
International Scholarly Research Network
ISRN Algebra
Volume 2012, Article ID 170697, 26 pages
doi:10.5402/2012/170697

Review Article
Growth for Algebras Satisfying
Polynomial Identities

Amitai Regev

Mathematics Department, The Weizmann Institute, 76100 Rehovot, Israel

Correspondence should be addressed to Amitai Regev, amitai.regev@weizmann.ac.il

Received 6 September 2012; Accepted 25 September 2012

Academic Editors: E. Aljadeff and F. Marko

Copyright q 2012 Amitai Regev. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The nth codimension cn(A) of a PI algebraAmeasures howmany identities of degree n the algebra
A satisfies. Growth for PI algebras is the rate of growth of cn(A) as n goes to infinity. Since in most
cases there is no hope in finding nice closed formula for cn(A), we study its asymptotics. We review
here such results about cn(A), when A is an associative PI algebra. We start with the exponential
bound on cn(A) then give few applications. We review some remarkable properties (integer and
half integer) of the asymptotics of cn(A). The representation theory of the symmetric group Sn is
an important tool in this theory.

1. Introduction

We study algebras A satisfying polynomial identities (PI algebra). A natural question arises:
give a quantitative description of how many identities such algebra A satisfies? We assume
that A is associative, though the general approach below can be applied to nonassociative PI
algebras as well.

Denote by Id(A) the ideal of identities of A in the free algebra F{x}. If Id(A)/= 0 then
its dimension dim Id(A) is always infinite, hence dimension by itself is essentially of no use
here. In order to overcome this difficulty we now introduce the sequence of codimensions.

1.1. Growth for PI Algebras

Given n, we let Vn denote the multilinear polynomials of degree n in x1, . . . , xn, so in the
associative case dimVn = n!. Identities can always be multilinearized, hence the subset
Id(A) ∩ Vn and its dimension give a good indication as to how many identities of degree
n A satisfies. In fact, in characteristic zero the ideal Id(A) is completely determined by the
sequence {Id(A) ∩ Vn}n≥1, but we make no use of that remark in the sequel.
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To study dim(Id(A) ∩ Vn), we introduce the quotient space Vn/(Id(A) ∩ Vn) and its
dimension

cn(A) = dim
(

Vn

Id(A) ∩ Vn

)
. (1.1)

The integer cn(A) is the nth codimension ofA. Clearly cn(A) determines dim(Id(A)∩Vn) since
dimVn is known.

The study of growth for PI algebra A is mostly the study of the rate of growth of the
sequence cn(A) of its codimensions, as n goes to infinity. We have the following basic pro-
perty.

Theorem 1.1 (see [1]). In the associative case, cn(A) is always exponentially bounded.

This theorem implies several key properties for PI algebras. And it fails in various
nonassociative cases.

Various recent results indicate that in general there is no hope to find a closed formula
for cn(A). Instead, one therefore tries to determine the asymptotic behavior of that sequence,
as n goes to infinity. We mention here three such results.

Recall that for two sequences of numbers, an ∼ bn if limn→∞an/bn = 1.
(1) The asymptotics for the k × k matrices Mk(F), see Section 6.

Theorem 1.2 (see [2]). When n goes to infinity,

cn(Mk(F)) ∼
[(

1√
2π

)k−1(1
2

)(k2−1)/2
· 1!2! · · · (k − 1)! · k(k2/2)

]
·
(
1
n

)(k2−1)/2
· k2(n+1).

(1.2)

(2) The integrality theorem of Giambruno-Zaicev, see Section 10.

Theorem 1.3 (see [3]). Let A be an associative PI F-algebra with char(F) = 0, then the limit

lim
n→∞

(cn(A))1/n (1.3)

exists and is an integer. We denote exp(A) = limn→∞(cn(A))1/n, so exp(A) ∈ N.

(3) The “1/2” theorem of Berele, see Section 11.

Theorem 1.4 (see [4, 5]). Let A be a PI algebra with 1 ∈ A. Then as n goes to infinity, cn(A) ∼
a ·nt ·hn, moreover, h ∈ N (h is given by the previous theorem) and t ∈ (1/2)Z, namely, t is an integer
or a half integer.

1.2. Structure of the Paper

The paper reviews some of the main results about the asymptotics of codimensions. It does
not contain full proofs but rather, it indicates some of the key ideas in the proofs of the main
results.
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We start by introducing Kemer’s classification of the verbally prime T -ideals. After
introducing the codimensions, two proofs of their exponential bound are reviewed. The Sn

character of that space, χSn(Vn/(Id(A) ∩ Vn)) is denoted as follows:

χn(A) = χSn

(
Vn

Id(A) ∩ Vn

)
(1.4)

and is called the nth cocharacter of A. Since cn(A) = degχn(A), cocharacters are refinement
of codimensions, and are important tool in their study. By a theorem of Amitsur-Regev and
of Kemer, χn(A) is supported on some (k, �) hook. Shirshov’s Height Theorem then implies
that the multiplicities in the cocharacters are polynomially bounded.

We then review the proof of the Giambruno-Zaicev Theorem in the finite dimensional
case, and the proof of Berele’s “1/2” Theorem in the case of a Capelli identity.

The question of the algebraicity of the generating function
∑

n cn(A) · xn is examined
in Section 12.

In the last section, we review a construction of nonassociative algebras where the integ-
rality property of the exponent fails.

2. PI Algebras and T Ideals

2.1. T-ideals

Let F be a field. In most cases we assume that char(F) = 0. We begin by studying associative
F-algebras. Analogue theories exist for nonassociative algebras. Let F{x} = F{x1, x2, . . .}
denote the algebra of associative and noncommutative polynomials in the countable
sequence of variables x1, x2, . . .. The polynomial f(x1, . . . , xn) ∈ F{x} is an identity of the
F-algebra A if f(a1, . . . , an) = 0 for every a1, . . . , an ∈ A. The algebra A satisfies polynomial
identities, or in short is PI, if there exist a nonzero polynomial 0/= f(x) = f(x1, . . . , xn) ∈ F{x}
which is an identity of A. For example, any commutative algebra is PI since it satisfies
x1x2 − x2x1. Applying alternating polynomials imply that every finite dimensional algebra,
associative or nonassociative is PI; see Section 3.1. The class of the PI algebras is both large
and interesting! We remark that the algebra Mk(F) of the k × k matrices over F plays a basic
role in PI theory.

Definition 2.1. (1) Let Id(A) ⊆ F{x} be the subset of the identities of the algebra A.

Id(A) =
{
f ∈ F{x} | f(x) = 0 is an identity of A

}
. (2.1)

(2) T ideals. The set Id(A) is a two sided ideal in F{x}, with the additional property
that it is closed under substitutions. Such ideals in F{x} are called T ideals. Thus, Id(A) is a
T ideal. It is easy to show that a T ideal is always the ideal of identities of some PI algebra A.

(3) Varieties of PI algebras. Given a T -ideal I ⊆ F{x}, the class of the PI algebras A
satisfying I ⊆ Id(A) is the variety corresponding to I. We use here the language of T ideals,
rather than that of varieties.
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2.2. Kemer’s Theory for T-Ideals (See [6])

The Specht Problem

One of the main problems in PI theory is the Specht problem: Are T ideals always finitely
generated as T ideals?

Kemer [6] developed a powerful structure theory for T ideals which allowed him to
prove that if char(F) = 0 then T ideals are indeed finitely generated. We review some of the
ingredients of that theory.

Amitsur [7] proved that the T ideal I = Id(Mk(F)) is prime in the following sense. If
fg ∈ I then either f ∈ I or g ∈ I; moreover, the only prime T ideals in F{x} are I = Id(Mk(F)).

Kemer introduced the notion of verbally prime ideals as follows.

Definition 2.2. The T ideal I is verbally prime if it satisfies the following condition: Let
f(x1, . . . , xm) and g(xm+1, . . . , xm+n) be polynomials in disjoint sets of variables. If

f(x1, . . . , xm) · g(xm+1, . . . , xm+n) ∈ I then f ∈ I or g ∈ I. (2.2)

Kemer then classified the verbally prime ideals in F{x}, see Theorem 2.3 below.

2.2.1. The AlgebrasMk(F), Mk(G), andMk,�

Let U = spanF{u1, u2, . . .} be an infinite dimensional vector space, and let G = G(U) be the
corresponding infinite dimensional Grassmann (Exterior) algebra. Then

G = span{ui1 · · ·uir | r = 1, 2, . . . and 1 ≤ i1 < · · · < ir}, (2.3)

and G = G0 ⊕G1, where

G0 = span{ui1 · · ·uir | r even},
G1 = span{ui1 · · ·uir | r odd}.

(2.4)

Now Mk(F) are the k × k matrices over F, whileMk(G) are the k × k matrices over G.

The AlgebraMk,�

We have Mk,� ⊆Mk+�(G). The elements of Mk,� are block matrices

(
A B
C D

)
, (2.5)

where A ∈ Mk(G0), D ∈ M�(G0), B is k × � and C is � × k, both with entries from G1. For
example:

M1,1 =
(
G0 G1

G1 G0

)
. (2.6)
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Theorem 2.3 (see [6]). The following are the three families of the verbally prime T ideals:
Id(Mk(F)), Id(Mk(G)), and Id(Mk,�).

The importance of the verbally prime ideals is demonstrated in the following theorem.

Theorem 2.4 (see [6]). Let I ⊂ F{x} be a T ideal. Then there exist verbally prime T ideals J1, . . . , Jr
such that

J1 · · · Jr ⊆ I ⊆ J1 ∩ · · · ∩ Jr . (2.7)

3. Multilinear Polynomials

As usual, Sn denotes the nth symmetric group.

Definition 3.1. The polynomial f(x1, . . . , xn) ∈ F{x} is multilinear (in x1, . . . , xn) if

f(x1, . . . , xn) =
∑
σ∈Sn

ασxσ(1) · · ·xσ(n) (3.1)

for some coefficients ασ ∈ F. Let Vn = Vn(x1, . . . , xn) denote the vector space of multilinear
polynomials in x1, . . . , xn, so dimVn = n!. Extending the map σ → xσ(1) · · ·xσ(n) by linearity
yields the vector space isomorphism Vn

∼= FSn, where FSn is the group algebra of Sn. We will
identify

FSn ≡ Vn. (3.2)

By the process of multilinearization [8, 9] one proves the following theorem.

Theorem 3.2. Let the PI algebra A satisfy an identity of degree d, then A satisfies a multilinear
identity of degree d. Moreover, if char(F) = 0 then the ideal of identities Id(A) is determined by its
multilinear elements.

It follows that if A satisfies an identity of degree d then A satisfies an identity of the
form

y1 · · ·yd −
∑

1/=π∈Sd

απyπ(1) · · ·yπ(d), απ ∈ F. (3.3)

This fact is applied in Section 4.1 in proving the exponential bound for the codimensions.

3.1. Example: Standard and Capelli Identities

The polynomial f(x1, . . . , xn) is alternating in x1, . . . , xn if for every permutation π ∈ Sn,
f(xπ(1), . . . , xπ(n)) = sgn(π)f(x1, . . . , xn). For example, the polynomial

Stn[x] = Stn[x1, . . . , xn] =
∑
σ∈Sn

sgn(σ) · xσ(1) · xσ(2) · · ·xσ(n) (3.4)

is alternating. It is called the nth Standard polynomial.
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Similarly the polynomial

Capn

[
x;y
]
=
∑
σ∈Sn

sgn(σ) · xσ(1) · y1 · xσ(2) · y2 · · ·yn−1 · xσ(n), (3.5)

which is called the (nth) Capelli polynomial, is multilinear of degree 2n− 1 and is alternating
in x1, . . . , xn.

It is rather easy to show that if dimA = d < ∞ then A satisfies both Capd+1[x] and
Std+1[x], and hence every finite dimensional algebra is PI. And the same argument applies
in the nonassociative case. In particular the algebra Mk(F) of the k × k matrices satisfies
Stk2+1[x1, x2, . . . , xk2+1]. The celebrated Amitsur-Levitzki Theorem [10–12] states that Mk(F)
satisfies the standard identity St2k[x1, . . . , x2k] = 0. Of course, for large k the degree 2k is
much smaller than k2 + 1.

Many infinite dimensional algebras are PI. For example, any infinite dimensional com-
mutative algebra is PI. We remark that obviously, the free algebra F{x} itself is not PI.

4. The Codimensions

Question. How many identities are satisfied by a given PI algebra, namely, how large are T
ideals?

Computing dimensions might seem useless at first sight, since if the T -ideal I is
nonzero then dim I = ∞. To answer the above question we introduce below the notion of
codimensions. Given a PI algebraA, wewould like to study itsmultilinear identities of degree
n, namely, the space

Id(A) ∩ Vn(x1, . . . , xn) = Id(A) ∩ Vn, (4.1)

Vn as in (3.2). Note that if y1, . . . , yn are any n variables then Id(A) ∩ Vn(x) ∼= Id(A) ∩ Vn(y).
A first step is the study of the dimensions dim(Id(A)∩Vn). Now (Id(A)∩Vn) ⊆ Vn, and since
dimVn = n!, clearly

dim(Id(A) ∩ Vn) = n! − dim
(

Vn

Id(A) ∩ Vn

)
. (4.2)

Thus, knowing dim(Id(A) ∩ Vn) is equivalent to knowing dim(Vn/(Id(A) ∩ Vn)). This leads
us to introduce the codimensions cn(A) as follows.

Definition 4.1. Let A be an F-algebra, then

cn(A) = dim
(

Vn

Id(A) ∩ Vn

)
(4.3)

is called the nth codimension of A, and {cn(A)}∞n=1 is the sequence of codimensions of A.

For example, A satisfies An = 0 (i.e., is nilpotent) if and only if cn(A) = 0. And A is
commutative if and only if cn(A) ≤ 1 for all n.
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Remark 4.2. Note that if A is not PI then Id(A) = 0, hence cn(A) = n! for all n. In fact, the
algebra A is PI (i.e., Id(A)/= 0) if and only if there exist n such that cn(A) < n!. This follows
directly from the definition.

4.1. Exponential Bound for the Codimensions

A basic property of the codimensions sequence cn(A) in the associative case is, that it is
bounded by exponential growth. Applications of this fact are given in the sequel.

Theorem 4.3 (see [1]). Assume the (associative) algebra A satisfies an identity of degree d, then

cn(A) ≤
(
(d − 1)2

)n
(4.4)

for all n.

Proof. We sketch two proofs (both different from the original proof). Both proofs apply the
notion of a d-good permutation, which we now review.

Call σ ∈ Sn d-bad if there are indices 1 ≤ i1 < · · · < id ≤ n with σ(i1) > · · · > σ(id).
Otherwise σ is d-good, and we denote

gd(n) =
∣∣{σ ∈ Sn | σ is d-good

}∣∣. (4.5)

By a Shirshov-Latyshev argument [13, 14], if A satisfies an identity of degree d, then A satis-
fies an identity (3.3)which, by a certain inductive argument implies that cn(A) ≤ gd(n).

By an argument based on Dilworth Theorem in Combinatorics [15], Latyshev then
showed that gd(n) ≤ ((d − 1)2)n, thus completing the (first) proof.

A second proof of the bound gd(n) ≤ ((d − 1)2)n goes as follows [16]. First, by the RSK
correspondence [17],

gd(n) =
∑

λ�n,�(λ)≤d−1

(
fλ
)2
, (4.6)

where fλ is the number of standard Young taableaux of shape λ, and �(λ) is the number of
parts of λ. Then by the Schur-Weyl theory,

∑
λ�n,�(λ)≤d−1

(
fλ
)2

= dim(B(d − 1, n)), (4.7)

where dimU = d − 1 and B(d − 1, n) ⊆ EndF(U⊗n). The (second) proof now follows since
dim(EndF(U⊗n)) = (d − 1)2n.

4.1.1. Application: The A ⊗ B Theorem

Codimensions where introduced, in [1], in order to prove the following theorem.

Theorem 4.4 (see [1]). If A and B are (associative) PI algebras then A ⊗ B is PI.
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Proof. It is not too difficult to show that cn(A⊗B) ≤ cn(A) ·cn(B). Assume now thatA satisfies
an identity of degree d, and B satisfies an identity of degree h. Together with Theorem 4.3,
this implies that

cn(A ⊗ B) ≤ (d − 1)2n(h − 1)2n, (4.8)

hence for a large enough n, cn(A ⊗ B) < n!. Finally by Remark 4.2, R is PI if and only if there
exist n such that cn(R) < n!, and the proof follows.

Remark 4.5. For explicit identities for A ⊗ B see Remark 8.2 below, which also implies the
following. Again let A satisfy an identity of degree d, and B an identity of degree h. Then
A ⊗ B satisfies an identity of degree about e(d − 1)2(h − 1)2, where e = 2.718 . . ..

We remark that both Theorems 4.3 and 4.4 fail in some non-associative cases.
The above results motivate the study of the following problem.

Question 1. Given a PI algebra A, find a formula for the sequence cn(A). In most cases this
seems to be too difficult, and one tries to, at least, get a “nice” asymptotic approximation of
cn(A).

In Section 6 we determine such asymptotics for the algebrasMk(F). We also give such
partial results for the other verbally prime algebras Mk,� andMk(G).

5. Cocharacters

Recall the identification FSn ≡ Vn (see (3.2)) and let A be a PI algebra. The regular left action
of Sn on Vn is as follows. Let σ ∈ Sn and g(x1, . . . , xn) ∈ Vn, then

σg(x1, . . . , xn) = g
(
xσ(1), . . . , xσ(n)

)
. (5.1)

This makes Vn into a left Sn module, with Id(A) ∩ Vn a submodule of Vn.

Definition 5.1. The Sn-character

χn(A) := χSn

(
Vn

Id(A) ∩ Vn

)
(5.2)

of the quotient module Vn/(Id(A) ∩ Vn) is called the nth cocharacter of A.

Cocharacters where introduced in [18] in the study of standard identities.
Since char(F) = 0, from the ordinary representation theory of Sn [19, 20] it is well

known that the irreducible Sn characters are parametrized by the partitions λ on n:

Irred(Sn) =
{
χλ | λ � n

}
. (5.3)
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Also, FSn decomposes as follows:

FSn =
⊕
λ�n

Iλ, (5.4)

where the Iλ are the minimal two sided ideals of FSn, and there are natural bijections

χλ ←→ λ←→ Iλ. (5.5)

Here degχλ = fλ and dim Iλ = (fλ)2 where, again, fλ is the number of standard Young
taableaux of shape λ.

Given a tableau Tλ of shape λ � n, it determines the semi-idempotent eTλ = R+
Tλ
C−Tλ , and

FSneTλ ⊆ Iλ is a minimal left ideal.
The Sn-character of the regular representation FSn ≡ Vn is χSn(Vn) =

∑
λ�n f

λχλ. It
follows that the nth cocharacter of A can be written as

χn(A) =
∑
λ�n

mλ(A)χλ
(5.6)

for some multiplicities mλ(A), and mλ(A) ≤ fλ.
Clearly, the degree of χn(A) is the corresponding codimension cn(A), and since

deg(χλ) = fλ, hence

cn(A) = deg
(
χn(A)

)
=
∑
λ�n

mλ(A)fλ. (5.7)

For example [21] let G be the infinite dimensional Grassmann (Exterior) algebra, then

mλ(G) =

⎧⎨
⎩
1 if λ = (m − r, 1r)
0 otherwise.

(5.8)

Remark 5.2. Properties of the identification FSn ≡ Vn imply the following characterization
of Capelli identities (Section 3.1) by cocharacters [22]. Let A be a PI algebra with χn(A) =∑

λ�n mλ(A)χλ its cocharacter. ThenA satisfies Capd+1[x;y] if and only ifmλ(A) = 0whenever
�(λ) ≥ d + 1.

As an application of cocharacters one can prove the following.

Proposition 5.3 (see [23]). If A satisfies Capd+1 and B satisfies Caph+1 then A ⊗ B satisfies
Capdh+1.

We remark that a proof of this result without applying cocharacters is yet unknown.

Question 2. Given a PI algebra A, find a formula for the multiplicities mλ(A). In most cases
this is too difficult, and one tries to at least get some approximate description ofmλ(A).
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Remark 5.4. The approach of codimensions and of cocharacters in the study of PI algebras
applies also in the nonassociative case (though with different phenomena).

5.1. The Cocharacters of Matrix Algebras

In the case of the 2×2 matricesM2(F) there is the following nice formula for the multiplicities
mλ(M2(F)) of χn(M2(F)).

Example 5.5 (see [24], [25, Theorem 12.6.5], [26]). Denote mλ(M2(F)) = mλ. First, if �(λ) > 4
thenmλ = 0. So let λ = (λ1, . . . , λ4).

If λ = (n) then m(n) = 1.

If λ = (λ1, λ2) with λ2 > 0 thenm(λ1,λ2) = (λ1 − λ2 + 1) · λ2.
If λ = (λ1, 1, 1, λ4) (so λ4 ≤ 1) then m(λ1,1,1,λ4) = λ1 · (2 − λ4) − 1.
Andmλ = (λ1 − λ2 + 1) · (λ2 − λ3 + 1) · (λ3 − λ4 + 1) in all other cases.

Recent results of Berele [27] and of Drensky and Genov [28] indicate that when k ≥ 3, there is
no hope in getting nice formulas for the cocharacter-multiplicities mλ(Mk(F)). A somewhat
similar phenomena is discussed in Section 12.

5.2. Trace Identities, Codimensions, and Cocharacters

In the case of k × k matrices, the following is an extension of the previous theory of codimen-
sions and cocharacters.

Instead of ordinary polynomials we can consider trace polynomials, namely, poly-
nomials involving variables and traces, for example x1 · x2 · tr(x3 · x4) is a (mixed) trace
polynomial. These trace polynomials can be evaluated on the algebraMk(F) (or on any alge-
bra with a trace) hence yielding trace identities. For example, it can be proved that the trace
polynomial

g(x1, x2) = tr(x1) tr(x2) − x1 tr(x2) − x2 tr(x1) − tr(x1x2) + x1x2 + x2x1 (5.9)

is a trace identity of M2(F). This is an example of a mixed trace polynomial, while the poly-
nomial

p(x1, x2, x3) = tr(x1) tr(x2) tr(x3) − tr(x1x3) tr(x2)

− tr(x2x3) tr(x1) − tr(x1x2) tr(x3) + tr(x1x2x3) + tr(x2x1x3)
(5.10)

is a pure trace polynomial, which is also an identity of M2(F). We then have trace identities
ofMk(F), “pure” and “mixed,” hence trace codimensions cptrn (Mk(F)) and cmtr

n (Mk(F)), and
trace cocharacters χptr

n (Mk(F)) and χmtr
n (Mk(F)).

The Procesi-Razmyslov theory of trace identities [29–31], together with the Schur-Weyl
theory [32, 33], imply the following formula for the pure trace cocharacters χptr

n (Mk(F)) of
Mk(F).
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Theorem 5.6. We have

χ
ptr
n (Mk(F)) =

∑
λ�n,�(λ)≤k

χλ ⊗ χλ. (5.11)

This implies that the trace codimensions are given by the following formula:

c
ptr
n (Mk(F)) =

∑
λ�n,�(λ)≤k

(
fλ
)2
. (5.12)

This formula is the starting point for computing the asymptotic formula of cn(Mk(F)) given
in Section 6.

6. Asymptotics of the Codimensions cn(Mk(F))

For the 2 × 2 matrices, Procesi [34] proved the following formula for cn(M2(F)).

Theorem 6.1 (see [34]). We have

cn(M2(F)) =
1

n + 1

(
2n + 2
n + 1

)
−
(
n
3

)
+ 1 − 2n. (6.1)

It was already mentioned that when k ≥ 3, it most likely is impossible to find an exact
formula for the multiplicities mλ(Mk(F)), and the same is probably true about cn(Mk(F)).
Instead of giving up, one looks for the asymptotic of cn(Mk(F)).

Here we have the folowing theorem.

Theorem 6.2 (see [2]). When n goes to infinity,

cn(Mk(F)) ∼
[(

1√
2π

)k−1(1
2

)(k2−1)/2
· 1!2! · · · (k − 1)! · k(k2/2)

]
·
(
1
n

)(k2−1)/2
· k2(n+1).

(6.2)

For example, when k = 2 both Theorems 6.1 and 6.2 give the same asymptotic value

cn(M2(F)) ∼ 4√
π
· 1√

n
· 4n, (6.3)

compare with (12.13).
We review the major steps toward the proof of Theorem 6.2. First, it follows from deep

results of Formanek [2, 26, 35] that the nth codimensions and the n+1-st pure trace codimen-
sions are asymptotically equal:

cn(Mk(F)) ∼ c
ptr
n+1(Mk(F)). (6.4)
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We saw that by Theorem 5.6,

c
ptr
n (Mk(F)) =

∑
λ�n, �(λ)≤k2

(
fλ
)2
. (6.5)

Thus,

cn(Mk(F)) ∼
∑

λ�n+1, �(λ)≤k2

(
fλ
)2
. (6.6)

The last major step here is the computation of the asymptotic behavior of the following sum:

S
(2)
k2 (n) =

∑
λ�n, �(λ)≤k2

(
fλ
)2
. (6.7)

The asymptotics, as n → ∞, of the more general sums

S
(β)
h (n) =

∑
λ�n, �(λ)≤h

(
fλ
)β

(6.8)

is given in [16]. That asymptotic is of the form S
(β)
h
(n) ∼ a · nb · rn, where a = a(β, h), b =

b(β, h) and r = r(β, h) = hβ, all given explicitly in [16]. We remark that the constant term a is
evaluated by applying the Selberg integral (6.9).

Theorem 6.3 (see [36]). The Selberg integral

∫1

0
· · ·
∫1

0

k∏
i=1

ux−1
i (1 − ui)y−1

∏
1≤i<j≤k

∣∣ui − uj

∣∣2z du1 · · ·duk

=
k−1∏
j=0

Γ
(
x + jz

)
Γ
(
y + jz

)
Γ
(
1 +
(
j + 1
)
z
)

Γ
(
x + y +

(
k + j − 1)z)Γ(1 + z)

.

(6.9)

Together, the above steps yield the asymptotic value of Theorem 6.2.

6.1. The Other Verbally Prime Algebras

For the other verbally prime algebras (see Section 2.2.1), we quote the following partial asym-
ptotic results.

Theorem 6.4. (1) [37, Theorem 7]

cn(Mk,�) ∼ a ·
(
1
n

)(k2+�2−1)/2
· (k + �)2n. (6.10)

The constant a is yet unknown.
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(2) [37, Theorem 8] Let G be the infinite dimensional Grassmann algebra, then

cn(Mk(G)) ∼ b ·
(
1
n

)g

·
(
2k2
)n

, (6.11)

where the constants b and g are yet unknown, and (k2 − 1)/2 ≤ g ≤ (2k2 − 1)/2.

7. Shirshov’s Height Theorem (See [13])

7.1. The Theorem

A powerful tool in the study of PI algebras is Shirshov’s Height Theorem, which we now
quote. We consider the alphabet x1, . . . , x� of � letters; W(x1, . . . , x�) is the set of all words
(i.e., monomials) in x1, . . . , x� ; U(d, �) the subset of the words of length ≤ d. We consider
finitely generated PI algebra A = F{a1, . . . , a�}.

Theorem 7.1 (Shirshov’s Height Theorem). Consider a PI algebra satisfying the identity (3.3):

y1 · · ·yd −
∑

1/=π∈Sd

απyπ(1) · · ·yπ(d). (7.1)

There exists h = h(d, �) large enough such that any finitely generated algebraA = F{a1, . . . , a�} that
satisfies the identity (3.3), satisfies the following condition.

Modulo Id(A), F{x1, . . . , x�} is spanned by the elements

{
uk1
1 · · ·ukh

h | ui ∈ U(d, �), any kj
}
. (7.2)

7.2. Application: Bounds on the Cocharacters

7.2.1. The (k, �) Hook Theorem

Denote by H(k, �;n) the partitions of n in the (k, �) hook:

H(k, �;n) = {(λ1, λ2, . . .) � n | λk+1 ≤ �}, H(k, �) = ∪n(H(k, �;n)). (7.3)

Let χn be Sn characters, n = 1, 2, . . .. We say that χn is supported on H(k, �), and denote
χn ⊆ H(k, �), if for all n,

χn =
∑

λ∈H(k,�;n)

mλχ
λ. (7.4)

Similar terminology applies when H(k, �) is replaced by another family of subsets of parti-
tions. We have the following theorem.

Theorem 7.2 (see [6, 38]). Let A be any (associative) PI algebra, then there exist k, � such that its
cocharacters χn(A) are supported on the (k, �) hook H(k, �).
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Explicitly, letA satisfy an identity of degree d, and let k, � ≥ e ·(d−1)4−1, where e = 2.718 . . .
is the base of the natural logarithms. Then χn(A) ⊆ H(k, �), namely,

χn(A) =
∑

λ∈H(k,�;n)

mλ(A) · χλ. (7.5)

7.2.2. An Application of Shirshov’s Theorem

We remark that the proof of Theorem 7.2 applies the exponential-bound of Theorem 4.3.
Theorem 7.2 is the first step towards proving the following polynomial bound.

Theorem 7.3 (see [39, 40]). For any PI algebraA, all its cocharacter-multiplicitiesmλ(A) are poly-
nomially bounded. There exist a constant C and a power p such that for all n and λ � n, mλ(A) ≤
C · np.

The proof of Theorem 7.3 also applies Shirshov’s Height Theorem 7.1, as well as a Z2

version of the Schur-Weyl theory [32, 33, 41].

8. Explicit Identities

Amitsur [42] proved that any PI algebra satisfies a power of a standard identity, namely, an
identity of the form Stvu[x] = (Stu[x])

v, where Stu[x] is the uth standard polynomial.
Amitsur’s proof, which applies Structure Theory of Rings [8], yields a bound on the index u
but not on v. A recent proof of Amitsur’s theorem [43] applies the identification FSn ≡ Vn,
together with the exponential bound on cn(A) and yields a combinatorial proof of that
theorem, a proof which gives bounds on both u and v. Moreover, the same arguments yield
explicit identities in various other cases, for example in the A ⊗ B case.

Theorem 8.1 (see [38, 43]). LetA be a PI algebra satisfying cn(A) ≤ αn, and let u and v be integers
satisfying u, v ≥ e · α2, then Stvu[x1, . . . , xu] ∈ Id(A). In particular if A satisfies an identity of degree
d, and u, v ≥ e · (d − 1)4, then Stvu[x1, . . . , xu] ∈ Id(A) (of degree uv which is about e2(d − 1)8.)

In fact, with these u and v A satisfies the power of the Capelli identity: (Capu[x;y])
v ∈

Id(A).

Remark 8.2. Let A satisfy an identity of degree d and B an identity of degree h. Denote α =
(d − 1)2(h − 1)2 then cn(A ⊗ B) ≤ αn. Thus, if u, v ≥ e · ((d − 1)(h − 1))4 then A ⊗ B satisfies the
identities Stvu[x1, . . . , xu] and (Capu[x;y])

v. Note that here the degree of Stvu[x1, . . . , xu], for
example, is about e2 · ((d − 1)(h − 1))8.

Also,A⊗B satisfies some identity of degree n, where n is about eα = e((d− 1)(h− 1))2.
Indeed, let eα < n, then the classical inequality (n/e)n < n! implies that αn < n!. Thus, if
e(d − 1)2(h − 1)2 < n then, for that n,

cn(A ⊗ B) ≤
(
(d − 1)2(h − 1)2

)n
< n! (8.1)

and by Remark 4.2 A ⊗ B satisfies an identity of degree nwhere n is about e((d − 1)(h − 1))2.
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9. Nonidentities for Matrices: The Polynomial Lk[x;y]

Usually, lower bounds for codimensions are harder to obtain than upper bounds. Given a
PI algebra A, a lower bound for cn(A) can be obtained by the following technique. Find a
polynomial p = p(x1, . . . , xn) ∈ Vn which is a nonidentity ofA, namely, p /∈ Id(A). In addition,
with the identification Vn ≡ FSn = ⊕λ�nIλ (see (5.4)), verify that p ∈ Iμ for some μ � n. Then
cn(A) ≥ fμ. This follows since 0/=FSnp ⊆ Iμ, so Jμ ⊆ FSnp for some minimal left ideal Jμ ⊆ Iμ
with Jμ ∩ Id(A) = 0, hence fμ = dim Jμ ≤ cn(A). We now construct such a polynomial p via
the polynomial Lk(x;y), when A = Mk(F) [44, Definition 2.3].

Corresponding to the sum 1 + 3 + · · · + (2k − 1) = k2, construct the monomial Nk(x;y)
of degree 2k2:

Nk

(
x;y
)
= (x1)

(
y1
)
(x2x3x4)

(
y2y3y4

)
(x5 · · ·x9)

(
y5 · · ·y9

) · · · . (9.1)

For example, N3(x;y) = (x1)(y1)(x2x3x4)(y2y3y4)(x5 · · ·x9)(y5 · · ·y9). Now alternate the x’s
and alternate the y’s to obtain Lk(x;y):

Lk

(
x;y
)
=
∑

σ, π∈Sk2

sgn(σ) sgn(π)Nk

(
xσ(1), . . . , xσ(k2);yπ(1), . . . , yπ(k2)

)
. (9.2)

Let T ′μ be the conjugate tableau of Tμ, and

T ′μ = 1 3 4 5 9 · · · 13 · · ·

2 6 7 8 14 · · · 18 · · · .
(9.3)

Then Lk(x;y) = C−Tμ and in that sense Lk(x;y) corresponds to the tableau Tμ where μ = (2k
2
).

It is not difficult to show that Lk(x;y) takes central values onMk(F).
For k = 2 and k = 3 it was verified that Lk(x;y) /∈ Id(Mk(F)), and it was conjectured

that for all kLk(x;y) /∈ Id(Mk(F)) namely, that Lk(x;y) is a nonidentity of Mk(F) [44]. This
conjecture was verified by Formanek [35].

Theorem 9.1 (see [35]). The plolynomial Lk(x;y), which corresponds to the rectangle μ = (2k
2
), is

a nonidentity of Mk(F). Hence Lk(x;y) is a central polynomial.

By Young’s rule it follows that

Lk

(
x;y
)
= pμ +

∑
λ�2k2, �(λ)≥k2+1

pλ, (9.4)

where pμ ∈ Iμ and pλ ∈ Iλ, see (5.4). Since Mk(F) satisfies the Capelli identity Capk2+1, it fol-
lows that for all λwith �(λ) ≥ k2 + 1, pλ ∈ Id(Mk(F)). And since Lk(x;y) /∈ Id(Mk(F)), hence
pμ /∈ Id(Mk(F)), where μ is of the 2× k2 rectangular shape μ = (2k

2
). Thus, also pμ is a central

polynomial forMk(F)). The fact that μ is a rectangle plays an important role in proving lower
bounds for codimensions, since the following is applied: two or more rectangles of same
height can be glued together horizontally, while two or more rectangles of same width can be
glued together vertically.
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For cn(Mk(F)), Theorem 9.1 and further results of Formanek [2, 26, 35] imply that
the ordinary cocharacters and the trace cocharacters are nearly equal, hence they have
same asymptotic. Since the trace codimensions are much easier to handle than the ordinary
codimensions (see Theorem 5.6), this fact allows the computation—in the next section—of
the exact asymptotic of cn(Mk(F)). Also, the fact that Lk(x;y) is a nonidentity of Mk(F) has
applications in proving lower bounds for various other types of codimensions.

10. The Giambruno-Zaicev Theorem: exp(A) ∈ Z

For most PI algebras A it seems hopeless to find a precise, or even asymptotic, formula for
the codimensions cn(A). We therefore ask a much more restricted question.

Question 3. Given the associative PI algebraA, what can be said about the asymptotic behav-
ior of the codimensions cn(A)?

As a first step we have the remarkable integrality property given by Theorem 10.1
below. See also Theorem 11.1 and its relation to Theorem 10.1.

Theorem 10.1 (see [3]). Let A be an associative PI algebra (with char(F) = 0), then the limit

lim
n→∞

(cn(A))1/n (10.1)

exists and is an integer.
We denote exp(A) = limn→∞(cn(A))1/n, so exp(A) ∈ N.

10.1. Review of the Proof When dim(A) <∞
When A is finite dimensional, the number exp(A) can be calculated as follows. We may
assume that F is algebraically closed. First, by a classical theorem of Wedderburn andMalcev
[45, Theorem 3.4.3], A = B ⊕ J , where J = J(A) is the Jacobson radical of A, and B is semi-
simple. Thus B = B1 ⊕ · · · ⊕ Br where Bj are simple, namely, Bj

∼= Mkj (F). Consider now all
possible nonzero products of the type

Bi1JBi2J · · · JBiq /= 0
(
q ≥ 1

)
, (10.2)

where the Bij are distinct, and for such nonzero products let

h := maxdim
(
Bi1 ⊕ · · · ⊕ Biq

)
. (10.3)

Then h = k2
i1
+ · · · + k2

iq
, and h is the limit in Theorem 10.1:

lim
n→∞

(cn(A))1/n = h, (10.4)

Namely, exp(A) = k2
i1
+ · · · + k2

iq
.
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For example, consider the algebra of upper block triangular matrices

A = UT(k1, k2, k3) =

⎛
⎝B1 J1 J2

0 B2 J3
0 0 B3

⎞
⎠, (10.5)

where for 1 ≤ i ≤ 3, Bi
∼= Mki(F) and Ji are rectangular matrices of the corresponding sizes.

Then the Wedderburn-Malcev decomposition of A is A = B1 ⊕ B2 ⊕ B3 + J where B1 ⊕ B2 ⊕ B3

is the semisimple part and J = J1 + J2 + J3 is the Jacobson radical. Notice that the matrix units
ei,j in A satisfy

0/= e1,1 · e1,k1+1 · ek1+1,k1+1 · ek1+1,k1+k2+1
· ek1+k2+1,k1+k2+1 ∈ B1J1B2J3B3 ⊆ B1JB2JB3,

(10.6)

so B1JB2JB3 /= 0 and also, this is the maximal such nonzero product. It follows that here

h = h(A) = dim(B1 ⊕ B2 ⊕ B3) = k2
1 + k2

2 + k2
3 . (10.7)

10.1.1. The Upper Bound

In the general case the exponent h = exp(A) = limn→∞(cn(A))1/n is given by (10.3). To prove
this, one first proves the following upper bound.

Lemma 10.2. There exist constants a1, g1 such that for all n, cn(A) ≤ a1 · ng1 · hn.

Let Par(n) denote the partitions of n. Given h ∈ N, define the subsets NSK(h, n) ⊆
Par(n) by

NSK(h, n) =

⎧⎨
⎩λ = (λ1, λ2, . . .) � n |

∑
j>h

λj ≤ K

⎫⎬
⎭, (10.8)

so NSK(h, n) is nearly a strip of height h (with at most K cells below the h row). The proof
of Lemma 10.2 follows by showing that the cocharacters χn(A) are supported on such nearly
a strip NSK(h, n), and by the polynomial bound mλ(A) ≤ a · nb on the multiplicities in the
cocharacters, see Theorem 7.3. Thus cn(A) ≤ anb

∑
fλ, where the sum

∑
fλ is supported on

such nearly a stripNSK(h, n). Similar to the estimates in [16], such sum

∑
λ∈NSK(h,n)

fλ
(10.9)

is bounded by a · nb · hn, and the proof of Lemma 10.2 follows.
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10.1.2. The Lower Bound

Here we prove the folowing lemma.

Lemma 10.3. There exist constants a2 > 0 and g2 such that for all n, a2 · ng2 · hn ≤ cn(A).

A key ingredient in proving the lower bound is the polynomial Lk(x;y) which is a
nonidentity forMk(F), see Section 9. We already noted that Lk(x;y) has a component pμ ∈ Iμ
which is central (nonidentity) forMk(F), where μ is the 2×k2 rectangle (2k

2
), see Theorem 9.1.

We start with a single matrix algebra B = Mk(F), with the corresponding central poly-
nomials Lk(x;y) and pμ(1) . Rectangles of the same height (width) can be glued horizontally
(vertically). Gluing horizontally (2k

2
) to itself w times yields the 2w × k2 rectangle μ(w) =

((2w)k
2
), with a corresponding w-power (pμ(1) )w = pμ(w) , which is central and nonidentity for

Mk(F), and pμ(w) ∈ Iμ(w) . Thus fμ(w) ≤ cn(Mk(F)). For that μ(w) = ((2w)k
2
) � n, n = 2wk2, the

asymptotic of fμ(w)
then yields the lower bound

a2 · ng2 ·
(
k2
)n ≤ cn(Mk(F)) (10.10)

for some constants a2 > 0 and g2.
In the general case we are given Bi1JBi2J · · · JBiq /= 0 as in (10.2). To each Bij corresponds

the nonidentity polynomial Lkij
(x;y), with the corresponding rectangular tableaux (2kij

2

), all
with the same width = 2. These tableaux can be glued vertically, thus yielding the rectangular
tableau ρ = (2h), where h =

∑
j(kij )

2. To that tableau there corresponds a polynomial which
is essentially the product of the polynomials Lkij

(x;y), with the corresponding component
which is the product of the corresponding polynomials pμ, hence that polynomial is central
nonidentity of A, and similarly for powers of these polynomials. Similar to the above case of
a single matrix algebra B = Mk(F), the asymptotic of fρ(w)

= f ((2w)h) then yields the lower
bound

a2 · ng2 · hn ≤ cn(A) (10.11)

for some constants 0 < a2 and g2. This proves the lower bound.

Corollary 10.4. Putting together the lower and the upper bounds, Theorem 10.1 then follows.

This completes our review of the proof of Theorem 10.1. For extensions of this theorem,
see Remark 11.2.

11. Berele’s “1/2” Theorem (See [4])

Applying Theorem 10.1, Berele proved the following remarkable theorem.

Theorem 11.1 (see [4], see also [5]). Let A be a PI algebra with 1 ∈ A. Then as n goes to infinity,
cn(A) ∼ a · nt · hn, where, h ∈ N (given by Theorem 10.1) and t ∈ (1/2)Z, namely, t is an integer or
a half integer.
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Based on various examples, that theorem was conjectured for some time. It was first
proved in [5] under the hypothesis that A satisfies a Capelli identity, and later in general in
[4]. Here is an outline of the proof in the Capelli case.

Proof. Recall that cn(A) =
∑

mλ(A)fλ, where mλ(A) is the multiplicity of χλ. If A satisfies a
Capelli identity then there exists an integer k such that mλ(A)/= 0 only for partitions λ with
at most k parts (see Remark 5.2). The proof is now based on investigating the asymptotics of
the mλ(A) and fλ, and we proceed to do so.

Let

Uk(A) =
F{x1, . . . , xk}

Id(A) ∩ F{x1, . . . , xk} (11.1)

be the universal PI algebra for A in k generators. This algebra has an N grading by degree
and a corresponding Poincaré series Pk(t). It also has a finer N

k grading by multidegree with
corresponding Poincaré series P(t1, . . . , tk). Belov [46] proved that Pk(t) is (the Taylor series
of) a rational function with coefficients in Z (see also [47], Theorem 9.44). It is not difficult to
adapt that proof to show that P(t1, . . . , tk) is also a rational function with integer coefficients.
The proof also implies that the denominator of this rational function can be taken to be a
product of terms of the form (1 − ta11 · · · takk ). We call such a rational function “nice.”

The Poincaré series P(t1, . . . , tk) is related to the cocharacters χn(A) =
∑

mλ(A)χλ via

P(t1, . . . , tk) =
∞∑
n=0

∑
λ�n

mλ(A)Sλ(t1, . . . , tk), (11.2)

where Sλ is the Schur function of λ.
Quite a lot is known about Taylor series of nice rational functions, see for example [48].

If F(t1, . . . , tk) is any nice rational function with Taylor series
∑

b(n1, . . . , nk)t
n1
1 · · · tnk

k
, then the

coefficients b(n1, . . . , nk) can be described using a finite set of polynomials. Namely, Nk can be
partitioned into regions R1, . . . , Rm with corresponding polynomials q1, . . . , qm such that for
each i,

c(n1, . . . , nk) = qi(n1, . . . , nk) for (n1, . . . , nk) ∈ Ri. (11.3)

Using properties of Schur functions it can be shown that an analogue formula holds for the
mλ(A). Hence we may write

cn(A) =
∑
i

{
qi(λ)fλ | λ ∈ Ri

}
. (11.4)

The regions Ri, in general, are defined by linear inequalities and modular linear equations.
Here is a simple example to make this more clear. Let F(t1, t2) = (1 − t21)−1(1 − t2)−1(1 − t1t2)−1.
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Then b(n1, n2) is given by

b(n1, n2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2

2
+ 1 if n1 ≥ n2, n2 is even,

(n2 + 1)
2

if n1 ≥ n2, n2 is odd,

n1

2
+ 1 if n1 < n2, n1 is even,

(n1 + 1)
2

if n1 < n2, n1 is odd.

(11.5)

Now back to the general case. There exists a number h ≤ k called the essential height of the
cocharacter defined to be the largest number such that there exist nonzero multiplicities
mλ(A) in which λ = (λ1, . . . , λk) and λh can be taken arbitrarily large. Giambruno and Zaicev
proved that h = limn→∞(cn(A))1/n. This number, denoted exp(A), is also important for the
proof of Theorem 11.1. Let v1 be the vector in N

k whose coordinates are h ones followed by
k − h zeros. Then in (11.4) certain summands will be on regions of the form

{v0 + α1v1 + · · · + αdvd | αi, . . . , αd ∈ N} ∩ L, (11.6)

where L is an integer lattice. Let R′1, . . . , R
′
p be the regions of this form. Then in the com-

putation of cn(A) these terms dominate and we can refine (11.4) to

cn(A) =
∑
i

{
qi(λ)fλ | λ ∈ R′i

}
. (11.7)

The rest of the proof closely immitates the computation of [16]. The main theorem is that if
R′ is as above and q(x1, . . . , xk) is a polynomial then

∑
q(λ)fλ summed over partitions of n

in R′ will be asymptotic to a constant—times
√
n to an integer power—times hn. Hence, the

cocharacter cn(A)will be a sum of such terms.
There remains the problem that the powers of n might not be equal, and the way

around this difficulty is to use the fact that if 1 ∈ A then the cocharacter sequence is Young
derived, see [49]. Namely, the Poincaré series P(t1, . . . , tk) can be written as (1 − t1)−1 · · ·
(1 − tk)−1g(t1, . . . , tk), where g has all the nice properties of P .

We conclude this section with the following general remark.

Remark 11.2. Recent works extended the above theorems of Sections 10 and 11 to graded
polynomial identities and to PI algebras with the action of Hopf algebra, see, for example,
[50–59].

12. Algebraicity of Some Generating Functions

As we show below, Theorems 10.1 and 11.1 are related to the question of whether or not the
generating function of the codimensions is algebraic. We begin with the following definition.
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Definition 12.1 (see [60, 61]). (1) Given the sequence an, then F(x) =
∑

n≥0 anx
n is its cor-

responding ordinary generating function. In particular CA(x) =
∑

n≥0 cn(A)xn is the generating
function of the codimensions of the algebra A.

(2) The function F(x) is algebraic if there exist polynomials P0(x), . . . , Pr(x) such that

Pr(x)Fr(x) + · · · + P1(x)F(x) + P0(x) = 0. (12.1)

Algebraicity or nonalgebraicity of the generating function F(x) =
∑

n≥0 anx
n is an indication

of the complexity of the sequence an.

Example 12.2 (see [34], [25, Theorem 12.6.8]). For the 2 × 2 matrices M2(F)we have

cn(M2(F)) =
1

n + 2

(
2n + 2
n + 1

)
−
(
n
3

)
+ 1 − 2n. (12.2)

This implies that

CM2(F)(x) =
1
x2

(
1 − 2x −

√
1 − 4x

)
− x3

(1 − x)4
+

1
1 − x −

1
1 − 2x , (12.3)

which is clearly algebraic.

Note that when k = 1,M1(F) = F and cn(F) = 1, hence

CF(x) =
1

1 − x (12.4)

which is algebraic.

12.1. Nonalgebraicity of Some Generating Functions

We quote here a classical theorem of Jungen [62], see also [63].

Theorem 12.3 (see [62]). Let f : N → C, F(x) =
∑

n≥0 f(n)x
n, and assume that as n goes to

infinity,

f(n) ∼ b · n−g · an, (12.5)

where b and a are complex constants and g is a real number. For F(x) to be algebraic it is necessary
that g be rational; and if g > 0 then g must also be non-integral.

Applying this theorem to the codimensions of matrices we deduce the following
theorem.

Theorem 12.4. Let

CMk(F)(x) =
∑
n≥0

cn(Mk(F)) · xn
(12.6)
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be the generating functions of the (ordinary) codimensions of Mk(F). If k ≥ 3 and k is odd then
CMk(F)(x) is not algebraic.

Proof. By Theorem 6.2

cn(Mk(F)) ∼ b · n−g · k2n, (12.7)

where g = (k2 − 1)/2. The proof now follows by Theorem 12.3, since g = (k2 − 1)/2 is an
integer when k is odd.

Obviously, Example 12.2 and Theorem 12.4 motivate the following conjecture.

Conjecture 12.5. If k ≥ 3 then the generating function

CMk(F)(x) =
∑
n≥0

cn(Mk(F)) · xn
(12.8)

is not algebraic.

For the other verbally prime algebras (see Section 2.2.1), recall from Theorem 6.4 the
following partial asymptotic results:

cn(Mk,�) ∼ a ·
(
1
n

)(k2+�2−1)/2
· (k + �)2n, (12.9)

where the constant a is yet unknown. Also,

cn(Mk(G)) ∼ b ·
(
1
n

)g

·
(
2k2
)n

, (12.10)

where the constants b and g are yet unknown, and (k2 − 1)/2 ≤ g ≤ (2k2 − 1)/2.

Corollary 12.6. If k /≡ � (mod 2) then the generating function CMk,� (x) of the codimensions
cn(Mk,�) in not algebraic.

Proof . Indeed, k /≡ � (mod 2) implies that k2 + �2 − 1 is even, and the proof follows from
Theorems 12.3 and 6.4.

Example 12.7 (see [64]). We apply here a theorem due to Kemer [6] which says that the alge-
bras G ⊗G and M1,1 have the same identities, hence the same codimensions. Now

c0(M1,1) = 1, cn(M1,1) =
1
2

(
2n
n

)
+ n + 1 − 2n, n = 1, 2, . . . (12.11)

see [65], and hence

CM1,1(x) =
1
2
+

1

2
√
1 − 4x

+
x

(1 − x)2
+

1
1 − x +

1
1 − 2x , (12.12)
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which is clearly algebraic. Note that

cn(M1,1) ∼ 1
2
√
π
· 1√

n
· 4n, (12.13)

compare with (6.3) of Section 6. See also [64].

Conjecture 12.8. If k, � ≥ 1 and (k, �)/= (1, 1) then CMk,� (x) is not algebraic.

13. Nonassociative A with exp(A) a Non Integer

As remarked before, the notions of codimensions and cocharacters also apply to nonas-
sociative PI algebras. Here, in the most general case, the free associative algebra F{x} =
F{x1, x2, . . .} is replaced by the free algebra F〈x1, x2, . . .〉 = F〈x〉. Now A is a nonassociative
PI algebra and again, Id(A) ⊆ F〈x〉 are the identities of A. Since we are dealing now with
nonassociative polynomials, hence different parenthesizes in a monomial yield different
monomials. It follows that in the nonassociative case, the space Vn of the multilinear poly-
nomials of degree n is now of dimension dimVn = Cn · n!, where Cn is the nth Catalan num-
ber (which counts the number of different parenthesizes of a monomial of degree n). The
definition of the codimensions cn(A) is, formally, the same as that in the associative case.

Definition 13.1.

cn(A) = dim
(

Vn

Id(A) ∩ Vn

)
, (13.1)

compare with Definition 4.1.

Similarly for the cocharacters, the action of Sn on Vn is again given by (5.1), and
one introduces cocharacters precisely as in the associative case, see Definition 5.1. However,
some phenomena here are rather different from those in the associative case. For example, a
counter-example to Theorem 4.4, hence also to Theorem 4.3, was given in [66].

A counter-example to Theorem 10.1 in the nonassociative case was first constructed
in [67]. Recently, Giambruno et al. [68] constructed a family of nonassociative PI algebras A
such that for every 1 < α < 2 there is such an algebra A for which the limit limn→∞(cn(A))1/n

exists and is equal to α. We briefly describe that construction.

13.1. The Algebra A(m,w)

Let w = w1w2 · · · be an infinite word on the alphabet {0, 1}. Given an integer m ≥ 2, define
the sequence {ki}i≥1 = Km,w by

ki = wi +m. (13.2)

Construct the algebra A = A(m,w) = A(Km,w) as follows. Its basis is

{a, b} ∪ Z1 ∪ Z2 ∪ · · · , (13.3)
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where

Zi =
{
z
(i)
j | 1 ≤ j ≤ ki

}
, i = 1, 2, . . . , (13.4)

and multiplication is given as follows:

z
(i)
1 a = z

(i)
2 , z

(i)
2 a = z

(i)
3 , . . . , z

(i)
ki−1a = z

(i)
ki
, i = 1, 2, . . . ,

z
(i)
ki
b = z

(i+1)
1 , i = 1, 2, . . .

(13.5)

and all other products are zero.
Letw = w1w2 · · · be an infinite word. The notion of the complexity ofw is classical. For

each n, complexityw(n) is the number of distinct subwords of w of length n. The algebra A =
A(m,w) depends on the integer m and on the complexity of the word w, and the following
theorem is proved.

Theorem 13.2 (see [68]). Given 1 ≤ α ≤ 2, we can choose m ≥ 2 and a word w such that

lim
n→∞

(cn(A(m,w)))1/n exists and is equal to α. (13.6)
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