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Let G be a finite group. A subgroup H of G is said to be S-semipermutable in G if H permutes
with every Sylow p-subgroup of G with (p, |H|) = 1. In this paper, we study the influence of S-
permutability property of certain abelian subgroups of prime power order of a finite group on its
structure.

1. Introduction

All groups considered in this paper will be finite. Two subgroups H and K of a group G
are said to permute if HK = KH. It is easily seen that H and K permute if and only if
HK is a subgroup of G. We say, following Kegel [1], that a subgroup of G is S-quasinormal
in G if it permutes with every Sylow subgroup of G. Chen [2] introduced the following
concept: a subgroup H of G is said to be S-semipermutable in G if H permutes with every
Sylow p-subgroup of G with (p, |H|) = 1. Obviously, every S-quasinormal subgroup of G is
an S-semipermutable subgroup of G. In contrast to the fact that every S-quasinormal sub-
group of G is a subnormal subgroup of G (see [1]), it does not hold in general that every
S-semipermutable subgroup of G is a subnormal subgroup of G. It suffices to consider the
alternating group of degree 4.

Several authors have investigated the structure of a finite group when some
information is known about some subgroups of prime power order in the group. Huppert
[3] proved that a finite group G is solvable provided that all subgroups of prime order are
normal in G. Buckley [4], proved that a group G of odd order is supersolvable provided that
all subgroups of prime order are normal in G. Srinivasan [5], and proved that a finite group
G is supersolvable if the maximal subgroups of every Sylow subgroup of G are normal in G.
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Developing the result of Srinivasan, Ramadan [6] proved that ifG is a solvable group and the
maximal subgroups of every Sylow subgroup of the Fitting subgroup F(G) of G are normal
in G, then G is supersolvable.

For a finite p-group P , we denote

Ω(P) = Ω1(P) if p > 2, Ω(P) = 〈Ω1(P),Ω2(P)〉 if p = 2, (1.1)

where Ωi(P) = 〈x ∈ P : |x| = pi〉.
Of late there has been a considerable interest to investigate the influence of the abelian

subgroups of largest possible exponent of prime power order (we call such subgroups ALPE-
subgroups) on the structure of the group. Asaad et al. [7] proved that ifG is a group such that
for every prime p and every Sylow p-subgroup Gp of G, the ALPE-subgroups of Gp (resp.,
Ω(Gp)) are normal in G, then G is supersolvable. Ramadan [8] proved the following two
results. (1) Let G be a group such that for every prime p and every Sylow p-subgroup Gp of
G, the ALPE-subgroups ofGp (resp.,Ω(Gp)) are S-quasinormal inG, thenG is supersolvable.
(2) Let K be a normal subgroup of G such that G/K is supersolvable. If for every prime
p and every Sylow p-subgroup Kp of K, the ALPE-subgroups of Kp (resp., Ω(Kp)) are S-
quasinormal in G, then G is supersolvable.

In this paper, we study the structure of a finite group under the assumption that
certain subgroups of prime power order are S-semipermutable in the group. We focus our
attention on S-semipermutability property of the ALPE-subgroups of a fixed ALPE-subgroup
having maximal order of the Sylow subgroups of a finite group. Furthermore, we improve
and extend the above-mentioned results by using the concept of S-semipermutability.

2. Preliminaries

In this section, we give some results which will be useful in the sequal.

Lemma 2.1 (see [2, Lemmas 1 and 2]). Let G be a group.

(i) IfH is a S-semipermutable subgroup of G andK is a subgroup of G such thatH ≤ K ≤ G,
thenH is S-semipermutable in K.

(ii) Let π be a set of primes, N a normal π ′-subgroup of G, and H a π-subgroup of G. If H is
S-semipermutable in G, thenHN/N is S-semipermutable in G/N.

Lemma 2.2 (see [9, Lemma A]). Let H be a p-subgroup of G; for some prime p. Then H is S-
quasinormal inG if and only ifOp(G) ≤ NG(H), whereOp(G) is the normal subgroup ofG generated
by all p′-elements of G.

Lemma 2.3. LetH be a p-subgroup of G, p is a prime. Then the following statements are equivalent:

(i) H is S-quasinormal in G;

(ii) H ≤ Op(G) and H is S-semipermutable in G.

Proof. (i) ⇒ (ii): Suppose that H is S-quasinormal in G. So it follows by [1, Satz 1, page 209]
that H is subnormal in G and then by [10, Lemma 8.6(a), page 28] that H ≤ Op(G). Since H
is S-quasinormal in G, obviously, it is S-semipermutable in G. Thus (ii) holds.
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(ii) ⇒ (i): Since H is S-semipermutable in G, then HGq = GqH for every Sylow q-
subgroup Gq of G with (q, |H|) = 1. Clearly, H = Op(G) ∩ HGq is normal in HGq and so
Gq ≤ NG(H). Thus Op(G) ≤ NG(H). Applying Lemma 2.2, we have thatH is S-quasinormal
in G. Thus (i) holdes.

Lemma 2.4 (see [7, Theorem 4, page 253]). Let P be a normal p-subgroup of G. If the ALPE-
subgroups of P are normal in G, then P is supersolvably embedded in G.

Lemma 2.5 (see [11, Lemma 3.8, page 2245]). Let p be the smallest prime dividing the order of a
group G, and let Gp be a Sylow p-subgroup of G. If Ω(Gp) ≤ genz∞(G), then G is p-nilpotent.

Lemma 2.6 (see [12, Lemma 2.6]). Let N be a nontrivial normal subgroup of a group G. If N ∩
Φ(G) = 1, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups
of G which are contained in F(N).

Lemma 2.7 (see [13, Lemma 3.3.1, page 23]). Suppose that Gp is a normal Sylow p-subgroup of G
and that Ω(Gp)K is supersolvable, where K is a p′-Hall subgroup of G. Then G is supersolvable.

3. Main Results

Theorem 3.1. Let p be the smallest prime dividing the order of a group G, and let Gp be a Sylow
p-subgroup of G. Fix an ALPE-subgroup P of Gp having maximal order. If the ALPE-subgroups of P
are S-semipermutable in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false, and let G be a counterexample of minimal order. We
prove the following steps.

(1) If P ≤ M < G, ThenM Is p-Nilpotent

It is clear to see by Lemma 2.1 that the ALPE-subgroups of P are S-semipermutale in M, so
that M satisfies the hypothesis of the theorem. Thus, the minimality of G yields that M is
p-nilpotent.

(2) NG(P) Is p-Nilpotent

Suppose that P is normal in G. Let H be an ALPE-subgroup of P (in particular, we may take
H = P). By hypothesis, H is S-semipermutable in G and so by Lemma 2.3, we have that H
is S-quasinormal in G. Hence HGq is a subgroup of G, where Gq is a Sylow q-subgroup of
G with q /= p. Clearly, H is a subnormal Hall subgroup of HGq. Thus H is normal in HGq

and hence H is normal in PGq as P is abelian. Thus P is supersolvably embedded in PGq by
Lemma 2.4 and so P ≤ Q∞(PGq). Since Q∞(PGq) ≤ genz∞(PGq) by [14, page 34], it follows
by Lemma 2.5 that PGq is p-nilpotent. Thus PGq = P ×Gq. HenceGq ≤ CG(P), so thatOp(G) ≤
CG(P). If CG(P) < G, then CG(P) is p-nilpotent by (1). Thus Op(G) is p-nilpotent and so G
is p-nilpotent: a contradiction. Thus we may assume that CG(P) = G. Then P ≤ Z(G), in
particular, P ≤ Z(Gp). So, P = Gp by the maximality of P and we have by [15, Theorem
4.3, page 252] that G is p-nilpotent: a contradiction. Thus we may assume that NG(P) < G.
According to (1), we have that NG(P) is p-nilpotent.
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(3) Op′(G) = 1

IfOp′(G)/= 1, we consider the quotient group G/Op′(G). Clearly, GpOp′(G)/Op′(G) is a Sylow
p-subgroup of G/Op′(G) and POp′(G)/Op′(G) is an ALPE-Subgroup of GpOp′(G)/Op′(G)
having maximal order. By Lemma 2.1, the hypotheses are inherited over G/Op′(G). Thus,
the minimality of G implies that G/Op′(G) is p-nilpotent, hence G is p-nilpotent, which is a
contradiction.

(4) G = GpGq, Where Gq Is a Sylow q-Subgroup of G with q /= p

Since G is not p-nilpotent by [15, Theorem 4.5, page 253], there exists a subgroup H of Gp

such that NG(H) is not p-nilpotent. But NG(Gp) is p-nilpotent by a similar argument of the
proof of the step (2). Thus we may choose a subgroup H of Gp such that NG(H) is not p-
nilpotent butNG(K) is p-nilpotent for every subgroupK of Gp withH < K ≤ Gp. It is easy to
see that NG(Gp) ≤ NG(H) ≤ G. If NG(H) < G, it follows by (1) that NG(H) is p-nilpotent: a
contradiction. Thus NG(H) = G. This leads to Op(G)/= 1 and NG(K) is p-nilpotent for every
subgroup K of Gp with Op(G) < K ≤ Gp. Now, by [15, Theorem 4.5, page 253] again, we see
that G/Op(G) is p-nilpotent and therefore that G is p-solvable. Since G is p-solvable, for any
q ∈ π(G) with q /= p, there exists a Sylow q-subgroup Gq of G such that GpGq ≤ G by [15,
Theorem 3.5, page 229]. If GpGq < G, then GpGq is p-nilpotent by (1) and hence Op(G)Gq is
p-nilpotent. Thus Op(G)Gq = Op(G) × Gq. This leads to Gq ≤ CG(Op(G)) ≤ Op(G) by [15,
Theorem 3.2, page 228] as Op′(G) = 1 by (3), which is a contradiction. Thus G = GpGq.

(5) The Final Contradiction

Let N be a minimal normal subgroup of G such that N ≤ Op(G). Clearly, N ∩ Z(Gp)/= 1
and so Z(Gp) ≤ P by the maximality of P . Hence 1/=N ∩ Z(Gp) ≤ N ∩ P . By hypothesis,
PGq ≤ G for any Sylow q-subgroup Gq of G with (q, |P |) = 1. It is easy to see that N ∩ P =
N ∩ PGq � PGq. Thus Op(G) ≤ NG(N ∩ P). If NG(N ∩ P) < G, then by (1), NG(N ∩ P) is
p-nilpotent. Hence Op(G) is p-nilpotent and so also does G: a contradiction. Thus we may
assume that NG(N ∩ P) = G. By the minimality of N and since N ∩ P /= 1, we have that
N ∩ P = N and so N ≤ P . If PGq < G, then PGq is p-nilpotent by (1) and hence NGq is
p-nilpotent. Thus NGq = N × Gq and so Gq ≤ CG(N). Thus by (4), G/CG(N) is a p-group
and so by [14, Theorem 6.3, page 221], N ≤ Z∞(G). Since Z∞(G) ≤ Q∞(G), we have that
N ≤ Q∞(G)which implies thatN is supersolvably embedded inG and so clearly that |N| = p.
Thus, it is easy to see that the quotient group G/N satisfies the hypothesis of the theorem by
Lemma 2.1. Now, by the minimality of G, we see that G/N is p-nilpotent. Since the class of
all p-nilpotent groups is a saturated formation, we have thatN is the unique minimal normal
subgroup of G and N � Φ(G). Thus Φ(G) = 1 and hence N = Op(G) by Lemma 2.6 and
so F(G) = Op(G) = N by (3). Hence Gq ≤ CG(F(G)). Since G is solvable, it follows by [15,
Theorem 2.6, page 216] that CG(F(G)) ≤ F(G) = Op(G): a contradiction. Thus we must have
G = PGq. Let G∗

q be a Sylow q-subgroup of NG(P). By (2), we have that G∗
q � NG(P). Hence

NG(P) = PG∗
q = P ×G∗

q. Thus P ≤ Z(NG(P)), and, therefore, G is p-nilpotent by [15, Theorem
4.3, page 252]: a final contradiction.

We need the following result.
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Theorem 3.2. Let F be a saturated formation containing the class of supersolvable groups U. Let Gp

be a normal Sylow p-subgroup of a group G such that G/Gp ∈ F. Fix an ALPE-subgroup P of Gp

having maximal order. If the ALPE-subgroups of P are S-semipermutable in G, then G ∈ F.

Proof. We treat the following two cases.

Case 1. Op′(G)/= 1.
Clearly, GpOp′(G)/Op′(G) is a normal Sylow p-subgroup of G/Op′(G) and

POp′(G)/Op′(G) is an ALPE-subgroup of GpOp′(G)/Op′(G) having maximal order. By
hypothesis and Lemma 2.1, the ALPE-subgroups of POp′(G)/Op′(G) are S-semipermutable
in G/Op′(G). Clearly,

(
G/Gp

)

(
GpOp′(G)/Gp

) ∼= G

GpOp′(G)
∼=

(
G/Op′(G)

)

(
GpOp′(G)/Op′(G)

) ∈ F. (3.1)

Thus, our hypothesis carries over to G/Op′(G) and so G/Op′(G) ∈ F by induction on
the order of G. Therefore, G/(Op′(G) ∩Gp) ∼= G ∈ F.

Case 2. Op′(G) = 1.
Let H be an ALPE-subgroup of P . Then H is S-quasinormal in G by Lemma 2.3

and hence Op(G) ≤ NG(H) by Lemma 2.2. Let T = POp(G). Then H is normal in T . Thus
Lemma 2.4 implies that P is supersolvably embedded in T . Then, T/CT (P) is supersolvable
by [14, Lemma 7.15, page 35]. Clearly, Tp = Gp ∩ T � T , where Tp is a Sylow p-subgroup
of T . Let Q be a p′-subgroup of CT (P). Then QP = Q × P is a group of automorphisms of
Tp = Op(T). ButCTp(P) = P , and consequently,Q acts trivially onCTp(P). ThenQ acts trivially
on Tp by [15, Theorem 3.4, page 179], that is, Q ≤ CT (Tp). It is easy to see that T is subnormal
in G and so Op′(T) ≤ Op′(G) = 1. Hence F(T) = Tp. Since T is solvable, it follows by [15,
Theorem 2.6, page 216] that Q ≤ CT (F(T)) ≤ F(T) = Tp: a contradiction. Hence CT (P) must
be a p-group and soCT (P) = P . Thus, T/CT (P) = T/P is supersolvable which implies that T is
supersolvable by [16, Theorem 4]. Thus Op(G) is supersolvable and therefore, G = GpO

p(G)
is supersolvable by [17, Exercise 7.2.23, page 159]. Hence, G ∈ U ⊆ F.

As an immediate consequence of Theorem 3.2, we have the following theorem.

Corollary 3.3. Let Gp be a normal Sylow p-subgroup of a group G such that G/Gp is supersolvable.
Fix an ALPE-subgroup P of Gp having maximal order. If the ALPE-subgroups of P are S-
semipermutable in G, then G is supersolvable.

We now prove the following theorem.

Theorem 3.4. Let G be a group. For every prime p and every Sylow p-subgroup Gp of G, fix an
ALPE-subgroup P of Gp having maximal order. If the ALPE-subgroups of P are S-semipermutable in
G, then G is supersolvable.

Proof. By repeated applications of Theorem 3.1, the group G has a Sylow tower of
supersolvable type. HenceG has a normal Sylow p-subgroupGp, where p is the largest prime
dividing the order of G. By Lemma 2.1, our hypothesis carries over to G/Gp. Thus G/Gp is
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supersolvable by induction on the order of G. Now, it follows from Corollary 3.3 that G is
supersolvable.

As an immediate consequence of Theorem 3.4, we have the following corollary.

Corollary 3.5 (Asaad et al. [7]). If G is a group such that the ALPE-subgroups of every Sylow
subgroup of G are normal in G, then G is supersolvable.

Corollary 3.6 (Ramadan [8]). If G is a group such that the ALPE-subgroups of every Sylow
subgroup of G are S-quasinormal in G, then G is supersolvable.

We need the following Lemma.

Lemma 3.7. Let K be a normal p-subgroup of a group G such that G/K is supersolvable. Fix an
ALPE-subgroup P of K having maximal order. If the ALPE-subgroups of P are S-semipermutable in
G, then G is supersolvable.

Proof. Let Gp be a Sylow p-subgroup of G. We treat the following two cases.

Case 1. K = Gp.
Then by Corollary 3.3, G is supersolvable.

Case 2. K < Gp.
Put π(G) = {p1, p2, . . . , pn}, where p1 > p2 > · · · > pn. Since G/K is supersolvable,

it follows by [18, Theorem 5, page 5] that G/K possesses supersolvable subgroups M/K
and L/K such that |G/K : M/K| = p1 and |G/K : L/K| = pn. Since M/K and L/K are
supersolvable, it follows that M and L are supersolvable by induction on the order of G.
Since |G : M| = |G/K : M/K| = p1 and |G : L| = |G/K : L/K| = pn, it follows again by [18,
Theorem 5, page 5] that G is supersolvable.

Now, we can prove the following theorem.

Theorem 3.8. Let K be a normal subgroup of G such that G/K is supersolvable. For every prime p
dividing the order ofK and every Sylow p-subgroupKp of K, fix an ALPE-subgroup P of Kp having
maximal order. If the ALPE-subgroups of P are S-semipermutable in G, then G is supersolvable.

Proof. By Lemma 2.1, the ALPE-subgroups of P are S-semipermutable in K. Hence K is
supersolvable by Theorem 3.4. Thus K has a normal Sylow p-subgroup Kp, where p is the
largest prime dividing the order ofK. SinceKp is characteristic inK andK � G, we have that
Kp � G. Clearly, (G/Kp)/(K/Kp) ∼= G/K is supersolvable. By Lemma 2.1, our hypothesis
carries over to G/Kp and hence G/Kp is supersolvable by induction on the order of G. Now,
it follows from Lemma 3.7 that G is supersolvable.

As an immediate consequence of Theorem 3.8, we have the following corollary.

Corollary 3.9 (Ramadan [8]). Let K be a normal subgroup of a group G such that G/K is
supersolvable. If the ALPE-subgroups of every Sylow subgroup of K are S-quasinormal in G, then
G is supersolvable.
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4. Similar Results

Following similar arguments to those of Theorem 3.1, it is possible to prove the following
result.

Theorem 4.1. Let p be the smallest prime dividing the order of a group G and let Gp be a Sylow
p-subgroup of G. Fix an ALPE-subgroup P of Ω(Gp) having maximal order. If the ALPE-subgroups
of P are S-semipermutable in G, then G is p-nilpotent.

We prove the following lemma.

Lemma 4.2. Let K be a normal p-subgroup of a group G such that G/K is supersolvable. Fix an
ALPE-subgroup P ofΩ(K) having maximal order. If the ALPE-subgroups of P are S-semipermutable
in G, then G is supersolvable.

Proof. Let Gp be a Sylow p-subgroup of G. We treat the following two cases.

Case 1. By [15, Theorem 2.1, page 221], there exists a p′-Hall subgroup T , which is a
complement to Gp in G. Hence G/Gp

∼= T is supersolvable. Since Ω(Gp) is characteristic
in Gp and Gp � G, we have that Ω(Gp) � G. Clearly, Ω(Gp)T/Ω(Gp) ∼= T is supersolvable.
Thus, our hypothesis and Corollary 3.3 imply that Ω(Gp)T is supersolvable. Therefore, G is
supersolvable by Lemma 2.7.

Case 2. Put π(G) = {p1, p2, . . . , pn}, where p1 > p2 > · · · > pn. Since G/K is supersolvable,
it follows by [18, Theorem 5, page 5] that G/K possesses supersolvable subgroups M/K
and L/K such that |G/K : M/K| = p1 and |G/K : L/K| = pn. Since M/K and L/K are
supersolvable, it follows that M and L are supersolvable by induction on the order of G.
Since |G : M| = |G/K : M/K| = p1 and |G : L| = |G/K : L/K| = pn, it follows again by [18,
Theorem 5, page 5] that G is supersolvable.

By a similar proof to the proof of Theorem 3.4, we can prove the following theorem.

Theorem 4.3. Let G be a group. For every prime p and every Sylow p-subgroup Gp of G, fix an
ALPE-subgroup P ofΩ(Gp) having maximal order. If the ALPE-subgroups of P are S-semipermutable
in G, then G is supersolvable.

As an immediate consequence of Theorem 4.3, we have the following corollary.

Corollary 4.4 (Asaad et al. [7]). If G is a group such that for every prime p and every Sylow p-
subgroup Gp, the ALPE-subgroups of Ω(Gp) are normal in G, then G is supersolvable.

Corollary 4.5 (Ramadan [8]). If G is a group such that for every prime p and every Sylow p-
subgroup Gp, the ALPE-subgroups of Ω(Gp) are S-quasinormal in G, then G is supersolvable.

We can now prove the following corollary.

Corollary 4.6. Let K be a normal subgroup of G such that G/K is supersolvable. For every prime
p dividing the order of K and every Sylow p-subgroup Kp of K, fix an ALPE-subgroup P of
Ω(Kp) having maximal order. If the ALPE-subgroups of P are S-semipermutable in G, then G is
supersolvable.
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Proof. By Lemma 2.1, the ALPE-subgroups of P are S-semipermutable in K. Hence K is
supersolvable by Theorem 4.3. Thus K has a normal Sylow p-subgroup Kp, where p is the
largest prime dividing the order ofK. SinceKp is characteristic inK andK � G, we have that
Kp � G. Clearly, (G/Kp)/(K/Kp) ∼= G/K is supersolvable. By Lemma 2.1, the hypothesis of
our theorem carries over to G/Kp. Thus G/Kp is supersolvable by induction on the order of
G and it follows that G is supersolvable by Lemma 4.2.

Remarks 4.7. (a) The converse of Theorem 3.4 is not true. For example, set G = S3 ×Z3, where
S3 = 〈x, y | x3 = y2 = 1, yx = x2y〉 and Z3 = 〈z | z3 = 1〉. Clearly, G is supersolvable and G
has an abelian Sylow 3-subgroup of exponent 3. It is easy to check thatG contains a subgroup
〈xz〉 of order 3 which fails to be S-semipermutable in G.

(b) Theorem 4.3 is not truewhen the smallest prime dividing the order ofG is even and
Ω(Gp) = Ω1(Gp), where Gp is a Sylow p-subgroup of G. For example, if Q is the quaternion
group 〈a, b | a4 = 1, b2 = a2, b−1ab = a−1〉,C9 is a cyclic group of order 9 with generator c, and
the action of C9 on Q is given by ac = b, bc = ab, then the semidirect product of Q by C9 is
a group of even order in which every subgroup of prime order is S-semipermutable. Clearly,
the semidirect product of Q by C9 is not supersolvable (see Buckley [4, Examples (ii)]).
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