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Let R = GR(ps, psm) be a Galois ring of characteristic ps and cardinality psm, where s and m
are positive integers and p is an odd prime number. Two kinds of cogredient standard forms of
symmetric matrices over R are given, and an explicit formula to count the number of all distinct
cogredient classes of symmetric matrices over R is obtained.

1. Introduction and Preliminaries

Let p be a prime number, s and m be positive integers, and R = GR(ps, psm) a Galois
ring of characteristic ps and cardinality psm. Then GR(ps, psm) is isomorphic to the ring
Zps[x]/(h(x)) for any basic irreducible polynomial h(x) of degree m over Zps . It is clear
that R = Fpm , that is, a finite field of pm elements, if s = 1, and R = Zps , that is the ring of
residue classes of Z modulo its ideal psZ, if m = 1.

We denote by R∗ the group of units of R. R is a local ring with the maximal ideal
(p) = pR, and all ideals of R are given by (0) = (ps) ⊂ (ps−1) ⊂ · · · ⊂ (p) ⊂ (p0) = R. By [1,
Theorem 14.8], there exists an element ξ ∈ R∗ of multiplicative order pm − 1, which is a root of
a basic primitive polynomial h(x) of degree m over Zps and dividing xpm−1 − 1 in Zps[x], and
every element a ∈ R can be written uniquely as

a = a0 + a1p + · · · + an−1p
n−1, a0, a1, . . . , an−1 ∈ T, (1.1)

where T = {0, 1, ξ, . . . , ξpm−2}. Moreover, a is a unit if and only if a0 /= 0, and a is a zero divisor
or 0 if and only if a0 = 0. Define the p-exponent of a by τ(0) = s and τ(a) = i if a = aip

i +
· · · + an−1p

n−1 with ai /= 0. By [1, Corollary 14.9], R∗ ∼= 〈ξ〉 × [1 + (p)], where 〈ξ〉 is the cyclic
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group of order pm − 1, and 1 + (p) = {1 + x | x ∈ (p)} is the one group of Galois ring R, so
|R∗| = (pm − 1)p(s−1)m.

For a fixed positive integer n, let Mn(R) and GLn(R) be the set of all n×nmatrices and
the multiplicative group of all n×n invertible matrices over R, and denote by I(n) and 0(n) the
n × n identity matrix and zero matrix, respectively. In this paper, for l × n matrix A and q × r
matrix B over R, we adopt the notation A ⊕ B :=

(
A 0
0 B

)
which is a (l + q) × (n + r)matrix over

R.
For any matrix A ∈ Mn(R), A is said to be symmetric if AT = A, where AT is the

transposed matrix of A. We denote the set of all n × n symmetric matrices over R by S(n,R).
Then (S(n,R),+) is a group under the addition of matrices. For any matrices S1, S2 ∈ Mn(R),
if there exists matrix P ∈ GLn(R) such that PS1P

T = S2, we say that S1 is cogredient to S2

over R. It is clear that S1 ∈ S(n,R) if and only if S2 ∈ S(n,R). So cogredience of matrices
over R is an equivalent relation on S(n,R). If S1 ∈ S(n,R), we call {PS1P

T | P ∈ GLn(R)}
the cogredient classes of S(n,R) containing S1 over R. Let S0 = {0}, S1, . . . ,Sd be all distinct
cogredient classes of S(n,R). As in [2] we define relations on S(n,R) by

Γi := {(A,B) | A,B ∈ S(n,R), A − B ∈ Si}, i = 0, 1, . . . , d. (1.2)

Then the system (S(n,R), {Γi}0≤i≤d) is an association scheme of class d on the set S(n,R) and
denoted by Sym(n,R).

Let p stand for an odd prime number in the following. When s = 1, we know that the
class number of Sym(n,Fpm) is given by d = 2n and the association scheme Sym(n,Fpm) has
been investigated in [2]. When m = 1, two kinds of cogredient standard forms of symmetric
matrices over Zps are given in [3, 4]. If n ≥ 2, s > 1 and p ≡ 1 (mod 4), a complex formula to
count the number of all distinct cogredient classes of S(n,Zps) is given in [3], which shows
that, for example,

ifm′ is odd and s is odd, then

d + 1 =
(
m′ − 1

2
+ 1
)
+

∑
s1 /= 0, or s′i , ∃i

(
m′ − 1

2
− s1 −

s′2 + s′3 + s′4 + s′5 + ε

2
+ 1

)

×
[(

s − 1
1

)
+
(
s − 1
2

)(
s1 − 1
1

)
+ · · · +

(
s − 1
s1

)]

×

⎛⎝s − 1
2
s′2

⎞⎠⎛⎝s + 1
2
s′3

⎞⎠⎛⎝s − 1
2
s′4

⎞⎠⎛⎝s + 1
2
s′5

⎞⎠,

(1.3)

where the meanings of m′, s1, s
′
2, s

′
3, s

′
4, s

′
5, ε and formulas for other cases are referred to [3].

Then two problems arise. (1) Is there a simple and explicit formula to count the
number of all distinct cogredient classes of S(n,Zps)? (2) For arbitrary Galois ring R, in order
to determine precisely the class number d of the association scheme Sym(n,R), we have to
count the number of all distinct cogredient classes of S(n,R).

In Section 2 we give two kinds of cogredient standard forms for every symmetric
matrix over arbitrary Galois ring R of odd characteristic. In Section 3 we obtain an explicit
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formula to count the number of all distinct cogredient classes of S(n,R), which is simpler
than that of [3] for the special case R = Zps .

Now, we list some properties for the Galois ring R which will be needed in the
following sections. For general theory of Galois rings, one can refer to [1].

Lemma 1.1 (see [1, Theorem 14.11]). R∗ = G1 ×G2 where G1 is a cyclic group of order pm − 1, and
G2 = 1 + 〈p〉 is a group of order p(s−1)m.

Proposition 1.2. (i) R∗2 is a subgroup of R∗ with index [R∗ : R∗2] = 2.
(ii) For any z ∈ R∗ \ R∗2, R∗ \ R∗2 = zR∗2, and |R∗2| = |zR∗2| = (1/2)|R∗|.
(iii) For any u ∈ R∗ and a ∈ 〈p〉, there exists c ∈ R∗ such that c2(u + a) = u.

Proof . In the notation of Lemma 1.1. Let ξ be a generator of the cyclic group G1. Then ξ is of
order pm − 1. Since p is odd and pm − 1 is even, ξ2 is of order (1/2)(pm − 1) and G2

1 = 〈ξ2〉.
Since p(s−1)m is odd and G2 is a commutative group of order p(s−1)m by Lemma 1.1, for every
a ∈ G2, there exists a unique b ∈ G2 such that a = b2, so G2

2 = G2. Moreover, by Lemma 1.1
each u ∈ R∗ can be uniquely expressed as u = gh where g ∈ G1 and h ∈ G2.

(i) For every u = gh ∈ R∗ where g ∈ G1 and h ∈ G2, u ∈ R∗2 if and only if there exist
g1 ∈ G1 and h1 ∈ G2 such that gh = (g1h1)

2 = g2
1h

2
1, which is then equivalent to

that g = g2
1 and h = h2

1. So u ∈ R∗2 if and only if u ∈ G2
1 × G2 by Lemma 1.1. Then

R∗2 = G2
1 × G2 and so |R∗2| = |G2

1| · |G2| = (1/2)(pm − 1) · p(s−1)m = (1/2)|R∗|. Hence,
[R∗ : R∗2] = 2 by group theory.

(ii) Since [R∗ : R∗2] = 2, for any z ∈ R∗ \R∗2, we have R∗ = R∗2 ∪ zR∗2 and R∗2 ∩ zR∗2 = ∅
by group theory. So |zR∗2| = |R∗| − |R∗2| = (1/2)|R∗| by the proof of (i).

(iii) Let u ∈ R∗ and a ∈ 〈p〉. Then u−1(u + a) = 1 + u−1a ∈ 1 + 〈p〉 = G2. From this and
by Lemma 1.1, there exists a unique element b ∈ G2 ⊆ R∗ such that u−1(u + a) = b2.
Now, let c = b−1. Then c ∈ R∗ satisfying c2(u + a) = u.

Proposition 1.3. Let −1 /∈ R∗2. Then for any z ∈ R∗ \ R∗2, there exist x, y ∈ R∗ such that z =
(1 + x2)y2.

Proof. Let u ∈ R∗. Suppose that 1 + u2 /∈ R∗. Then there exists a ∈ R such that 1 + u2 = ap.
So u2 = −(1 − ap). Since p is odd and ps = 0 in R, there exists b ∈ R such that (ups)2 =
−(1 − ap)p

s

= −(1 − pp
s
b) = −1. From ups ∈ R∗ we deduce −1 ∈ R∗2, which is a contradiction.

Hence 1 + u2 ∈ R∗. Therefore, σ : w –→1 + w (for all w ∈ R∗2) is a mapping from R∗2 to R∗.
Suppose that σ(R∗2) ⊆ R∗2. Then for 1 ∈ R∗2, there existsw0 ∈ R∗2 such that σ(w0) = 1+w0 = 1,
which implies that w0 = 0, and we get a contradiction. So there exists x ∈ R∗ such that
1 + x2 /∈ R∗2, that is, 1 + x2 ∈ R∗ \ R∗2 = zR∗2 by Proposition 1.2. Then there exists c ∈ R∗ such
that 1 + x2 = zc2, so (1 + x2)y2 = z, where y = c−1 ∈ R∗.

2. Cogredient Standard Forms of Symmetric Matrices

In this section, we give two kinds of cogredient standard forms of symmetric matrices over
R corresponding to that of cogredient standard forms of symmetric matrices over finite fields
(see [5], or [6], Theorems 1.22 and 1.25).
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Notation 1. For any nonnegative integer ν and z ∈ R∗ \ R∗2, define

H2ν =
(

0 I(ν)

I(ν) 0

)
, H2ν+2,Δ = H2ν ⊕Δ, where Δ =

(
1 0
0 −z

)
,

H2ν+1,(1) = H2ν ⊕ (1), H2ν+1,(z) = H2ν ⊕ (z).

(2.1)

Lemma 2.1. For any ν ∈ Z
+ and z ∈ R∗ \ R∗2, zI(2ν) is cogredient to I(2ν).

Proof. Let −1 ∈ R∗2. Then there exists u ∈ R∗ such that u2 = −1, that is, 1 + u2 = 0. Since p is an
odd prime number, we have gcd(2, ps) = 1 and so 2 ∈ R∗. Let P = 2−1

(
(1+z) u−1(1−z)
u(1−z) (1+z)

)
. Since R

is a commutative ring, we have detP = (2−1)2[(1+z)(1+z)−u−1(1−z)u(1−z)] = (2−1)2 ·2 ·2z =
z ∈ R∗. Hence, P ∈ GL2(R). Then by (u−1)2 = (u2)−1 = −1 and u(1 − z2) + u−1(1 − z2) =
u−1(u2 + 1)(1 − z2) = 0, we get

PI(2)PT =
(
2−1
)2( (1 + z) u−1(1 − z)

u(1 − z) (1 + z)

)(
(1 + z) u(1 − z)

u−1(1 − z) (1 + z)

)

=
(
2−1
)2(2 · 2z 0

0 2 · 2z

)
= zI(2),

(2.2)

so zI(2) is cogredient to I(2).
Let −1 /∈ R∗2. Then by Proposition 1.3 there exist x, y ∈ R∗ such that (1 + x2)y2 = z. Let

Q =
( xy y
−y xy

)
. Then detQ = (1 + x2)y2 = z ∈ R∗ and so Q ∈ GL2(R). By (1 + x2)y2 = z, a matrix

computation shows that QI(2)QT = QQT = zI(2). Hence, zI(2) is cogredient to I(2) as well.

Then zI(2ν) =

ν′s︷ ︸︸ ︷
zI(2) ⊕ · · · ⊕ zI(2) is cogredient to I(2ν) =

ν′s︷ ︸︸ ︷
I(2) ⊕ · · · ⊕ I(2).

Lemma 2.2. Let z ∈ R∗ \ R∗2 and ν ∈ Z
+.

(i) If −1 ∈ R∗2, then I(2ν) is cogredient toH2ν.

(ii) If −1 /∈ R∗2, then I(ν) ⊕ zI(ν) is cogredient toH2ν.

Proof. We select P1 = 2−1
(

I(ν) −I(ν)
I(ν) I(ν)

)
and denote that M = 2

(
I(ν) 0
0 −I(ν)

)
. From P1

(
I(ν) I(ν)

0 I(ν)

)
=(

2−1I(ν) 0
2−1I(ν) I(ν)

)
we deduce detP1 = det(2−1I(ν)) = (2−1)ν ∈ R∗. Hence P1 ∈ GL2ν(R). Then by

P1MPT
1 = 2−1

(
I(ν) −I(ν)
I(ν) I(ν)

)(
I(ν) I(ν)

I(ν) −I(ν)

)
= H2ν, we see that M is cogredient toH2ν.

(i) By −1 ∈ R∗2 there exists u ∈ R∗ such that −1 = u2. Then M is cogredient to 2I(2ν).
If 2 /∈ R∗2, 2I(2ν) is cogredient to I(2ν) by Lemma 2.1. If 2 ∈ R∗2, there exists w ∈ R∗

such that 2 = w2, so 2I(2ν) is cogredient to I(2ν) as well. Therefore, I(2ν) is cogredient
toH2ν in this case.

(ii) Let −1 /∈ R∗2. Then by Proposition 1.2 there exists c ∈ R∗ such that −1 = zc2. Hence
I(ν)⊕zI(ν) is cogredient to

(
I(ν) 0
0 −I(ν)

)
. If 2 ∈ R∗2, there existsw ∈ R∗ such that 2 = w2,

so
(

I(ν) 0
0 −I(ν)

)
is cogredient to M. If 2 /∈ R∗2, then −2 = (−1)2 ∈ R∗2, and hence there
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exists a ∈ R∗ such that −2 = a2, so (aI(2ν))H2ν

(
I(ν) 0
0 −I(ν)

)
HT

2ν(aI
(2ν)) = M. Hence,(

I(ν) 0
0 −I(ν)

)
is cogredient toM as well. Therefore, I(ν) ⊕ zI(ν) is cogredient toH2ν.

Lemma 2.3. Let z ∈ R∗ \ R∗2 and D = diag(u1, . . . , ur), where ui ∈ R∗, i = 1, . . . , r and r ∈ Z
+.

Then, One has the following.

(i) D is necessarily cogredient to either I(r) or I(r−1) ⊕ (z). Moreover, these two matrices are
not cogredient over R.

(ii) If r = 2ν + 1 is odd, then D is necessarily cogredient to either H2ν+1,(1) or H2ν+1,(z).
Moreover, these two matrices are not cogredient. If r = 2ν is even, then D is necessarily
cogredient to eitherH2ν orH2(ν−1)+2,Δ. Moreover, these two matrices are not cogredient.

Proof. (i) We may assume that u1, . . . , ut ∈ R∗2 and ut+1, . . . , ur ∈ zR∗2, where 0 ≤ t ≤ r. Then
D is cogredient to I(t) ⊕ zI(r−t). If r − t is even, by Lemma 2.1 zI(r−t) is cogredient to I(r−t) and
hence D is cogredient to I(t) ⊕ I(r−t) = I(r). Now, let r − t be odd. If r − t = 1, D is obviously
cogredient to I(1) ⊕ (z). If r − t ≥ 3, by Lemma 2.1 zI(r−t−1) is cogredient to I(r−t−1), and hence
D is cogredient to I(t) ⊕ I(r−t−1) ⊕ (z) = I(r−1) ⊕ (z).

Suppose that I(r) is cogredient to I(r−1) ⊕ (z) over R. Then there existsQ ∈ GLr(R) such
that QI(r)QT = I(r−1) ⊕ (z). From this and by detQ ∈ R∗, we obtain that z = (detQ)2 ∈ R∗2,
which is a contradiction. So I(r) and I(r−1) ⊕ (z) are not cogredient over R.

(ii)We have one of the following two cases.

(ii-1) Let r = 2ν + 1 be an odd number. Then r − 1 = 2ν is even and we have one of the
following two cases.

(ii-1-1) Let −1 ∈ R∗2. Then I(2ν) is cogredient to H2ν by Lemma 2.2(i). From this and by
(i) we deduce that D is cogredient to H2ν+1,(1) when D is cogredient to I(r), or D is
cogredient toH2ν+1,(z) when D is cogredient to I(r−1) ⊕ (z).

(ii-1-2) Let −1 ∈ zR∗2. Then we have one of the following two cases.

(α) Let (1/2)(r − 1) = ν be even. Then I(ν) is cogredient to zI(ν) by Lemma 2.1, so I(2ν)

is cogredient to I(ν) ⊕ zI(ν). Since I(ν) ⊕ zI(ν) is cogredient to H2ν by Lemma 2.2(ii),
by (i) we see that: D is cogredient to H2ν+1,(1) when D is cogredient to I(r), or D is
cogredient toH2ν+1,(z) when D is cogredient to I(r−1) ⊕ (z).

(β) Let (1/2)(r − 1) = ν be odd. Then ν = 2ω + 1 for some nonnegative integer ω
and so r − 1 = 4ω + 2. By Lemma 2.1 we see that I(2ω) is cogredient to zI(2ω),
and I(2) is cogredient to zI(2). Hence I(r) = I(2ω) ⊕ I(2ω) ⊕ I(2) ⊕ (1) is cogredient
to I(2ω) ⊕ zI(2ω) ⊕ zI(2) ⊕ (1), which is then cogredient to I(2ω+1) ⊕ zI(2ω+1) ⊕ (z).
Since I(2ω+1) ⊕ zI(2ω+1) is cogredient to H2(2ω+1) = H2ν by Lemma 2.2(ii), I(r) is
cogredient to H2ν+1,(z). Moreover, I(r−1) ⊕ (z) = I(2ω) ⊕ I(2ω) ⊕ I(2) ⊕ (z) is cogredient
to I(2ω) ⊕ zI(2ω) ⊕ I(2) ⊕ (z), which is then cogredient to I(2ω+1) ⊕ zI(2ω+1) ⊕ (1). Since
I(ν)⊕zI(ν) is cogredient toH2ν by Lemma 2.2(ii), I(r−1)⊕(z) is cogredient toH2ν+1,(1).
Therefore, D is necessarily cogredient to eitherH2ν+1,(1) or H2ν+1,(z) by (i).

(ii-2) Let r = 2ν be an even number. Then r − 2 = 2(ν − 1) is also even and we have one of
the following two cases.

(ii-2-1) Let −1 ∈ R∗2. Then −1 = u2 for some u ∈ R∗ and so
(
1 0
0 z

)
is cogredient to

(
1 0
0 −z
)
=

Δ. By Lemma 2.2(i) D is cogredient to H2ν when D is cogredient to I(r), or D is
cogredient toH2(ν−1)+2,Δ when D is cogedient to I(r−1) ⊕ (z) = I(2(ν−1)) ⊕

(
1 0
0 z

)
.
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(ii-2-2) Let −1 ∈ zR∗2. Then −1 = zc2 for some c ∈ R∗. By 1 = (−z)c2, we see that I(2) is
cogredient to Δ. Now, we have one of the following two cases.

(α) Let ν be even. Then I(ν) is cogredient to zI(ν) by Lemma 2.1 and so I(r) = I(ν) ⊕
I(ν) is cogredient to I(ν) ⊕ zI(ν). From this and by Lemma 2.2(ii), we see that I(r) is
cogredient toH2ν. Let ν = 2. Since I(2) is cogredient to Δ and I(1) ⊕ (z) is cogredient
toH2 by Lemma 2.2(ii), I(3) ⊕ (z) = I(2) ⊕ I(1) ⊕ (z) is cogredient toH2 ⊕Δ = H2·1+2,Δ.
Now, let ν ≥ 4. Since ν − 2 is even, I(ν−2) is cogredient to zI(ν−2) by Lemma 2.1, so
I(ν−2)⊕I(ν−2) is cogredient to I(ν−2)⊕zI(ν−2). Hence, I(r−1)⊕(z) = I(ν−2)⊕I(ν−2)⊕I(3)⊕(z)
is cogredient to I(ν−2)⊕zI(ν−2)⊕I(3)⊕ (z), which is then cogredient to I(ν−1)⊕zI(ν−1)⊕
I(2). Since I(2) is cogredient to Δ, we see that I(r−1) ⊕ (z) is cogredient to H2(ν−1)+2,Δ
by Lemma 2.2(ii). Therefore,D is necessarily cogredient to eitherH2ν orH2(ν−1)+2,Δ
by (i).

(β) Let ν be odd. Then there exists nonnegative integer ω such that ν = 2ω + 1 and so
r = 4ω+2. Since I(2ω) is cogredient to zI(2ω) by Lemma 2.1, I(r) = I(2ω)⊕ I(2ω)⊕ I(2) is
cogredient to I(2ω) ⊕ zI(2ω) ⊕Δ, that is then cogredient to H2(2ω)+2,Δ = H2(ν−1)+2,Δ by
Lemma 2.2(ii). Now, I(r−1)⊕(z) = I(2ω)⊕I(2ω)⊕(1)⊕(z) is cogredient to I(2ω)⊕zI(2ω)⊕
(1) ⊕ (z) by Lemma 2.1, which is then cogredient to I(2ω+1) ⊕ zI(2ω+1). Hence I(r−1) ⊕
(z) is cogredient to H2(2ω+1) = H2ν by Lemma 2.2(ii). Therefore, D is necessarily
cogredient to either H2ν or H2(ν−1)+2,Δ by (i).

Theorem 2.4. Let z ∈ R∗ \R∗2. Then every n×n symmetric matrixA over R is necessarily cogredient
to one of the following matrices:

D(n,k,t;k1,...,kt;r1,...,rt) := diag
(
pr1D1, p

r2D2, . . . , p
rtDt, 0(n−k)

)
, (2.3)

where 0 ≤ t ≤ k ≤ n, Di = I(ki) or I(ki−1) ⊕ (z) for all i = 1, . . . , t, 0 ≤ r1 < r2 < · · · < rt ≤ s − 1, and
ki ∈ Z

+ satisfy Σt
i=1ki = k.

Proof. The statement holds obviously if A = 0 (corresponding to the case k = 0) or n = 1.
Now, let n ≥ 2 and A = (aij)n×n /= 0. Then, there exist 1 ≤ i0, j0 ≤ n such that ai0j0 /= 0 and
τ(ai0j0) = min{τ(aij) | aij /= 0, 1 ≤ i, j ≤ n}. Let s1 = ν(ai0j0). Then 0 ≤ s1 ≤ s − 1, and
there exists P1 ∈ GLn(R) such that P1APT

1 = diag(u1p
s1 , B) where u1 ∈ R∗ and B = (bij) is a

(n − 1) × (n − 1) symmetric matrix over R satisfying B = 0 or τ(bij) ≥ s1 for all bij /= 0, 1 ≤ i, j ≤
n − 1. By induction there exists X ∈ GLn−1(R) such that XBXT = diag(u2p

s2 , . . . , ukp
sk , 0(n−k)),

where u2, . . . , uk ∈ R∗ and s2 ≤ · · · ≤ sk ≤ s − 1. Then P = diag(1, X)P1 ∈ GLn(R) satisfies
PAPT = diag(u1p

s1 , . . . , ukp
sk , 0(n−k)).

Now, there must exist t, ki ∈ Z
+, i = 1, . . . , t and 0 ≤ r1 < · · · < rt ≤ s − 1 such that

s1 = · · · = sk1 = r1 < sk1+1 = · · · = sk1+k2 = r2 < · · · < sk1+k2+···+kt−1+1 = · · · = sk1+k2+···+kt−1+kt = rt.
Then Σt

i=1ki = k and A is cogredient to M = diag(pr1M1, p
r2M2, . . . , p

rtMt, 0(n−k)), where
Mi = diag(uk1+···+ki−1+1, . . . , uk1+···+ki−1+ki) is a ki × ki matrix over R for all i = 1, . . . , t. Since Mi

is cogredient to Di for every 1 ≤ i ≤ t by Lemma 2.3(i), we deduce that A is cogredient to
diag(pr1D1, p

r2D2, . . . , p
rtDt, 0(n−k)).

Theorem 2.5. Let z ∈ R∗ \R∗2. Then every n×n symmetric matrixA over R is necessarily cogredient
to one of the following matrices:

H(n,k,t;k1,...,kt;r1,...,rt) := diag
(
pr1H1, p

r2H2, . . . , p
rtHt, 0(n−k)

)
, (2.4)



ISRN Algebra 7

where Hi is a ki × ki matrix over R such that Hi is equal to either H2νi+1,(1) or H2νi+1,(z) when
ki = 2νi + 1 is odd, and Hi is equal to either H2νi or H2(νi−1)+2,Δ when ki = 2νi is even, for all
i = 1, . . . , t; 0 ≤ t ≤ k ≤ n, 0 ≤ r1 < r2 < · · · < rt ≤ s − 1, and ki ∈ Z

+ satisfy Σt
i=1ki = k.

Proof. It follows from Theorem 2.4 and the proof of Lemma 2.3(ii).
For any n×n symmetric matrixA, we callD(n,k,t;k1,...,kt;r1,...,rt) the cogredient standard form

of kind (I) of A if A is cogredient to D(n,k,t;k1,...,kt;r1,...,rt), and call H(n,k,t;k1,...,kt;r1,...,rt) the cogredient
standard form of kind (II) of A if A is cogredient toH(n,k,t;k1,...,kt;r1,...,rt).

3. The Number of Cogredient Classes of Symmetric Matrices

In order to count the number of all distinct cogredient classes of n×n symmetric matrices over
R, we show that every n × n symmetric matrix over R has only one cogredient standard form
of kind (I) first, then the number of all distinct cogredient classes of n×n symmetric matrices
over R is equal to the number of all cogredient standard forms of kind (I) by Theorem 2.4.

Theorem 3.1. The number Cs,n of all distinct cogredient classes of n × n symmetric matrices over R
is given by the following:

(i) If n ≤ s, then Cs,n = 1 +
∑n−1

j=0
∑n−1

i=j

(
i
j

)( s
j+1
)
2j+1;

(ii) If n ≥ s + 1, then Cs,n = 1 +
∑s−1

j=0
∑n−1

i=j

(
i
j

)( s
j+1
)
2j+1.

Proof. Let D̂ := diag(pr̂1D̂1, p
r̂2D̂2, . . . , p

r̂t̂ D̂t̂, 0
(n−k̂)), where D̂i = I(k̂i) or I(k̂i−1) ⊕ (z) for all i =

1, . . . , t̂, 0 ≤ t̂ ≤ k̂ ≤ n, 0 ≤ r̂1 < r̂2 < · · · < r̂t̂ ≤ s − 1, and k̂i ∈ Z
+ satisfy Σt̂

i=1k̂i = k̂. In the
notation of Theorem 2.4, by [7, Theorem D], it follows that D = D̂ if D := D(n,k,t;k1,...,kt;r1,...,rt) is
cogredient to D̂ over R. Hence, every n × n symmetric matrix over R has only one cogredient
standard form of kind (I).

For any 1 ≤ t ≤ k ≤ n, denote that S1 = {(k1, . . . , kt) | ki ∈ Z
+,Σt

i=1 = k} and S2 =
{(r1, . . . , rt) | ri ∈ Z, 0 ≤ r1 < r2 < · · · < rt ≤ s − 1}. Then |S1| =

(
k−1
t−1
)
, |S2| = ( s

t ) if t ≤ s and,
|S2| = 0 if t ≥ s. From this and by Theorem 2.4 it follows that Cs,n = 1+

∑n
k=1(
∑k

t=1 |S1| · |S2| ·2t).
Therefore, Cs,n = 1 +

∑n−1
j=0
∑n−1

i=j

(
i
j

)( s
j+1
)
2j+1 if n ≤ s and, Cs,n = 1 +

∑s−1
j=0
∑n−1

i=j

(
i
j

)( s
j+1
)
2j+1

if n ≥ s + 1.
In the notations of Section 1, we see that the class number d of the association scheme

Sym(n,R) is determined by d+1 = Cs,n. Then by Theorem 3.1, we have the following corollary.

Corollary 3.2. The class number of the association scheme Sym(n,R) is given by the following.

(i) If n ≤ s, then d =
∑n−1

j=0
∑n−1

i=j

(
i
j

)( s
j+1
)
2j+1;

(ii) If n ≥ s + 1, then d =
∑s−1

j=0
∑n−1

i=j

(
i
j

)( s
j+1
)
2j+1.

Example 3.3. Let p be an odd prime number and s = 2. Then by Theorem 3.1 the number C2,2

of all cogredient classes of 2 × 2 symmetric matrices over Galois ring GR(p2, p2m) is given by
C2,2 = 1 +

∑1
j=0
∑1

i=j

(
i
j

)(
2

j+1

)
2j+1 = 13. In fact, for a fixed element z ∈ R∗ \R∗2, all cogredient
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standard forms of kind (I) of 2 × 2 symmetric matrices over GR(p2, p2m) are given by the
following:

(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
z 0
0 0

)
,

(
p 0
0 0

)
,

(
zp 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 z

)
,

(
p 0
0 p

)
,

(
p 0
0 zp

)
,

(
1 0
0 p

)
,

(
z 0
0 p

)
,

(
1 0
0 zp

)
,

(
z 0
0 zp

)
.

(3.1)

The number C2,3 of all cogredient classes of 3×3 symmetric matrices over GR(p2, p2m) is given
by C2,3 = 1 +

∑1
j=0
∑2

i=j

(
i
j

)(
2

j+1

)
2j+1 = 25. In fact, all cogredient standard forms of kind (I) of

3× 3 symmetric matrices over GR(p2, p2m) are given by the following:
(

J 0
0 0

)
where J is one of

matrices in (3.1), and

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠,

⎛⎝1 0 0
0 1 0
0 0 z

⎞⎠,

⎛⎝p 0 0
0 p 0
0 0 p

⎞⎠,

⎛⎝p 0 0
0 p 0
0 0 zp

⎞⎠,

⎛⎝1 0 0
0 1 0
0 0 p

⎞⎠,

⎛⎝1 0 0
0 z 0
0 0 p

⎞⎠,

⎛⎝1 0 0
0 1 0
0 0 zp

⎞⎠,

⎛⎝1 0 0
0 z 0
0 0 zp

⎞⎠,

⎛⎝1 0 0
0 p 0
0 0 p

⎞⎠,

⎛⎝z 0 0
0 p 0
0 0 p

⎞⎠,

⎛⎝1 0 0
0 p 0
0 0 zp

⎞⎠,

⎛⎝z 0 0
0 p 0
0 0 zp

⎞⎠.

(3.2)

Example 3.4. Let p be an odd prime number and s = 5. Then by Theorem 3.1 the number C5,4

of all cogredient classes of 4 × 4 symmetric matrices over Galois ring GR(p5, p5m) is given by
C5,4 = 1 +

∑3
j=0
∑3

i=j

(
i
j

)(
5

j+1

)
2j+1 = 681; the number C5,7 of all cogredient classes of 7 × 7

symmetric matrices over GR(p5, p5m) is given by C5,7 = 1 +
∑4

j=0
∑6

i=j

(
i
j

)(
5

j+1

)
2j+1 = 6943.
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