since all the excluded minors are 3-connected, then at least one of the 3-connected
components used to construct M by means of 1-sums and 2-sums has one such excluded
minor. Let N be this excluded minor. Since the number of locked subsets for any excluded
minor is at least 1, then, using Lemmas 2.2 and 2.3 and Theorem 2.4, Λ(N)/=Ø and N is not
uniform.

(ii)⇒(i) If M is 3-connected, then, by Lemma 2.3, M is uniform. If M is not 3-
connected, then M can be construct using 3-connected matroids by means of 1-sum and
2-sum. It follows that no one of these matroids has an isomorphic to any of the excluded
minors and, by Lemma 2.3, all these matroids are uniform.

We will need the following result of Chaourar [5] to deduce the second corollary.
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Theorem 3.2. If M is a 2-connected matroid, then its bases’ polytope is given by the following
constraints:

x(E) = r(E), (3.1)

x(S) ≥ |S| − 1 for any series closure S of M, (3.2)

x(P) ≤ 1 for any parallel closure P of M, (3.3)

x(H) ≤ r(H) for any locked subset H of M. (3.4)

Corollary 3.3. If M is a 2-connected and uniform matroid, then its bases’ polytope is given by
constraints (3.1)–(3.3).

Proof. Direct from Theorems 2.4 and 3.2.

4. Conclusion

We have given a characterization of uniform matroids by means of locked subsets and two
consequences of this characterization.
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