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Abstract. 
Let 
	
		
			𝑅
			=
		

		
			G
			R
		

		
			(
			𝑝
		

		

			𝑠
		

		
			,
			𝑝
		

		
			𝑠
			𝑚
		

		

			)
		

	
 be a Galois ring of characteristic 
	
		

			𝑝
		

		

			𝑠
		

	
 and cardinality 
	
		

			𝑝
		

		
			𝑠
			𝑚
		

	
, where 
	
		

			𝑠
		

	

 and 
	
		

			𝑚
		

	

 are positive integers and 
	
		

			𝑝
		

	

 is an odd prime number. Two kinds of cogredient standard forms of symmetric matrices over 
	
		

			𝑅
		

	

 are given, and an explicit formula to count the number of all distinct cogredient classes of symmetric matrices over 
	
		

			𝑅
		

	

 is obtained.


1. Introduction and Preliminaries   
Let 
	
		

			𝑝
		

	
 be a prime number, 
	
		

			𝑠
		

	
 and 
	
		

			𝑚
		

	
 be positive integers, and 
	
		
			𝑅
			=
		

		
			G
			R
		

		
			(
			𝑝
		

		

			𝑠
		

		
			,
			𝑝
		

		
			𝑠
			𝑚
		

		

			)
		

	
 a Galois ring of characteristic 
	
		

			𝑝
		

		

			𝑠
		

	
 and cardinality 
	
		

			𝑝
		

		
			𝑠
			𝑚
		

	
. Then 
	
		
			G
			R
		

		
			(
			𝑝
		

		

			𝑠
		

		
			,
			𝑝
		

		
			𝑠
			𝑚
		

		

			)
		

	
 is isomorphic to the ring 
	
		

			ℤ
		

		

			𝑝
		

		

			𝑠
		

		
			[
			𝑥
			]
			/
			(
			ℎ
			(
			𝑥
			)
			)
		

	
 for any basic irreducible polynomial 
	
		
			ℎ
			(
			𝑥
			)
		

	
 of degree 
	
		

			𝑚
		

	
 over 
	
		

			ℤ
		

		

			𝑝
		

		

			𝑠
		

	
. It is clear that 
	
		
			𝑅
			=
			𝔽
		

		

			𝑝
		

		

			𝑚
		

	
, that is, a finite field of 
	
		

			𝑝
		

		

			𝑚
		

	
 elements, if 
	
		
			𝑠
			=
			1
		

	
, and 
	
		
			𝑅
			=
			ℤ
		

		

			𝑝
		

		

			𝑠
		

	
, that is the ring of residue classes of 
	
		

			ℤ
		

	
 modulo its ideal 
	
		

			𝑝
		

		

			𝑠
		

		

			ℤ
		

	
, if 
	
		
			𝑚
			=
			1
		

	
.
 We denote by 
	
		

			𝑅
		

		

			∗
		

	
 the group of units of 
	
		

			𝑅
		

	
. 
	
		

			𝑅
		

	
 is a local ring with the maximal ideal 
	
		
			(
			𝑝
			)
			=
			𝑝
			𝑅
		

	
, and all ideals of 
	
		

			𝑅
		

	
 are given by 
	
		
			(
			0
			)
			=
			(
			𝑝
		

		

			𝑠
		

		
			)
			⊂
			(
			𝑝
		

		
			𝑠
			−
			1
		

		
			)
			⊂
			⋯
			⊂
			(
			𝑝
			)
			⊂
			(
			𝑝
		

		

			0
		

		
			)
			=
			𝑅
		

	
. By [1, Theorem 14.8], there exists an element 
	
		
			𝜉
			∈
			𝑅
		

		

			∗
		

	
 of multiplicative order 
	
		

			𝑝
		

		

			𝑚
		

		
			−
			1
		

	
, which is a root of a basic primitive polynomial 
	
		
			ℎ
			(
			𝑥
			)
		

	
 of degree 
	
		

			𝑚
		

	
 over 
	
		

			ℤ
		

		

			𝑝
		

		

			𝑠
		

	
 and dividing 
	
		

			𝑥
		

		

			𝑝
		

		

			𝑚
		

		
			−
			1
		

		
			−
			1
		

	
 in 
	
		

			ℤ
		

		

			𝑝
		

		

			𝑠
		

		
			[
			𝑥
			]
		

	
, and every element 
	
		
			𝑎
			∈
			𝑅
		

	
 can be written uniquely as 
						
	
 		
			(
			1
			.
			1
			)
		
 	

	
		
			𝑎
			=
			𝑎
		

		

			0
		

		
			+
			𝑎
		

		

			1
		

		
			𝑝
			+
			⋯
			+
			𝑎
		

		
			𝑛
			−
			1
		

		

			𝑝
		

		
			𝑛
			−
			1
		

		
			,
			𝑎
		

		

			0
		

		
			,
			𝑎
		

		

			1
		

		
			,
			…
			,
			𝑎
		

		
			𝑛
			−
			1
		

		
			∈
			𝒯
			,
		

	

					where 
	
		
			𝒯
			=
			{
			0
			,
			1
			,
			𝜉
			,
			…
			,
			𝜉
		

		

			𝑝
		

		

			𝑚
		

		
			−
			2
		

		

			}
		

	
. Moreover, 
	
		

			𝑎
		

	
 is a unit if and only if 
	
		

			𝑎
		

		

			0
		

		
			≠
			0
		

	
, and 
	
		

			𝑎
		

	
 is a zero divisor or 0 if and only if 
	
		

			𝑎
		

		

			0
		

		
			=
			0
		

	
. Define the 
	
		

			𝑝
		

	
-exponent of 
	
		

			𝑎
		

	
 by 
	
		
			𝜏
			(
			0
			)
			=
			𝑠
		

	
 and 
	
		
			𝜏
			(
			𝑎
			)
			=
			𝑖
		

	
 if 
	
		
			𝑎
			=
			𝑎
		

		

			𝑖
		

		

			𝑝
		

		

			𝑖
		

		
			+
			⋯
			+
			𝑎
		

		
			𝑛
			−
			1
		

		

			𝑝
		

		
			𝑛
			−
			1
		

	
 with 
	
		

			𝑎
		

		

			𝑖
		

		
			≠
			0
		

	
. By [1, Corollary 14.9], 
	
		

			𝑅
		

		

			∗
		

		
			≅
			⟨
			𝜉
			⟩
			×
			[
			1
			+
			(
			𝑝
			)
			]
		

	
, where 
	
		
			⟨
			𝜉
			⟩
		

	
 is the cyclic group of order 
	
		

			𝑝
		

		

			𝑚
		

		
			−
			1
		

	
, and 
	
		
			1
			+
			(
			𝑝
			)
			=
			{
			1
			+
			𝑥
			∣
			𝑥
			∈
			(
			𝑝
			)
			}
		

	
 is the one group of Galois ring 
	
		

			𝑅
		

	
, so 
	
		
			|
			𝑅
		

		

			∗
		

		
			|
			=
			(
			𝑝
		

		

			𝑚
		

		
			−
			1
			)
			𝑝
		

		
			(
			𝑠
			−
			1
			)
			𝑚
		

	
.
 For a fixed positive integer 
	
		

			𝑛
		

	
, let 
	
		

			M
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
 and 
	
		
			G
			L
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
 be the set of all 
	
		
			𝑛
			×
			𝑛
		

	
 matrices and the multiplicative group of all 
	
		
			𝑛
			×
			𝑛
		

	
 invertible matrices over 
	
		

			𝑅
		

	
, and denote by 
	
		

			𝐼
		

		
			(
			𝑛
			)
		

	
 and 
	
		

			0
		

		
			(
			𝑛
			)
		

	
 the 
	
		
			𝑛
			×
			𝑛
		

	
 identity matrix and zero matrix, respectively. In this paper, for 
	
		
			𝑙
			×
			𝑛
		

	
 matrix 
	
		

			𝐴
		

	
 and 
	
		
			𝑞
			×
			𝑟
		

	
 matrix 
	
		

			𝐵
		

	
 over 
	
		

			𝑅
		

	
, we adopt the notation 
	
		
			𝐴
			⊕
			𝐵
			∶
			=
		

		

			
		

		
			𝐴
			0
		

		
			0
			𝐵
		

		

			
		

	
 which is a 
	
		
			(
			𝑙
			+
			𝑞
			)
			×
			(
			𝑛
			+
			𝑟
			)
		

	
 matrix over 
	
		

			𝑅
		

	
.
 For any matrix 
	
		
			𝐴
			∈
		

		

			M
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
, 
	
		

			𝐴
		

	
 is said to be symmetric if 
	
		

			𝐴
		

		

			𝑇
		

		
			=
			𝐴
		

	
, where 
	
		

			𝐴
		

		

			𝑇
		

	
 is the transposed matrix of 
	
		

			𝐴
		

	
. We denote the set of all 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrices over 
	
		

			𝑅
		

	
 by 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
. Then 
	
		
			(
			𝒮
			(
			𝑛
			,
			𝑅
			)
			,
			+
			)
		

	
 is a group under the addition of matrices. For any matrices 
	
		

			𝑆
		

		

			1
		

		
			,
			𝑆
		

		

			2
		

		

			∈
		

		

			M
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
, if there exists matrix 
	
		
			𝑃
			∈
		

		
			G
			L
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
 such that 
	
		
			𝑃
			𝑆
		

		

			1
		

		

			𝑃
		

		

			𝑇
		

		
			=
			𝑆
		

		

			2
		

	
, we say that 
	
		

			𝑆
		

		

			1
		

	
 is cogredient to 
	
		

			𝑆
		

		

			2
		

	
 over 
	
		

			𝑅
		

	
. It is clear that 
	
		

			𝑆
		

		

			1
		

		
			∈
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
 if and only if 
	
		

			𝑆
		

		

			2
		

		
			∈
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
. So cogredience of matrices over 
	
		

			𝑅
		

	
 is an equivalent relation on 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
. If 
	
		

			𝑆
		

		

			1
		

		
			∈
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
, we call 
	
		
			{
			𝑃
			𝑆
		

		

			1
		

		

			𝑃
		

		

			𝑇
		

		
			∣
			𝑃
			∈
		

		
			G
			L
		

		

			𝑛
		

		
			(
			𝑅
			)
			}
		

	
 the cogredient classes of 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
 containing 
	
		

			𝑆
		

		

			1
		

	
 over 
	
		

			𝑅
		

	
. Let 
	
		

			𝒮
		

		

			0
		

		
			=
			{
			0
			}
		

	
, 
	
		

			𝒮
		

		

			1
		

		
			,
			…
			,
			𝒮
		

		

			𝑑
		

	
 be all distinct cogredient classes of 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
. As in [2] we define relations on 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
 by 
						
	
 		
			(
			1
			.
			2
			)
		
 	

	
		

			Γ
		

		

			𝑖
		

		
			∶
			=
		

		

			
		

		

			(
		

		
			𝐴
			,
			𝐵
		

		

			)
		

		
			∣
			𝐴
			,
			𝐵
			∈
			𝒮
		

		

			(
		

		
			𝑛
			,
			𝑅
		

		

			)
		

		
			,
			𝐴
			−
			𝐵
			∈
			𝒮
		

		

			𝑖
		

		

			
		

		
			,
			𝑖
			=
			0
			,
			1
			,
			…
			,
			𝑑
			.
		

	

					Then the system 
	
		
			(
			𝒮
			(
			𝑛
			,
			𝑅
			)
			,
			{
			Γ
		

		

			𝑖
		

		

			}
		

		
			0
			≤
			𝑖
			≤
			𝑑
		

		

			)
		

	
 is an association scheme of class 
	
		

			𝑑
		

	
 on the set 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
 and denoted by 
	
		
			S
			y
			m
		

		
			(
			𝑛
			,
			𝑅
			)
		

	
.
 Let 
	
		

			𝑝
		

	
 stand for an odd prime number in the following. When 
	
		
			𝑠
			=
			1
		

	
, we know that the class number of 
	
		
			S
			y
			m
		

		
			(
			𝑛
			,
			𝔽
		

		

			𝑝
		

		

			𝑚
		

		

			)
		

	
 is given by 
	
		
			𝑑
			=
			2
			𝑛
		

	
 and the association scheme 
	
		
			S
			y
			m
		

		
			(
			𝑛
			,
			𝔽
		

		

			𝑝
		

		

			𝑚
		

		

			)
		

	
 has been investigated in [2]. When 
	
		
			𝑚
			=
			1
		

	
, two kinds of cogredient standard forms of symmetric matrices over 
	
		

			ℤ
		

		

			𝑝
		

		

			𝑠
		

	
 are given in [3, 4]. If 
	
		
			𝑛
			≥
			2
		

	
, 
	
		
			𝑠
			>
			1
		

	
 and 
	
		
			𝑝
			≡
			1
		

	
 (mod 4), a complex formula to count the number of all distinct cogredient classes of 
	
		
			𝒮
			(
			𝑛
			,
			ℤ
		

		

			𝑝
		

		

			𝑠
		

		

			)
		

	
 is given in [3], which shows that, for example,
 if 
	
		

			𝑚
		

		

			
		

	
 is odd and 
	
		

			𝑠
		

	
 is odd, then 
						
	
 		
			(
			1
			.
			3
			)
		
 	

	
		
			𝑑
			+
			1
			=
		

		

			
		

		

			𝑚
		

		

			
		

		
			−
			1
		

		
			
		
		

			2
		

		
			+
			1
		

		

			
		

		

			+
		

		

			
		

		

			𝑠
		

		

			1
		

		
			≠
			0
			,
		

		
			o
			r
		

		

			𝑠
		

		

			
		

		

			𝑖
		

		
			,
			∃
			𝑖
		

		

			⎛
		

		

			⎜
		

		

			⎝
		

		

			𝑚
		

		

			
		

		
			−
			1
		

		
			
		
		

			2
		

		
			−
			𝑠
		

		

			1
		

		

			−
		

		

			𝑠
		

		

			
		

		

			2
		

		
			+
			𝑠
		

		

			
		

		

			3
		

		
			+
			𝑠
		

		

			
		

		

			4
		

		
			+
			𝑠
		

		

			
		

		

			5
		

		
			+
			𝜀
		

		
			
		
		

			2
		

		
			+
			1
		

		

			⎞
		

		

			⎟
		

		

			⎠
		

		

			×
		

		

			⎡
		

		

			⎢
		

		

			⎢
		

		

			⎣
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			−
			1
		

		

			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			−
			1
		

		

			2
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			𝑠
		

		

			1
		

		
			−
			1
		

		

			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		
			+
			⋯
			+
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			−
			1
		

		

			𝑠
		

		

			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎤
		

		

			⎥
		

		

			⎥
		

		

			⎦
		

		

			×
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			−
			1
		

		
			
		
		

			2
		

		

			𝑠
		

		

			
		

		

			2
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			+
			1
		

		
			
		
		

			2
		

		

			𝑠
		

		

			
		

		

			3
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			−
			1
		

		
			
		
		

			2
		

		

			𝑠
		

		

			
		

		

			4
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑠
			+
			1
		

		
			
		
		

			2
		

		

			𝑠
		

		

			
		

		

			5
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

	

					where the meanings of 
	
		

			𝑚
		

		

			
		

		
			,
			𝑠
		

		

			1
		

		
			,
			𝑠
		

		

			
		

		

			2
		

		
			,
			𝑠
		

		

			
		

		

			3
		

		
			,
			𝑠
		

		

			
		

		

			4
		

		
			,
			𝑠
		

		

			
		

		

			5
		

		
			,
			𝜀
		

	
 and formulas for other cases are referred to [3]. 
 Then two problems arise. 
	
		
			(
			1
			)
		

	
 Is there a simple and explicit formula to count the number of all distinct cogredient classes of 
	
		
			𝒮
			(
			𝑛
			,
			ℤ
		

		

			𝑝
		

		

			𝑠
		

		

			)
		

	
? 
	
		
			(
			2
			)
		

	
 For arbitrary Galois ring 
	
		

			𝑅
		

	
, in order to determine precisely the class number 
	
		

			𝑑
		

	
 of the association scheme 
	
		
			S
			y
			m
		

		
			(
			𝑛
			,
			𝑅
			)
		

	
, we have to count the number of all distinct cogredient classes of 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
.
 In Section 2 we give two kinds of cogredient standard forms for every symmetric matrix over arbitrary Galois ring 
	
		

			𝑅
		

	
 of odd characteristic. In Section 3 we obtain an explicit formula to count the number of all distinct cogredient classes of 
	
		
			𝒮
			(
			𝑛
			,
			𝑅
			)
		

	
, which is simpler than that of [3] for the special case 
	
		
			𝑅
			=
			ℤ
		

		

			𝑝
		

		

			𝑠
		

	
. 
 Now, we list some properties for the Galois ring 
	
		

			𝑅
		

	
 which will be needed in the following sections. For general theory of Galois rings, one can refer to [1].
Lemma 1.1 (see [1, Theorem 14.11]).  
	
		

			𝑅
		

		

			∗
		

		
			=
			𝐺
		

		

			1
		

		
			×
			𝐺
		

		

			2
		

	
 where 
	
		

			𝐺
		

		

			1
		

	
 is a cyclic group of order 
	
		

			𝑝
		

		

			𝑚
		

		
			−
			1
		

	
, and 
	
		

			𝐺
		

		

			2
		

		
			=
			1
			+
			⟨
			𝑝
			⟩
		

	
 is a group of order 
	
		

			𝑝
		

		
			(
			𝑠
			−
			1
			)
			𝑚
		

	
.
Proposition 1.2.  
	
		

			(
		

		

			i
		

		

			)
		

	
 
	
		

			𝑅
		

		
			∗
			2
		

	
 is a subgroup of 
	
		

			𝑅
		

		

			∗
		

	
 with index 
	
		
			[
			𝑅
		

		

			∗
		

		
			∶
			𝑅
		

		
			∗
			2
		

		
			]
			=
			2
		

	
. 
	
		

			(
		

		
			i
			i
		

		

			)
		

	

					 For any 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
, 
	
		

			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

		
			=
			𝑧
			𝑅
		

		
			∗
			2
		

	
, and 
	
		
			|
			𝑅
		

		
			∗
			2
		

		
			|
			=
			|
			𝑧
			𝑅
		

		
			∗
			2
		

		
			|
			=
			(
			1
			/
			2
			)
			|
			𝑅
		

		

			∗
		

		

			|
		

	
. 
	
		

			(
		

		
			i
			i
			i
		

		

			)
		

	

					 For any 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
 and 
	
		
			𝑎
			∈
			⟨
			𝑝
			⟩
		

	
, there exists 
	
		
			𝑐
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		

			𝑐
		

		

			2
		

		
			(
			𝑢
			+
			𝑎
			)
			=
			𝑢
		

	
.
 Proof . In the notation of Lemma 1.1. Let 
	
		

			𝜉
		

	
 be a generator of the cyclic group 
	
		

			𝐺
		

		

			1
		

	
. Then 
	
		

			𝜉
		

	
 is of order 
	
		

			𝑝
		

		

			𝑚
		

		
			−
			1
		

	
. Since 
	
		

			𝑝
		

	
 is odd and 
	
		

			𝑝
		

		

			𝑚
		

		
			−
			1
		

	
 is even, 
	
		

			𝜉
		

		

			2
		

	
 is of order 
	
		
			(
			1
			/
			2
			)
			(
			𝑝
		

		

			𝑚
		

		
			−
			1
			)
		

	
 and 
	
		

			𝐺
		

		

			2
		

		

			1
		

		
			=
			⟨
			𝜉
		

		

			2
		

		

			⟩
		

	
. Since 
	
		

			𝑝
		

		
			(
			𝑠
			−
			1
			)
			𝑚
		

	
 is odd and 
	
		

			𝐺
		

		

			2
		

	
 is a commutative group of order 
	
		

			𝑝
		

		
			(
			𝑠
			−
			1
			)
			𝑚
		

	
 by Lemma 1.1, for every 
	
		
			𝑎
			∈
			𝐺
		

		

			2
		

	
, there exists a unique 
	
		
			𝑏
			∈
			𝐺
		

		

			2
		

	
 such that 
	
		
			𝑎
			=
			𝑏
		

		

			2
		

	
, so 
	
		

			𝐺
		

		

			2
		

		

			2
		

		
			=
			𝐺
		

		

			2
		

	
. Moreover, by Lemma 1.1 each 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
 can be uniquely expressed as 
	
		
			𝑢
			=
			𝑔
			ℎ
		

	
 where 
	
		
			𝑔
			∈
			𝐺
		

		

			1
		

	
 and 
	
		
			ℎ
			∈
			𝐺
		

		

			2
		

	
. (i) For every 
	
		
			𝑢
			=
			𝑔
			ℎ
			∈
			𝑅
		

		

			∗
		

	
 where 
	
		
			𝑔
			∈
			𝐺
		

		

			1
		

	
 and 
	
		
			ℎ
			∈
			𝐺
		

		

			2
		

	
, 
	
		
			𝑢
			∈
			𝑅
		

		
			∗
			2
		

	
 if and only if there exist 
	
		

			𝑔
		

		

			1
		

		
			∈
			𝐺
		

		

			1
		

	
 and 
	
		

			ℎ
		

		

			1
		

		
			∈
			𝐺
		

		

			2
		

	
 such that 
	
		
			𝑔
			ℎ
			=
			(
			𝑔
		

		

			1
		

		

			ℎ
		

		

			1
		

		

			)
		

		

			2
		

		
			=
			𝑔
		

		

			2
		

		

			1
		

		

			ℎ
		

		

			2
		

		

			1
		

	
, which is then equivalent to that 
	
		
			𝑔
			=
			𝑔
		

		

			2
		

		

			1
		

	
 and 
	
		
			ℎ
			=
			ℎ
		

		

			2
		

		

			1
		

	
. So 
	
		
			𝑢
			∈
			𝑅
		

		
			∗
			2
		

	
 if and only if 
	
		
			𝑢
			∈
			𝐺
		

		

			2
		

		

			1
		

		
			×
			𝐺
		

		

			2
		

	
 by Lemma 1.1. Then 
	
		

			𝑅
		

		
			∗
			2
		

		
			=
			𝐺
		

		

			2
		

		

			1
		

		
			×
			𝐺
		

		

			2
		

	
 and so 
	
		
			|
			𝑅
		

		
			∗
			2
		

		
			|
			=
			|
			𝐺
		

		

			2
		

		

			1
		

		
			|
			⋅
			|
			𝐺
		

		

			2
		

		
			|
			=
			(
			1
			/
			2
			)
			(
			𝑝
		

		

			𝑚
		

		
			−
			1
			)
			⋅
			𝑝
		

		
			(
			𝑠
			−
			1
			)
			𝑚
		

		
			=
			(
			1
			/
			2
			)
			|
			𝑅
		

		

			∗
		

		

			|
		

	
. Hence, 
	
		
			[
			𝑅
		

		

			∗
		

		
			∶
			𝑅
		

		
			∗
			2
		

		
			]
			=
			2
		

	
 by group theory. (ii) Since 
	
		
			[
			𝑅
		

		

			∗
		

		
			∶
			𝑅
		

		
			∗
			2
		

		
			]
			=
			2
		

	
, for any 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
, we have 
	
		

			𝑅
		

		

			∗
		

		
			=
			𝑅
		

		
			∗
			2
		

		
			∪
			𝑧
			𝑅
		

		
			∗
			2
		

	
 and 
	
		

			𝑅
		

		
			∗
			2
		

		
			∩
			𝑧
			𝑅
		

		
			∗
			2
		

		
			=
			∅
		

	
 by group theory. So 
	
		
			|
			𝑧
			𝑅
		

		
			∗
			2
		

		
			|
			=
			|
			𝑅
		

		

			∗
		

		
			|
			−
			|
			𝑅
		

		
			∗
			2
		

		
			|
			=
			(
			1
			/
			2
			)
			|
			𝑅
		

		

			∗
		

		

			|
		

	
 by the proof of (i). (iii) Let 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
 and 
	
		
			𝑎
			∈
			⟨
			𝑝
			⟩
		

	
. Then 
	
		

			𝑢
		

		
			−
			1
		

		
			(
			𝑢
			+
			𝑎
			)
			=
			1
			+
			𝑢
		

		
			−
			1
		

		
			𝑎
			∈
			1
			+
			⟨
			𝑝
			⟩
			=
			𝐺
		

		

			2
		

	
. From this and by Lemma 1.1, there exists a unique element 
	
		
			𝑏
			∈
			𝐺
		

		

			2
		

		
			⊆
			𝑅
		

		

			∗
		

	
 such that 
	
		

			𝑢
		

		
			−
			1
		

		
			(
			𝑢
			+
			𝑎
			)
			=
			𝑏
		

		

			2
		

	
. Now, let 
	
		
			𝑐
			=
			𝑏
		

		
			−
			1
		

	
. Then 
	
		
			𝑐
			∈
			𝑅
		

		

			∗
		

	
 satisfying 
	
		

			𝑐
		

		

			2
		

		
			(
			𝑢
			+
			𝑎
			)
			=
			𝑢
		

	
.            
Proposition 1.3.  Let 
	
		
			−
			1
			∉
			𝑅
		

		
			∗
			2
		

	
. Then for any 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
, there exist 
	
		
			𝑥
			,
			𝑦
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			𝑧
			=
			(
			1
			+
			𝑥
		

		

			2
		

		
			)
			𝑦
		

		

			2
		

	
.
 Proof. Let 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
. Suppose that 
	
		
			1
			+
			𝑢
		

		

			2
		

		
			∉
			𝑅
		

		

			∗
		

	
. Then there exists 
	
		
			𝑎
			∈
			𝑅
		

	
 such that 
	
		
			1
			+
			𝑢
		

		

			2
		

		
			=
			𝑎
			𝑝
		

	
. So 
	
		

			𝑢
		

		

			2
		

		
			=
			−
			(
			1
			−
			𝑎
			𝑝
			)
		

	
. Since 
	
		

			𝑝
		

	
 is odd and 
	
		

			𝑝
		

		

			𝑠
		

		
			=
			0
		

	
 in 
	
		

			𝑅
		

	
, there exists 
	
		
			𝑏
			∈
			𝑅
		

	
 such that 
	
		
			(
			𝑢
		

		

			𝑝
		

		

			𝑠
		

		

			)
		

		

			2
		

		
			=
			−
			(
			1
			−
			𝑎
			𝑝
			)
		

		

			𝑝
		

		

			𝑠
		

		
			=
			−
			(
			1
			−
			𝑝
		

		

			𝑝
		

		

			𝑠
		

		
			𝑏
			)
			=
			−
			1
		

	
. From 
	
		

			𝑢
		

		

			𝑝
		

		

			𝑠
		

		
			∈
			𝑅
		

		

			∗
		

	
 we deduce 
	
		
			−
			1
			∈
			𝑅
		

		
			∗
			2
		

	
, which is a contradiction. Hence 
	
		
			1
			+
			𝑢
		

		

			2
		

		
			∈
			𝑅
		

		

			∗
		

	
. Therefore, 
	
		
			𝜎
			∶
			𝑤
			↦
			1
			+
			𝑤
		

	
 (
	
		
			f
			o
			r
			a
			l
			l
		

		
			𝑤
			∈
			𝑅
		

		
			∗
			2
		

	
) is a mapping from 
	
		

			𝑅
		

		
			∗
			2
		

	
 to 
	
		

			𝑅
		

		

			∗
		

	
. Suppose that 
	
		
			𝜎
			(
			𝑅
		

		
			∗
			2
		

		
			)
			⊆
			𝑅
		

		
			∗
			2
		

	
. Then for 
	
		
			1
			∈
			𝑅
		

		
			∗
			2
		

	
, there exists 
	
		

			𝑤
		

		

			0
		

		
			∈
			𝑅
		

		
			∗
			2
		

	
 such that 
	
		
			𝜎
			(
			𝑤
		

		

			0
		

		
			)
			=
			1
			+
			𝑤
		

		

			0
		

		
			=
			1
		

	
, which implies that 
	
		

			𝑤
		

		

			0
		

		
			=
			0
		

	
, and we get a contradiction. So there exists 
	
		
			𝑥
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			1
			+
			𝑥
		

		

			2
		

		
			∉
			𝑅
		

		
			∗
			2
		

	
, that is, 
	
		
			1
			+
			𝑥
		

		

			2
		

		
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

		
			=
			𝑧
			𝑅
		

		
			∗
			2
		

	
 by Proposition 1.2. Then there exists 
	
		
			𝑐
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			1
			+
			𝑥
		

		

			2
		

		
			=
			𝑧
			𝑐
		

		

			2
		

	
, so 
	
		
			(
			1
			+
			𝑥
		

		

			2
		

		
			)
			𝑦
		

		

			2
		

		
			=
			𝑧
		

	
, where 
	
		
			𝑦
			=
			𝑐
		

		
			−
			1
		

		
			∈
			𝑅
		

		

			∗
		

	
.
2. Cogredient Standard Forms of Symmetric Matrices   
In this section, we give two kinds of cogredient standard forms of symmetric matrices over 
	
		

			𝑅
		

	
 corresponding to that of cogredient standard forms of symmetric matrices over finite fields (see [5], or [6], Theorems 1.22 and 1.25).
Notation 1. For any nonnegative integer 
	
		

			𝜈
		

	
 and 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
, define 
							
	
 		
			(
			2
			.
			1
			)
		
 	

	
		

			𝐻
		

		
			2
			𝜈
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			0
			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		
			,
			𝐻
		

		
			2
			𝜈
			+
			2
			,
			Δ
		

		
			=
			𝐻
		

		
			2
			𝜈
		

		
			⊕
			Δ
			,
		

		
			w
			h
			e
			r
			e
		

		
			Δ
			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
		

		
			0
			−
			𝑧
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			1
			)
		

		
			=
			𝐻
		

		
			2
			𝜈
		

		

			⊕
		

		

			(
		

		

			1
		

		

			)
		

		
			,
			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			𝑧
			)
		

		
			=
			𝐻
		

		
			2
			𝜈
		

		

			⊕
		

		

			(
		

		

			𝑧
		

		

			)
		

		

			.
		

	

Lemma 2.1.  For any 
	
		
			𝜈
			∈
			ℤ
		

		

			+
		

	
 and 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
, 
	
		
			𝑧
			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
.
Proof. Let 
	
		
			−
			1
			∈
			𝑅
		

		
			∗
			2
		

	
. Then there exists 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		

			𝑢
		

		

			2
		

		
			=
			−
			1
		

	
, that is, 
	
		
			1
			+
			𝑢
		

		

			2
		

		
			=
			0
		

	
. Since 
	
		

			𝑝
		

	
 is an odd prime number, we have 
	
		
			g
			c
			d
		

		
			(
			2
			,
			𝑝
		

		

			𝑠
		

		
			)
			=
			1
		

	
 and so 
	
		
			2
			∈
			𝑅
		

		

			∗
		

	
. Let 
	
		
			𝑃
			=
			2
		

		
			−
			1
		

		

			
		

		
			(
			1
			+
			𝑧
			)
			𝑢
		

		
			−
			1
		

		
			(
			1
			−
			𝑧
			)
		

		
			𝑢
			(
			1
			−
			𝑧
			)
			(
			1
			+
			𝑧
			)
		

		

			
		

	
. Since 
	
		

			𝑅
		

	
 is a commutative ring, we have 
	
		
			d
			e
			t
			𝑃
			=
			(
			2
		

		
			−
			1
		

		

			)
		

		

			2
		

		
			[
			(
			1
			+
			𝑧
			)
			(
			1
			+
			𝑧
			)
			−
			𝑢
		

		
			−
			1
		

		
			(
			1
			−
			𝑧
			)
			𝑢
			(
			1
			−
			𝑧
			)
			]
			=
			(
			2
		

		
			−
			1
		

		

			)
		

		

			2
		

		
			⋅
			2
			⋅
			2
			𝑧
			=
			𝑧
			∈
			𝑅
		

		

			∗
		

	
. Hence, 
	
		
			𝑃
			∈
		

		
			G
			L
		

		

			2
		

		
			(
			𝑅
			)
		

	
. Then by 
	
		
			(
			𝑢
		

		
			−
			1
		

		

			)
		

		

			2
		

		
			=
			(
			𝑢
		

		

			2
		

		

			)
		

		
			−
			1
		

		
			=
			−
			1
		

	
 and 
	
		
			𝑢
			(
			1
			−
			𝑧
		

		

			2
		

		
			)
			+
			𝑢
		

		
			−
			1
		

		
			(
			1
			−
			𝑧
		

		

			2
		

		
			)
			=
			𝑢
		

		
			−
			1
		

		
			(
			𝑢
		

		

			2
		

		
			+
			1
			)
			(
			1
			−
			𝑧
		

		

			2
		

		
			)
			=
			0
		

	
, we get 
							
	
 		
			(
			2
			.
			2
			)
		
 	

	
		
			𝑃
			𝐼
		

		
			(
			2
			)
		

		

			𝑃
		

		

			𝑇
		

		

			=
		

		

			
		

		

			2
		

		
			−
			1
		

		

			
		

		

			2
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			(
		

		
			1
			+
			𝑧
		

		

			)
		

		

			𝑢
		

		
			−
			1
		

		

			(
		

		
			1
			−
			𝑧
		

		

			)
		

		

			𝑢
		

		

			(
		

		
			1
			−
			𝑧
		

		
			)
			(
		

		
			1
			+
			𝑧
		

		

			)
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			(
		

		
			1
			+
			𝑧
		

		

			)
		

		

			𝑢
		

		

			(
		

		
			1
			−
			𝑧
		

		

			)
		

		

			𝑢
		

		
			−
			1
		

		

			(
		

		
			1
			−
			𝑧
		

		
			)
			(
		

		
			1
			+
			𝑧
		

		

			)
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			=
		

		

			
		

		

			2
		

		
			−
			1
		

		

			
		

		

			2
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			2
			⋅
			2
			𝑧
			0
		

		
			0
			2
			⋅
			2
			𝑧
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		
			=
			𝑧
			𝐼
		

		
			(
			2
			)
		

		

			,
		

	

						so 
	
		
			𝑧
			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			)
		

	
. Let 
	
		
			−
			1
			∉
			𝑅
		

		
			∗
			2
		

	
. Then by Proposition 1.3 there exist 
	
		
			𝑥
			,
			𝑦
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			(
			1
			+
			𝑥
		

		

			2
		

		
			)
			𝑦
		

		

			2
		

		
			=
			𝑧
		

	
. Let 
	
		
			𝑄
			=
		

		

			
		

		
			𝑥
			𝑦
			𝑦
		

		
			−
			𝑦
			𝑥
			𝑦
		

		

			
		

	
. Then 
	
		
			d
			e
			t
			𝑄
			=
			(
			1
			+
			𝑥
		

		

			2
		

		
			)
			𝑦
		

		

			2
		

		
			=
			𝑧
			∈
			𝑅
		

		

			∗
		

	
 and so 
	
		
			𝑄
			∈
		

		
			G
			L
		

		

			2
		

		
			(
			𝑅
			)
		

	
. By 
	
		
			(
			1
			+
			𝑥
		

		

			2
		

		
			)
			𝑦
		

		

			2
		

		
			=
			𝑧
		

	
, a matrix computation shows that 
	
		
			𝑄
			𝐼
		

		
			(
			2
			)
		

		

			𝑄
		

		

			𝑇
		

		
			=
			𝑄
			𝑄
		

		

			𝑇
		

		
			=
			𝑧
			𝐼
		

		
			(
			2
			)
		

	
. Hence, 
	
		
			𝑧
			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			)
		

	
 as well. Then 
	
		
			𝑧
			𝐼
		

		
			(
			2
			𝜈
			)
		

		

			=
		

		

			𝜈
		

		

			
		

		

			𝑠
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑧
			𝐼
		

		
			(
			2
			)
		

		
			⊕
			⋯
			⊕
			𝑧
			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

		

			=
		

		

			𝜈
		

		

			
		

		

			𝑠
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		

			𝐼
		

		
			(
			2
			)
		

		
			⊕
			⋯
			⊕
			𝐼
		

		
			(
			2
			)
		

	
.
Lemma 2.2.  Let 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
 and 
	
		
			𝜈
			∈
			ℤ
		

		

			+
		

	
. (i) If 
	
		
			−
			1
			∈
			𝑅
		

		
			∗
			2
		

	
, then 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
. (ii) If 
	
		
			−
			1
			∉
			𝑅
		

		
			∗
			2
		

	
, then 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
.
Proof. We select 
	
		

			𝑃
		

		

			1
		

		
			=
			2
		

		
			−
			1
		

		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

	
 and denote that 
	
		
			𝑀
			=
			2
		

		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		
			0
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

	
. From 
	
		

			𝑃
		

		

			1
		

		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		
			0
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

		

			=
		

		

			
		

		

			2
		

		
			−
			1
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		

			2
		

		
			−
			1
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

	
 we deduce 
	
		
			d
			e
			t
			𝑃
		

		

			1
		

		
			=
			d
			e
			t
			(
			2
		

		
			−
			1
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		
			)
			=
			(
			2
		

		
			−
			1
		

		

			)
		

		

			𝜈
		

		
			∈
			𝑅
		

		

			∗
		

	
. Hence 
	
		

			𝑃
		

		

			1
		

		

			∈
		

		
			G
			L
		

		
			2
			𝜈
		

		
			(
			𝑅
			)
		

	
. Then by 
	
		

			𝑃
		

		

			1
		

		
			𝑀
			𝑃
		

		

			𝑇
		

		

			1
		

		
			=
			2
		

		
			−
			1
		

		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		
			
			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

		
			=
			𝐻
		

		
			2
			𝜈
		

	
, we see that 
	
		

			𝑀
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
.(i) By 
	
		
			−
			1
			∈
			𝑅
		

		
			∗
			2
		

	
 there exists 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			−
			1
			=
			𝑢
		

		

			2
		

	
. Then 
	
		

			𝑀
		

	
 is cogredient to 
	
		
			2
			𝐼
		

		
			(
			2
			𝜈
			)
		

	
. If 
	
		
			2
			∉
			𝑅
		

		
			∗
			2
		

	
, 
	
		
			2
			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 by Lemma 2.1. If 
	
		
			2
			∈
			𝑅
		

		
			∗
			2
		

	
, there exists 
	
		
			𝑤
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			2
			=
			𝑤
		

		

			2
		

	
, so 
	
		
			2
			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 as well. Therefore, 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 in this case.(ii) Let 
	
		
			−
			1
			∉
			𝑅
		

		
			∗
			2
		

	
. Then by Proposition 1.2 there exists 
	
		
			𝑐
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			−
			1
			=
			𝑧
			𝑐
		

		

			2
		

	
. Hence 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		
			0
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

	
. If 
	
		
			2
			∈
			𝑅
		

		
			∗
			2
		

	
, there exists 
	
		
			𝑤
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			2
			=
			𝑤
		

		

			2
		

	
, so 
	
		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		
			0
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

	
 is cogredient to 
	
		

			𝑀
		

	
. If 
	
		
			2
			∉
			𝑅
		

		
			∗
			2
		

	
, then 
	
		
			−
			2
			=
			(
			−
			1
			)
			2
			∈
			𝑅
		

		
			∗
			2
		

	
, and hence there exists 
	
		
			𝑎
			∈
			𝑅
		

		

			∗
		

	
 such that 
	
		
			−
			2
			=
			𝑎
		

		

			2
		

	
, so 
	
		
			(
			𝑎
			𝐼
		

		
			(
			2
			𝜈
			)
		

		
			)
			𝐻
		

		
			2
			𝜈
		

		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		
			0
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

		

			𝐻
		

		

			𝑇
		

		
			2
			𝜈
		

		
			(
			𝑎
			𝐼
		

		
			(
			2
			𝜈
			)
		

		
			)
			=
			𝑀
		

	
. Hence, 
	
		

			
		

		

			𝐼
		

		
			(
			𝜈
			)
		

		

			0
		

		
			0
			−
			𝐼
		

		
			(
			𝜈
			)
		

		

			
		

	
 is cogredient to 
	
		

			𝑀
		

	
 as well. Therefore, 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
.
Lemma 2.3.  Let 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
 and 
	
		
			𝐷
			=
			d
			i
			a
			g
			(
			𝑢
		

		

			1
		

		
			,
			…
			,
			𝑢
		

		

			𝑟
		

		

			)
		

	
, where 
	
		

			𝑢
		

		

			𝑖
		

		
			∈
			𝑅
		

		

			∗
		

	
, 
	
		
			𝑖
			=
			1
			,
			…
			,
			𝑟
		

	
 and 
	
		
			𝑟
			∈
			ℤ
		

		

			+
		

	
. Then, One has the following. (i)
	
		

			𝐷
		

	
 is necessarily cogredient to either 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
 or 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. Moreover, these two matrices are not cogredient over 
	
		

			𝑅
		

	
. (ii) If 
	
		
			𝑟
			=
			2
			𝜈
			+
			1
		

	
 is odd, then D is necessarily cogredient to either 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			1
			)
		

	
 or 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			𝑧
			)
		

	
. Moreover, these two matrices are not cogredient. If 
	
		
			𝑟
			=
			2
			𝜈
		

	
 is even, then D is necessarily cogredient to either 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 or 
	
		

			𝐻
		

		
			2
			(
			𝜈
			−
			1
			)
			+
			2
			,
			Δ
		

	
. Moreover, these two matrices are not cogredient.
 Proof.  (i) We may assume that 
	
		

			𝑢
		

		

			1
		

		
			,
			…
			,
			𝑢
		

		

			𝑡
		

		
			∈
			𝑅
		

		
			∗
			2
		

	
 and 
	
		

			𝑢
		

		
			𝑡
			+
			1
		

		
			,
			…
			,
			𝑢
		

		

			𝑟
		

		
			∈
			𝑧
			𝑅
		

		
			∗
			2
		

	
, where 
	
		
			0
			≤
			𝑡
			≤
			𝑟
		

	
. Then 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑡
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝑟
			−
			𝑡
			)
		

	
. If 
	
		
			𝑟
			−
			𝑡
		

	
 is even, by Lemma 2.1  
	
		
			𝑧
			𝐼
		

		
			(
			𝑟
			−
			𝑡
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			−
			𝑡
			)
		

	
 and hence 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑡
			)
		

		
			⊕
			𝐼
		

		
			(
			𝑟
			−
			𝑡
			)
		

		
			=
			𝐼
		

		
			(
			𝑟
			)
		

	
. Now, let 
	
		
			𝑟
			−
			𝑡
		

	
 be odd. If 
	
		
			𝑟
			−
			𝑡
			=
			1
		

	
, 
	
		

			𝐷
		

	
 is obviously cogredient to 
	
		

			𝐼
		

		
			(
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. If 
	
		
			𝑟
			−
			𝑡
			≥
			3
		

	
, by Lemma 2.1  
	
		
			𝑧
			𝐼
		

		
			(
			𝑟
			−
			𝑡
			−
			1
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			−
			𝑡
			−
			1
			)
		

	
, and hence 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑡
			)
		

		
			⊕
			𝐼
		

		
			(
			𝑟
			−
			𝑡
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
			=
			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. Suppose that 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 over 
	
		

			𝑅
		

	
. Then there exists 
	
		
			𝑄
			∈
		

		
			G
			L
		

		

			𝑟
		

		
			(
			𝑅
			)
		

	
 such that 
	
		
			𝑄
			𝐼
		

		
			(
			𝑟
			)
		

		

			𝑄
		

		

			𝑇
		

		
			=
			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. From this and by 
	
		
			d
			e
			t
			𝑄
			∈
			𝑅
		

		

			∗
		

	
, we obtain that 
	
		
			𝑧
			=
			(
			d
			e
			t
			𝑄
			)
		

		

			2
		

		
			∈
			𝑅
		

		
			∗
			2
		

	
, which is a contradiction. So 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
 and 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 are not cogredient over 
	
		

			𝑅
		

	
.(ii) We have one of the following two cases.(ii-1)Let 
	
		
			𝑟
			=
			2
			𝜈
			+
			1
		

	
 be an odd number. Then 
	
		
			𝑟
			−
			1
			=
			2
			𝜈
		

	
 is even and we have one of the following two cases. (ii-1-1)Let 
	
		
			−
			1
			∈
			𝑅
		

		
			∗
			2
		

	
. Then 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 by Lemma 2.2(i). From this and by (i) we deduce that 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			1
			)
		

	
 when 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
, or 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			𝑧
			)
		

	
 when 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. (ii-1-2) Let 
	
		
			−
			1
			∈
			𝑧
			𝑅
		

		
			∗
			2
		

	
. Then we have one of the following two cases.(
	
		

			𝛼
		

	
) Let 
	
		
			(
			1
			/
			2
			)
			(
			𝑟
			−
			1
			)
			=
			𝜈
		

	
 be even. Then 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 by Lemma 2.1, so 
	
		

			𝐼
		

		
			(
			2
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
. Since 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 by Lemma 2.2(ii), by (i) we see that: 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			1
			)
		

	
 when 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
, or 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			𝑧
			)
		

	
 when 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. (
	
		

			𝛽
		

	
) Let 
	
		
			(
			1
			/
			2
			)
			(
			𝑟
			−
			1
			)
			=
			𝜈
		

	
 be odd. Then 
	
		
			𝜈
			=
			2
			𝜔
			+
			1
		

	
 for some nonnegative integer 
	
		

			𝜔
		

	
 and so 
	
		
			𝑟
			−
			1
			=
			4
			𝜔
			+
			2
		

	
. By Lemma 2.1 we see that 
	
		

			𝐼
		

		
			(
			2
			𝜔
			)
		

	
 is cogredient to 
	
		
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			)
		

	
, and 
	
		

			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		
			𝑧
			𝐼
		

		
			(
			2
			)
		

	
. Hence 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

		
			=
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			)
		

		
			⊕
			(
			1
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			)
		

		
			⊕
			(
			1
			)
		

	
, which is then cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
. Since 
	
		

			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			(
			2
			𝜔
			+
			1
			)
		

		
			=
			𝐻
		

		
			2
			𝜈
		

	
 by Lemma 2.2(ii), 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			𝑧
			)
		

	
. Moreover, 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
			=
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			)
		

		
			⊕
			(
			𝑧
			)
		

	
, which is then cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

		
			⊕
			(
			1
			)
		

	
. Since 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 by Lemma 2.2(ii), 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			1
			)
		

	
. Therefore, 
	
		

			𝐷
		

	
 is necessarily cogredient to either 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			1
			)
		

	
 or 
	
		

			𝐻
		

		
			2
			𝜈
			+
			1
			,
			(
			𝑧
			)
		

	
 by (i).(ii-2) Let 
	
		
			𝑟
			=
			2
			𝜈
		

	
 be an even number. Then 
	
		
			𝑟
			−
			2
			=
			2
			(
			𝜈
			−
			1
			)
		

	
 is also even and we have one of the following two cases.(ii-2-1) Let 
	
		
			−
			1
			∈
			𝑅
		

		
			∗
			2
		

	
. Then 
	
		
			−
			1
			=
			𝑢
		

		

			2
		

	
 for some 
	
		
			𝑢
			∈
			𝑅
		

		

			∗
		

	
 and so 
	
		

			
		

		
			1
			0
		

		
			0
			𝑧
		

		

			
		

	
 is cogredient to 
	
		

			
		

		
			1
			0
		

		
			0
			−
			𝑧
		

		

			
		

		
			=
			Δ
		

	
. By Lemma 2.2(i)  
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 when 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
, or 
	
		

			𝐷
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			(
			𝜈
			−
			1
			)
			+
			2
			,
			Δ
		

	
 when 
	
		

			𝐷
		

	
 is cogedient to 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
			=
			𝐼
		

		
			(
			2
			(
			𝜈
			−
			1
			)
			)
		

		

			⊕
		

		

			
		

		
			1
			0
		

		
			0
			𝑧
		

		

			
		

	
.(ii-2-2) Let 
	
		
			−
			1
			∈
			𝑧
			𝑅
		

		
			∗
			2
		

	
. Then 
	
		
			−
			1
			=
			𝑧
			𝑐
		

		

			2
		

	
 for some 
	
		
			𝑐
			∈
			𝑅
		

		

			∗
		

	
. By 
	
		
			1
			=
			(
			−
			𝑧
			)
			𝑐
		

		

			2
		

	
, we see that 
	
		

			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			Δ
		

	
. Now, we have one of the following two cases.(
	
		

			𝛼
		

	
) Let 
	
		

			𝜈
		

	
 be even. Then 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
 by Lemma 2.1 and so 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

		
			=
			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝐼
		

		
			(
			𝜈
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝜈
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			)
		

	
. From this and by Lemma 2.2(ii), we see that 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			𝜈
		

	
. Let 
	
		
			𝜈
			=
			2
		

	
. Since 
	
		

			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			Δ
		

	
 and 
	
		

			𝐼
		

		
			(
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		

			2
		

	
 by Lemma 2.2(ii), 
	
		

			𝐼
		

		
			(
			3
			)
		

		
			⊕
			(
			𝑧
			)
			=
			𝐼
		

		
			(
			2
			)
		

		
			⊕
			𝐼
		

		
			(
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		

			2
		

		
			⊕
			Δ
			=
			𝐻
		

		
			2
			⋅
			1
			+
			2
			,
			Δ
		

	
. Now, let 
	
		
			𝜈
			≥
			4
		

	
. Since 
	
		
			𝜈
			−
			2
		

	
 is even, 
	
		

			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

	
 is cogredient to 
	
		
			𝑧
			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

	
 by Lemma 2.1, so 
	
		

			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

		
			⊕
			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

	
. Hence, 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
			=
			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

		
			⊕
			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

		
			⊕
			𝐼
		

		
			(
			3
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			−
			2
			)
		

		
			⊕
			𝐼
		

		
			(
			3
			)
		

		
			⊕
			(
			𝑧
			)
		

	
, which is then cogredient to 
	
		

			𝐼
		

		
			(
			𝜈
			−
			1
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			𝜈
			−
			1
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			)
		

	
. Since 
	
		

			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			Δ
		

	
, we see that 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			(
			𝜈
			−
			1
			)
			+
			2
			,
			Δ
		

	
 by Lemma 2.2(ii). Therefore, 
	
		

			𝐷
		

	
 is necessarily cogredient to either 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 or 
	
		

			𝐻
		

		
			2
			(
			𝜈
			−
			1
			)
			+
			2
			,
			Δ
		

	
 by (i).(
	
		

			𝛽
		

	
) Let 
	
		

			𝜈
		

	
 be odd. Then there exists nonnegative integer 
	
		

			𝜔
		

	
 such that 
	
		
			𝜈
			=
			2
			𝜔
			+
			1
		

	
 and so 
	
		
			𝑟
			=
			4
			𝜔
			+
			2
		

	
. Since 
	
		

			𝐼
		

		
			(
			2
			𝜔
			)
		

	
 is cogredient to 
	
		
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			)
		

	
 by Lemma 2.1, 
	
		

			𝐼
		

		
			(
			𝑟
			)
		

		
			=
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			Δ
		

	
, that is then cogredient to 
	
		

			𝐻
		

		
			2
			(
			2
			𝜔
			)
			+
			2
			,
			Δ
		

		
			=
			𝐻
		

		
			2
			(
			𝜈
			−
			1
			)
			+
			2
			,
			Δ
		

	
 by Lemma 2.2(ii). Now, 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
			=
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			(
			1
			)
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			)
		

		
			⊕
			(
			1
			)
			⊕
			(
			𝑧
			)
		

	
 by Lemma 2.1, which is then cogredient to 
	
		

			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

		
			⊕
			𝑧
			𝐼
		

		
			(
			2
			𝜔
			+
			1
			)
		

	
. Hence 
	
		

			𝐼
		

		
			(
			𝑟
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 is cogredient to 
	
		

			𝐻
		

		
			2
			(
			2
			𝜔
			+
			1
			)
		

		
			=
			𝐻
		

		
			2
			𝜈
		

	
 by Lemma 2.2(ii). Therefore, 
	
		

			𝐷
		

	
 is necessarily cogredient to either 
	
		

			𝐻
		

		
			2
			𝜈
		

	
 or 
	
		

			𝐻
		

		
			2
			(
			𝜈
			−
			1
			)
			+
			2
			,
			Δ
		

	
 by (i).
Theorem 2.4.  Let 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
. Then every 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrix 
	
		

			𝐴
		

	
 over 
	
		

			𝑅
		

	
 is necessarily cogredient to one of the following matrices: 
							
	
 		
			(
			2
			.
			3
			)
		
 	

	
		

			𝐷
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

		
			∶
			=
			d
			i
			a
			g
		

		

			
		

		

			𝑝
		

		

			𝑟
		

		

			1
		

		

			𝐷
		

		

			1
		

		
			,
			𝑝
		

		

			𝑟
		

		

			2
		

		

			𝐷
		

		

			2
		

		
			,
			…
			,
			𝑝
		

		

			𝑟
		

		

			𝑡
		

		

			𝐷
		

		

			𝑡
		

		
			,
			0
		

		
			(
			𝑛
			−
			𝑘
			)
		

		

			
		

		

			,
		

	

						where 
	
		
			0
			≤
			𝑡
			≤
			𝑘
			≤
			𝑛
		

	
, 
	
		

			𝐷
		

		

			𝑖
		

		
			=
			𝐼
		

		
			(
			𝑘
		

		

			𝑖
		

		

			)
		

	
 or 
	
		

			𝐼
		

		
			(
			𝑘
		

		

			𝑖
		

		
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			…
			,
			𝑡
		

	
, 
	
		
			0
			≤
			𝑟
		

		

			1
		

		
			<
			𝑟
		

		

			2
		

		
			<
			⋯
			<
			𝑟
		

		

			𝑡
		

		
			≤
			𝑠
			−
			1
		

	
, and 
	
		

			𝑘
		

		

			𝑖
		

		
			∈
			ℤ
		

		

			+
		

	
 satisfy 
	
		

			Σ
		

		

			𝑡
		

		
			𝑖
			=
			1
		

		

			𝑘
		

		

			𝑖
		

		
			=
			𝑘
		

	
.
 Proof. The statement holds obviously if 
	
		
			𝐴
			=
			0
		

	
 (corresponding to the case 
	
		
			𝑘
			=
			0
		

	
) or 
	
		
			𝑛
			=
			1
		

	
. Now, let 
	
		
			𝑛
			≥
			2
		

	
 and 
	
		
			𝐴
			=
			(
			𝑎
		

		
			𝑖
			𝑗
		

		

			)
		

		
			𝑛
			×
			𝑛
		

		
			≠
			0
		

	
. Then, there exist 
	
		
			1
			≤
			𝑖
		

		

			0
		

		
			,
			𝑗
		

		

			0
		

		
			≤
			𝑛
		

	
 such that 
	
		

			𝑎
		

		

			𝑖
		

		

			0
		

		

			𝑗
		

		

			0
		

		
			≠
			0
		

	
 and 
	
		
			𝜏
			(
			𝑎
		

		

			𝑖
		

		

			0
		

		

			𝑗
		

		

			0
		

		
			)
			=
			m
			i
			n
			{
			𝜏
			(
			𝑎
		

		
			𝑖
			𝑗
		

		
			)
			∣
			𝑎
		

		
			𝑖
			𝑗
		

		
			≠
			0
			,
			1
			≤
			𝑖
			,
			𝑗
			≤
			𝑛
			}
		

	
. Let 
	
		

			𝑠
		

		

			1
		

		
			=
			𝜈
			(
			𝑎
		

		

			𝑖
		

		

			0
		

		

			𝑗
		

		

			0
		

		

			)
		

	
. Then 
	
		
			0
			≤
			𝑠
		

		

			1
		

		
			≤
			𝑠
			−
			1
		

	
, and there exists 
	
		

			𝑃
		

		

			1
		

		

			∈
		

		
			G
			L
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
 such that 
	
		

			𝑃
		

		

			1
		

		
			𝐴
			𝑃
		

		

			𝑇
		

		

			1
		

		
			=
			d
			i
			a
			g
			(
			𝑢
		

		

			1
		

		

			𝑝
		

		

			𝑠
		

		

			1
		

		
			,
			𝐵
			)
		

	
 where 
	
		

			𝑢
		

		

			1
		

		
			∈
			𝑅
		

		

			∗
		

	
 and 
	
		
			𝐵
			=
			(
			𝑏
		

		
			𝑖
			𝑗
		

		

			)
		

	
 is a 
	
		
			(
			𝑛
			−
			1
			)
			×
			(
			𝑛
			−
			1
			)
		

	
 symmetric matrix over 
	
		

			𝑅
		

	
 satisfying 
	
		
			𝐵
			=
			0
		

	
 or 
	
		
			𝜏
			(
			𝑏
		

		
			𝑖
			𝑗
		

		
			)
			≥
			𝑠
		

		

			1
		

	
 for all 
	
		

			𝑏
		

		
			𝑖
			𝑗
		

		
			≠
			0
		

	
, 
	
		
			1
			≤
			𝑖
			,
			𝑗
			≤
			𝑛
			−
			1
		

	
. By induction there exists 
	
		
			𝑋
			∈
		

		
			G
			L
		

		
			𝑛
			−
			1
		

		
			(
			𝑅
			)
		

	
 such that 
	
		
			𝑋
			𝐵
			𝑋
		

		

			𝑇
		

		
			=
			d
			i
			a
			g
			(
			𝑢
		

		

			2
		

		

			𝑝
		

		

			𝑠
		

		

			2
		

		
			,
			…
			,
			𝑢
		

		

			𝑘
		

		

			𝑝
		

		

			𝑠
		

		

			𝑘
		

		
			,
			0
		

		
			(
			𝑛
			−
			𝑘
			)
		

		

			)
		

	
, where 
	
		

			𝑢
		

		

			2
		

		
			,
			…
			,
			𝑢
		

		

			𝑘
		

		
			∈
			𝑅
		

		

			∗
		

	
 and 
	
		

			𝑠
		

		

			2
		

		
			≤
			⋯
			≤
			𝑠
		

		

			𝑘
		

		
			≤
			𝑠
			−
			1
		

	
. Then 
	
		
			𝑃
			=
			d
			i
			a
			g
			(
			1
			,
			𝑋
			)
			𝑃
		

		

			1
		

		

			∈
		

		
			G
			L
		

		

			𝑛
		

		
			(
			𝑅
			)
		

	
 satisfies 
	
		
			𝑃
			𝐴
			𝑃
		

		

			𝑇
		

		
			=
			d
			i
			a
			g
			(
			𝑢
		

		

			1
		

		

			𝑝
		

		

			𝑠
		

		

			1
		

		
			,
			…
			,
			𝑢
		

		

			𝑘
		

		

			𝑝
		

		

			𝑠
		

		

			𝑘
		

		
			,
			0
		

		
			(
			𝑛
			−
			𝑘
			)
		

		

			)
		

	
.  Now, there must exist 
	
		
			𝑡
			,
			𝑘
		

		

			𝑖
		

		
			∈
			ℤ
		

		

			+
		

	
, 
	
		
			𝑖
			=
			1
			,
			…
			,
			𝑡
		

	
 and 
	
		
			0
			≤
			𝑟
		

		

			1
		

		
			<
			⋯
			<
			𝑟
		

		

			𝑡
		

		
			≤
			𝑠
			−
			1
		

	
 such that 
	
		

			𝑠
		

		

			1
		

		
			=
			⋯
			=
			𝑠
		

		

			𝑘
		

		

			1
		

		
			=
			𝑟
		

		

			1
		

		
			<
			𝑠
		

		

			𝑘
		

		

			1
		

		
			+
			1
		

		
			=
			⋯
			=
			𝑠
		

		

			𝑘
		

		

			1
		

		
			+
			𝑘
		

		

			2
		

		
			=
			𝑟
		

		

			2
		

		
			<
			⋯
			<
			𝑠
		

		

			𝑘
		

		

			1
		

		
			+
			𝑘
		

		

			2
		

		
			+
			⋯
			+
			𝑘
		

		
			𝑡
			−
			1
		

		
			+
			1
		

		
			=
			⋯
			=
			𝑠
		

		

			𝑘
		

		

			1
		

		
			+
			𝑘
		

		

			2
		

		
			+
			⋯
			+
			𝑘
		

		
			𝑡
			−
			1
		

		
			+
			𝑘
		

		

			𝑡
		

		
			=
			𝑟
		

		

			𝑡
		

	
. Then 
	
		

			Σ
		

		

			𝑡
		

		
			𝑖
			=
			1
		

		

			𝑘
		

		

			𝑖
		

		
			=
			𝑘
		

	
 and 
	
		

			𝐴
		

	
 is cogredient to 
	
		
			𝑀
			=
			d
			i
			a
			g
			(
			𝑝
		

		

			𝑟
		

		

			1
		

		

			𝑀
		

		

			1
		

		
			,
			𝑝
		

		

			𝑟
		

		

			2
		

		

			𝑀
		

		

			2
		

		
			,
			…
			,
			𝑝
		

		

			𝑟
		

		

			𝑡
		

		

			𝑀
		

		

			𝑡
		

		
			,
			0
		

		
			(
			𝑛
			−
			𝑘
			)
		

		

			)
		

	
, where 
	
		

			𝑀
		

		

			𝑖
		

		
			=
			d
			i
			a
			g
			(
			𝑢
		

		

			𝑘
		

		

			1
		

		
			+
			⋯
			+
			𝑘
		

		
			𝑖
			−
			1
		

		
			+
			1
		

		
			,
			…
			,
			𝑢
		

		

			𝑘
		

		

			1
		

		
			+
			⋯
			+
			𝑘
		

		
			𝑖
			−
			1
		

		
			+
			𝑘
		

		

			𝑖
		

		

			)
		

	
 is a 
	
		

			𝑘
		

		

			𝑖
		

		
			×
			𝑘
		

		

			𝑖
		

	
 matrix over 
	
		

			𝑅
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			…
			,
			𝑡
		

	
. Since 
	
		

			𝑀
		

		

			𝑖
		

	
 is cogredient to 
	
		

			𝐷
		

		

			𝑖
		

	
 for every 
	
		
			1
			≤
			𝑖
			≤
			𝑡
		

	
 by Lemma 2.3(i), we deduce that 
	
		

			𝐴
		

	
 is cogredient to 
	
		
			d
			i
			a
			g
			(
			𝑝
		

		

			𝑟
		

		

			1
		

		

			𝐷
		

		

			1
		

		
			,
			𝑝
		

		

			𝑟
		

		

			2
		

		

			𝐷
		

		

			2
		

		
			,
			…
			,
			𝑝
		

		

			𝑟
		

		

			𝑡
		

		

			𝐷
		

		

			𝑡
		

		
			,
			0
		

		
			(
			𝑛
			−
			𝑘
			)
		

		

			)
		

	
.            
Theorem 2.5.  Let 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
. Then every 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrix 
	
		

			𝐴
		

	
 over 
	
		

			𝑅
		

	
 is necessarily cogredient to one of the following matrices: 
							
	
 		
			(
			2
			.
			4
			)
		
 	

	
		

			𝐻
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

		
			∶
			=
			d
			i
			a
			g
		

		

			
		

		

			𝑝
		

		

			𝑟
		

		

			1
		

		

			𝐻
		

		

			1
		

		
			,
			𝑝
		

		

			𝑟
		

		

			2
		

		

			𝐻
		

		

			2
		

		
			,
			…
			,
			𝑝
		

		

			𝑟
		

		

			𝑡
		

		

			𝐻
		

		

			𝑡
		

		
			,
			0
		

		
			(
			𝑛
			−
			𝑘
			)
		

		

			
		

		

			,
		

	

						where 
	
		

			𝐻
		

		

			𝑖
		

	
 is a 
	
		

			𝑘
		

		

			𝑖
		

		
			×
			𝑘
		

		

			𝑖
		

	
 matrix over R such that 
	
		

			𝐻
		

		

			𝑖
		

	
 is equal to either 
	
		

			𝐻
		

		
			2
			𝜈
		

		

			𝑖
		

		
			+
			1
			,
			(
			1
			)
		

	
 or 
	
		

			𝐻
		

		
			2
			𝜈
		

		

			𝑖
		

		
			+
			1
			,
			(
			𝑧
			)
		

	
 when 
	
		

			𝑘
		

		

			𝑖
		

		
			=
			2
			𝜈
		

		

			𝑖
		

		
			+
			1
		

	
 is odd, and 
	
		

			𝐻
		

		

			𝑖
		

	
 is equal to either 
	
		

			𝐻
		

		
			2
			𝜈
		

		

			𝑖
		

	
 or 
	
		

			𝐻
		

		
			2
			(
			𝜈
		

		

			𝑖
		

		
			−
			1
			)
			+
			2
			,
			Δ
		

	
 when 
	
		

			𝑘
		

		

			𝑖
		

		
			=
			2
			𝜈
		

		

			𝑖
		

	
 is even, for all 
	
		
			𝑖
			=
			1
			,
			…
			,
			𝑡
		

	
; 
	
		
			0
			≤
			𝑡
			≤
			𝑘
			≤
			𝑛
		

	
, 
	
		
			0
			≤
			𝑟
		

		

			1
		

		
			<
			𝑟
		

		

			2
		

		
			<
			⋯
			<
			𝑟
		

		

			𝑡
		

		
			≤
			𝑠
			−
			1
		

	
, and 
	
		

			𝑘
		

		

			𝑖
		

		
			∈
			ℤ
		

		

			+
		

	
 satisfy 
	
		

			Σ
		

		

			𝑡
		

		
			𝑖
			=
			1
		

		

			𝑘
		

		

			𝑖
		

		
			=
			𝑘
		

	
.
 Proof. It follows from Theorem 2.4 and the proof of Lemma 2.3(ii).  For any 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrix 
	
		

			𝐴
		

	
, we call 
	
		

			𝐷
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

	
 the cogredient standard form of kind (I) of 
	
		

			𝐴
		

	
 if 
	
		

			𝐴
		

	
 is cogredient to 
	
		

			𝐷
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

	
, and call 
	
		

			𝐻
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

	
 the cogredient standard form of kind (II) of 
	
		

			𝐴
		

	
 if 
	
		

			𝐴
		

	
 is cogredient to 
	
		

			𝐻
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

	
.
3. The Number of Cogredient Classes of Symmetric Matrices   
In order to count the number of all distinct cogredient classes of 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrices over 
	
		

			𝑅
		

	
, we show that every 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrix over 
	
		

			𝑅
		

	
 has only one cogredient standard form of kind (
	
		

			I
		

	
) first, then the number of all distinct cogredient classes of 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrices over 
	
		

			𝑅
		

	
 is equal to the number of all cogredient standard forms of kind (
	
		

			I
		

	
) by Theorem 2.4.
Theorem 3.1.  The number 
	
		

			𝒞
		

		
			𝑠
			,
			𝑛
		

	
 of all distinct cogredient classes of 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrices over 
	
		

			𝑅
		

	
 is given by the following: (i) If 
	
		
			𝑛
			≤
			𝑠
		

	
, then 
	
		

			𝒞
		

		
			𝑠
			,
			𝑛
		

		
			=
			1
			+
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			𝑠
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

	
; (ii) If 
	
		
			𝑛
			≥
			𝑠
			+
			1
		

	
, then 
	
		

			𝒞
		

		
			𝑠
			,
			𝑛
		

		
			=
			1
			+
		

		

			∑
		

		
			𝑠
			−
			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			𝑠
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

	
.
Proof. Let 
	
		

			
		

		
			𝐷
			∶
			=
			d
			i
			a
			g
			(
			𝑝
		

		
			̂
			𝑟
		

		

			1
		

		

			
		

		

			𝐷
		

		

			1
		

		
			,
			𝑝
		

		
			̂
			𝑟
		

		

			2
		

		

			
		

		

			𝐷
		

		

			2
		

		
			,
			…
			,
			𝑝
		

		
			̂
			𝑟
		

		
			̂
			‌
		

		

			𝑡
		

		

			
		

		

			𝐷
		

		
			̂
			‌
		

		

			𝑡
		

		
			,
			0
		

		
			(
			𝑛
			−
		

		
			̂
			‌
		

		

			𝑘
		

		

			)
		

		

			)
		

	
, where 
	
		

			
		

		

			𝐷
		

		

			𝑖
		

		
			=
			𝐼
		

		

			(
		

		
			̂
			‌
		

		

			𝑘
		

		

			𝑖
		

		

			)
		

	
 or 
	
		

			𝐼
		

		

			(
		

		
			̂
			‌
		

		

			𝑘
		

		

			𝑖
		

		
			−
			1
			)
		

		
			⊕
			(
			𝑧
			)
		

	
 for all 
	
		
			𝑖
			=
			1
			,
			…
			,
		

		
			̂
			‌
		

		

			𝑡
		

	
, 
	
		
			0
			≤
		

		
			̂
			‌
		

		
			𝑡
			≤
		

		
			̂
			‌
		

		
			𝑘
			≤
			𝑛
		

	
, 
	
		
			0
			≤
			̂
			𝑟
		

		

			1
		

		
			<
			̂
			𝑟
		

		

			2
		

		
			<
			⋯
			<
			̂
			𝑟
		

		
			̂
			‌
		

		

			𝑡
		

		
			≤
			𝑠
			−
			1
		

	
, and 
	
		
			̂
			‌
		

		

			𝑘
		

		

			𝑖
		

		
			∈
			ℤ
		

		

			+
		

	
 satisfy 
	
		

			Σ
		

		
			̂
			‌
		

		

			𝑡
		

		
			𝑖
			=
			1
		

		
			̂
			‌
		

		

			𝑘
		

		

			𝑖
		

		

			=
		

		
			̂
			‌
		

		

			𝑘
		

	
. In the notation of Theorem 2.4, by [7, Theorem 
	
		

			D
		

	
], it follows that 
	
		
			𝐷
			=
		

		

			
		

		

			𝐷
		

	
 if 
	
		
			𝐷
			∶
			=
			𝐷
		

		
			(
			𝑛
			,
			𝑘
			,
			𝑡
			;
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			;
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		

			)
		

	
 is cogredient to 
	
		

			
		

		

			𝐷
		

	
 over 
	
		

			𝑅
		

	
. Hence, every 
	
		
			𝑛
			×
			𝑛
		

	
 symmetric matrix over 
	
		

			𝑅
		

	
 has only one cogredient standard form of kind (
	
		

			I
		

	
). For any 
	
		
			1
			≤
			𝑡
			≤
			𝑘
			≤
			𝑛
		

	
, denote that 
	
		

			𝑆
		

		

			1
		

		
			=
			{
			(
			𝑘
		

		

			1
		

		
			,
			…
			,
			𝑘
		

		

			𝑡
		

		
			)
			∣
			𝑘
		

		

			𝑖
		

		
			∈
			ℤ
		

		

			+
		

		
			,
			Σ
		

		

			𝑡
		

		
			𝑖
			=
			1
		

		
			=
			𝑘
			}
		

	
 and 
	
		

			𝑆
		

		

			2
		

		
			=
			{
			(
			𝑟
		

		

			1
		

		
			,
			…
			,
			𝑟
		

		

			𝑡
		

		
			)
			∣
			𝑟
		

		

			𝑖
		

		
			∈
			ℤ
			,
			0
			≤
			𝑟
		

		

			1
		

		
			<
			𝑟
		

		

			2
		

		
			<
			⋯
			<
			𝑟
		

		

			𝑡
		

		
			≤
			𝑠
			−
			1
			}
		

	
. Then 
	
		
			|
			𝑆
		

		

			1
		

		
			|
			=
		

		

			
		

		
			𝑘
			−
			1
		

		
			𝑡
			−
			1
		

		

			
		

	
, 
	
		
			|
			𝑆
		

		

			2
		

		
			|
			=
		

		

			(
		

		

			𝑠
		

		

			𝑡
		

		

			)
		

	
 if 
	
		
			𝑡
			≤
			𝑠
		

	
 and, 
	
		
			|
			𝑆
		

		

			2
		

		
			|
			=
			0
		

	
 if 
	
		
			𝑡
			≥
			𝑠
		

	
. From this and by Theorem 2.4 it follows that 
	
		

			𝒞
		

		
			𝑠
			,
			𝑛
		

		
			=
			1
			+
		

		

			∑
		

		

			𝑛
		

		
			𝑘
			=
			1
		

		

			(
		

		

			∑
		

		

			𝑘
		

		
			𝑡
			=
			1
		

		
			|
			𝑆
		

		

			1
		

		
			|
			⋅
			|
			𝑆
		

		

			2
		

		
			|
			⋅
			2
		

		

			𝑡
		

		

			)
		

	
. Therefore, 
	
		

			𝒞
		

		
			𝑠
			,
			𝑛
		

		
			=
			1
			+
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			𝑠
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

	
 if 
	
		
			𝑛
			≤
			𝑠
		

	
 and, 
	
		

			𝒞
		

		
			𝑠
			,
			𝑛
		

		
			=
			1
			+
		

		

			∑
		

		
			𝑠
			−
			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			𝑠
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

	
 if 
	
		
			𝑛
			≥
			𝑠
			+
			1
		

	
. In the notations of Section 1, we see that the class number 
	
		

			𝑑
		

	
 of the association scheme 
	
		
			S
			y
			m
		

		
			(
			𝑛
			,
			𝑅
			)
		

	
 is determined by 
	
		
			𝑑
			+
			1
			=
			𝒞
		

		
			𝑠
			,
			𝑛
		

	
. Then by  Theorem 3.1, we have the following corollary.
Corollary 3.2.  The class number of the association scheme 
	
		
			𝑆
			𝑦
			𝑚
			(
			𝑛
			,
			𝑅
			)
		

	
 is given by the following. (i) If 
	
		
			𝑛
			≤
			𝑠
		

	
, then 
	
		
			𝑑
			=
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			𝑠
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

	
; (ii) If 
	
		
			𝑛
			≥
			𝑠
			+
			1
		

	
, then 
	
		
			𝑑
			=
		

		

			∑
		

		
			𝑠
			−
			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		
			𝑛
			−
			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			𝑠
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

	
.
Example 3.3. Let 
	
		

			𝑝
		

	
 be an odd prime number and 
	
		
			𝑠
			=
			2
		

	
. Then by  Theorem 3.1 the number 
	
		

			𝒞
		

		
			2
			,
			2
		

	
 of all cogredient classes of 
	
		
			2
			×
			2
		

	
 symmetric matrices over Galois ring 
	
		
			G
			R
		

		
			(
			𝑝
		

		

			2
		

		
			,
			𝑝
		

		
			2
			𝑚
		

		

			)
		

	
 is given by 
	
		

			𝒞
		

		
			2
			,
			2
		

		
			=
			1
			+
		

		

			∑
		

		

			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		

			1
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			2
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

		
			=
			1
			3
		

	
. In fact, for a fixed element 
	
		
			𝑧
			∈
			𝑅
		

		

			∗
		

		
			⧵
			𝑅
		

		
			∗
			2
		

	
, all cogredient standard forms of kind (I) of 
	
		
			2
			×
			2
		

	
 symmetric matrices over 
	
		
			G
			R
		

		
			(
			𝑝
		

		

			2
		

		
			,
			𝑝
		

		
			2
			𝑚
		

		

			)
		

	
 are given by the following: 
							
	
 		
			(
			3
			.
			1
			)
		
 	

	
		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			0
			0
		

		
			0
			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
		

		
			0
			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑧
			0
		

		
			0
			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑝
			0
		

		
			0
			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑧
			𝑝
			0
		

		
			0
			0
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
		

		
			0
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
		

		
			0
			𝑧
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑝
			0
		

		
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑝
			0
		

		
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
		

		
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑧
			0
		

		
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
		

		
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑧
			0
		

		
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

						The number 
	
		

			𝒞
		

		
			2
			,
			3
		

	
 of all cogredient classes of 
	
		
			3
			×
			3
		

	
 symmetric matrices over 
	
		
			G
			R
		

		
			(
			𝑝
		

		

			2
		

		
			,
			𝑝
		

		
			2
			𝑚
		

		

			)
		

	
 is given by 
	
		

			𝒞
		

		
			2
			,
			3
		

		
			=
			1
			+
		

		

			∑
		

		

			1
		

		
			𝑗
			=
			0
		

		

			∑
		

		

			2
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			2
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

		
			=
			2
			5
		

	
. In fact, all cogredient standard forms of kind (I) of 
	
		
			3
			×
			3
		

	
 symmetric matrices over 
	
		
			G
			R
		

		
			(
			𝑝
		

		

			2
		

		
			,
			𝑝
		

		
			2
			𝑚
		

		

			)
		

	
 are given by the following: 
	
		

			
		

		
			𝐽
			0
		

		
			0
			0
		

		

			
		

	
 where 
	
		

			𝐽
		

	
 is one of matrices in (3.1), and 
							
	
 		
			(
			3
			.
			2
			)
		
 	

	
		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			1
			0
		

		
			0
			0
			1
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			1
			0
		

		
			0
			0
			𝑧
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑝
			0
			0
		

		
			0
			𝑝
			0
		

		
			0
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑝
			0
			0
		

		
			0
			𝑝
			0
		

		
			0
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			1
			0
		

		
			0
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			𝑧
			0
		

		
			0
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			1
			0
		

		
			0
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			𝑧
			0
		

		
			0
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			𝑝
			0
		

		
			0
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑧
			0
			0
		

		
			0
			𝑝
			0
		

		
			0
			0
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			1
			0
			0
		

		
			0
			𝑝
			0
		

		
			0
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			,
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		
			𝑧
			0
			0
		

		
			0
			𝑝
			0
		

		
			0
			0
			𝑧
			𝑝
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		

			.
		

	

Example 3.4. Let 
	
		

			𝑝
		

	
 be an odd prime number and 
	
		
			𝑠
			=
			5
		

	
. Then by  Theorem 3.1 the number 
	
		

			𝒞
		

		
			5
			,
			4
		

	
 of all cogredient classes of 
	
		
			4
			×
			4
		

	
 symmetric matrices over Galois ring 
	
		
			𝐺
			𝑅
			(
			𝑝
		

		

			5
		

		
			,
			𝑝
		

		
			5
			𝑚
		

		

			)
		

	
 is given by 
	
		

			𝒞
		

		
			5
			,
			4
		

		
			=
			1
			+
		

		

			∑
		

		

			3
		

		
			𝑗
			=
			0
		

		

			∑
		

		

			3
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			5
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

		
			=
			6
			8
			1
		

	
; the number 
	
		

			𝒞
		

		
			5
			,
			7
		

	
 of all cogredient classes of 
	
		
			7
			×
			7
		

	
 symmetric matrices over 
	
		
			G
			R
		

		
			(
			𝑝
		

		

			5
		

		
			,
			𝑝
		

		
			5
			𝑚
		

		

			)
		

	
 is given by 
	
		

			𝒞
		

		
			5
			,
			7
		

		
			=
			1
			+
		

		

			∑
		

		

			4
		

		
			𝑗
			=
			0
		

		

			∑
		

		

			6
		

		
			𝑖
			=
			𝑗
		

		

			
		

		

			𝑖
		

		

			𝑗
		

		
			
			
		

		

			5
		

		
			𝑗
			+
			1
		

		

			
		

		

			2
		

		
			𝑗
			+
			1
		

		
			=
			6
			9
			4
			3
		

	
.
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