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We discuss amenability of the restricted Fourier-Stieltjes algebras on inverse semigroups. We show
that, for an E-unitary inverse semigroup, amenability of the restricted Fourier-Stieltjes algebra is
related to the amenability of an associated Banach algebra on a Fell bundle.

1. Introduction and Preliminaries

An inverse semigroup S is a discrete semigroup such that, for each s ∈ S, there is a unique
element s∗ ∈ S such that

ss∗s = s, s∗ss∗ = s∗. (1.1)

One can show that s �→ s∗ is an involution on S [1]. Set E consisting of idempotents of S,
elements of the form ss∗, s ∈ S, is a commutative sub-semigroup of S [1]. There is a natural
order ≤ on E defined by e ≤ f if and only if ef = e. The semigroup algebra

�1(S) =

{
f : S −→ C :

∑
s∈S

∣∣f(s)∣∣ < ∞
}

(1.2)

is a Banach algebra under convolution

f ∗ g(x) =
∑
st=x

f(s)g(t) (1.3)
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and norm ‖f‖1 =
∑

s∈S |f(s)|. Although �1(S) has some common features with the group
algebra �1(G), there are certain technical difficulties when one tries to do things on inverse
semigroups similar to the group case, and some well-known properties of the group
algebra �1(G) break down for inverse semigroups. For instance, �1(G) is a Banach ∗-algebra
under the canonical involution f̃(x) = f(x−1). This is important when one constructs the
enveloping C∗-algebra of �1(G) or studies the automatic continuity properties of characters
and homomorphisms. For an inverse semigroup S, the natural involution on �1(S) is f̃(x) =
f(x∗). This is an isometry on �1(S) but does not satisfy (f ∗ g)∼ = g̃ ∗ f̃ . On the other hand,
unlike the group case, �1(S) does not have a bounded approximate identity (this happens
when E fails to satisfy the condition (Dk) of Duncan and Namioka [2] for any positive integer
k, a Brandt semigroup on an infinite index set is a concrete example). Finally, the left regular
representation λ of an inverse semigroup loses its connection with positive definite functions.
This is because the crucial equality

〈
λ(x∗)ξ, η

〉
=
〈
ξ, λ(x)η

〉
(1.4)

for x ∈ S and ξ, η ∈ �2(S) fails in general. This makes it difficult to study positive definite
functions [3] and Fourier (Fourier-Stieltjes) algebras on semigroups [4].

The first author and Medghalchi introduced and studied the notion of restricted semi-
group algebra in [5, 6] to overcome such difficulties. They showed that, if the convolution
product on �1(S) is appropriately modified, one gets a Banach ∗-algebra �1r (S), called the
restricted semigroup algebra with an approximate identity (not necessarily bounded). In the
new convolution product, positive definite functions fit naturally with a restricted version of
the left regular representation λr . The idea is that one requires the homomorphism property
of representations to hold only for those pairs of elements in the semigroup whose range
and domain match. This is quite similar to what is done in the context of groupoids, but the
representation theory of groupoids is much more involved [6].

The basic idea of the restricted semigroup algebra is to consider the associated
groupoid of an inverse semigroup S. Given x, y ∈ S, the restricted product of x, y is xy if
x∗x = yy∗, and undefined, otherwise. The set S with its restricted product forms a groupoid,
which is called the associated groupoid of S and is denoted by Sa. If we adjoin a zero element
0 to this groupoid, and put 0∗ = 0, we get an inverse semigroup Sr with the multiplication
rule

x • y =

{
xy, ifx∗x = yy∗,

0, otherwise,
(1.5)

for x, y ∈ S ∪ {0}, which is called the restricted semigroup of S. A restricted representation
{π,Hπ} of S is a pair consisting of a Hilbert space Hπ and a map π : S → B(Hπ) into the
algebra B(Hπ) of bounded operators on Hπ such that π(x∗) = π(x)∗ for x ∈ S and

π(x)π
(
y
)
=

{
π
(
xy

)
, ifx∗x = yy∗,

0, otherwise,
(1.6)

for x, y ∈ S. Let Σr = Σr(S) be the family of all restricted representations π of Swith ‖π‖ ≤ 1.
It is clear that, via a canonical identification, Σr(S) = Σ0(Sr) consists of all π ∈ Σ(Sr) with
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π(0) = 0 [5]. One of the central concepts in the analytic theory of inverse semigroup is the
left regular representation λ : S → B(�2(S)) defined by

λ(x)ξ
(
y
)
=

{
ξ
(
x∗y

)
, ifxx∗ ≥ yy∗,

0, otherwise,
(1.7)

for ξ ∈ �2(S), x, y ∈ S. The restricted left regular representation λr : S → B(�2(S)) is defined
in [5] by

λr(x)ξ
(
y
)
=

{
ξ
(
x∗y

)
, ifxx∗ = yy∗,

0, otherwise,
(1.8)

for ξ ∈ �2(S), x, y ∈ S. The main objective of [5] is to change the convolution product on the
semigroup algebra to restore the relation between positive definite functions and left regular
representation [6].

Throughout this paper, S is an inverse semigroup. For each f, g ∈ �1(S), define

(
f • g)(x) = ∑

x∗x=yy∗
f
(
xy

)
g
(
y∗)

(1.9)

and f̃(x) = f(x∗), for x ∈ S. Then, �1r (S) := (�1(S), •, ∼) is a Banach ∗-algebra with
an approximate identity [5]. The restricted left regular representation λr lifts to a faithful
representation λ̃ of �1r (S). We call the completion C∗

λr
(S) of �1r (S) in the C∗-norm ‖ · ‖λr :=

‖λ̃r(·)‖ the restricted reduced C∗-algebra of S and its completion C∗
r(S) in the C∗-norm

‖ · ‖Σr := sup{‖π̃(·)‖, π ∈ Σ(Sr)} the restricted full C∗-algebra of S. The dual space of the C∗-
algebra C∗

r(S) is a unital Banach algebra which is called the restricted Fourier-Stieltjes algebra
and is denoted by Br,e(S). The closure of the set of finitely support functions in Br,e(S) is called
the restricted Fourier algebra and is denoted by Ar,e(S) [6].

In this paper, we discuss the amenability of the restricted Fourier and Fourier-Stieltjes
algebras on inverse semigroups. We show that, for an E-unitary inverse semigroup, the
restricted Fourier algebra is amenable if and only if its maximal homomorphic group image
is abelian by finite (i.e., it has an abelian subgroup of finite index). We refer the readers to
[5, 6] for more details about restricted semigroup algebra, restricted semigroup C∗-algebra,
restricted positive definite functions, and restricted Fourier and Fourier-Stieltjes algebras.

A bounded complex valued function u : S → C is called positive definite if for all
positive integers n and all c1, . . . , cn ∈ C, and x1, . . . , xn ∈ Swe have

∑ n∑
i,j

cicju
(
x∗
i xj

) ≥ 0, (1.10)

and it is called restricted positive definite if for all positive integers n and all c1, . . . , cn ∈ C

and x1, . . . , xn ∈ S we have

∑ n∑
i,j

cicj(λr(xi)u)
(
xj

) ≥ 0. (1.11)
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The sets of all positive definite and restricted positive definite functions on S are denoted
by P(S) and Pr(S), respectively. Positive definite functions are usually considered on unital
semigroups. Of course, one can always adjoin a unit 1 to an inverse semigroup T with 1∗ = 1.
But extending a positive definite function on T to one on T1 = T ∪ {1} is not always possible.
We denote all extendable restricted positive definite functions by Pr,e(S) which are exactly
those u ∈ Pr(S) such that ũ = u, and there exists a constant c > 0 such that for all n ≥ 1,
x1, . . . , xn ∈ S, and c1, . . . , cn ∈ C,

∣∣∣∣∣
n∑
i=1

ciu(xi)

∣∣∣∣∣
2

≤ c
∑

xix
∗
i =xjx

∗
j

cicju
(
x∗
i xj

)
. (1.12)

Then, Pr,e(S) ∼= �1r (S)
∗
+ and Br,e(S) is the linear span of Pr,e(S) [5]. Since the restricted Fourier-

Stieltjes algebra is the dual space of the restricted semigroup C∗-algebra, it is an ordered
Banach algebra in the sense of [7], where the order structure comes from the set of extendable
restricted positive definite functions as the positive cone. The same applies to the restricted
Fourier algebra.

For each inverse semigroup S, the states on the ∗-algebra CS (the vector space over S
spanned by S with convolution and involution comes from S) are defined by Milan in [8]. A
state on a ∗-algebra A is a positive linear map ρ : A → C such that

sup
{∣∣ρ(a)∣∣2 : a ∈ A; ρ(a∗a) ≤ 1

}
= 1. (1.13)

If S(A) is the set of states on A, we know that

∥∥f∥∥C∗(S) = sup
{
ρ
(
f∗f

)1/2 : ρ ∈ S(C∗(S))
}
= sup

{
ρ
(
f∗f

)1/2 : ρ ∈ S(CS)
}

(1.14)

for each f in CS [8]. When S is a (discrete) group, all these concepts are already discussed by
Eymard in [9]. The amenability results for Fourier and Fourier-Stieltjes algebras on groups
are surveyed in [10].

2. Amenability and Restricted Weak Containment Property

Working with an inverse semigroup, it is quite natural to go to the maximal group
homomorphic image. However, when one deals with an inverse semigroup with zero such as
Sr , some modification is necessary. This is because the maximum group homomorphic image
of Sr is trivial. To remedy this, we work with maps which are not quite homomorphism. This
is the idea of Milan in [8, Section 4].

Definition 2.1. Let S be an inverse semigroup with zero, a grading of S by the group G is a
map ϕ : S → G ∪ {0} such that ϕ−1(0) = {0} and ϕ(ab) = ϕ(a)ϕ(b) provided that ab /= 0.

A Fell bundle over a discrete group G is a collection of closed subspaces B = {Bg}g∈G
of a C∗-algebra B, satisfying Bg

∗ = Bg−1 and BgBh = Bgh for all g and h in G. The �1 cross-
sectional algebra �1(B) of B is the Banach ∗-algebra consisting of the �1 cross-sections of B

under the canonical multiplication, involution, and norm, and the cross-sectional C∗-algebra
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C∗(B) of B is the enveloping C∗-algebra of �1(B) [11]. We also denote the dual space of C∗(B)
by B(B).

Next, let us define the Fell bundle arising from a grading ϕ. For an inverse semigroup
Swith zero, the algebras C∗

0(S) and C0S are the quotients of the algebras C∗(S) and CS by the
(closed) ideal generated by the zero of S. For each g ∈ G, let

Ag = span
{
s : ϕ(s) = g

}
inside C0S, Bg = Ag inside C∗

0(S). (2.1)

By [8, Proposition 3.3], the collection B = {Bg}g ∈ G is a Fell bundle for C∗
0(S) and represen-

tations of B are in one-one correspondence with representations of C∗
0(S), and hence C∗(B) is

isomorphic to C∗
0(S).

Since Sr is an inverse semigroup with zero, the grading map technique applies to Sr .
Let S be an inverse semigroup andG its maximal group homomorphic imagewith ϕ : S → G,
we define the following new product onG∪{0}. Put ϕ(x)•ϕ(y) = ϕ(x•y) and ϕ(s)∗ := ϕ(s∗).
It is easy to see that, with this new multiplication, G ∪ {0} is an inverse semigroup, which is
denoted by G0.

Now, there is a homomorphism ϕr : Sr → G0, ϕr(s) = ϕ(s), s ∈ S, and ϕr(0) = 0 that
induces the natural map θ : CSr → CG0 defined by

θ

(∑
s∈Sr

αss

)
=
∑
s∈Sr

αsϕr(s). (2.2)

Proposition 2.2. With the above notation, θ : CSr → CG0 is a positive map.

Proof. Let f =
∑

αsδs be a typical element of CSr . It is enough to show that θ(f • f∗) is
positive for each f ∈ CSr . Observe that

f • f∗ =
(∑

αsδs
)
•
(∑

αsδs
)∗

=
∑

αsαtδs • δt∗ =
∑

αsαtδs•t∗ . (2.3)

Hence, we have θ(f • f∗) =
∑

s,t αsαtδϕ(s) • δϕ(t)∗ , which is a positive element of CG0.

Proposition 2.3. For each a ∈ CSr , ‖θa‖C∗(G0) ≤ ‖a‖C∗(Sr).

Proof. It is enough to check the relation between states on these spaces. It is easy to check
that, for each ρ ∈ S(CG0), ρ ◦ θ ∈ S(CSr). Indeed, by the previous proposition, ρ ◦ θ is
positive, since, for each a ∈ CSr , θ(a)

∗ • θ(a) = θ(a∗ • a). It follows that, for each a ∈ CSr with
ρ ◦ θ(a∗ • a) ≤ 1, we have θ(a) ∈ CG0 with ρ(θ(a)∗ • θ(a)) ≤ 1. Therefore,

‖θa‖C∗(G0) = sup
{
ρ
(
(θa)∗ • θa)1/2 : ρ ∈ S

(
CG0

)}

= sup
{(

ρ ◦ θ)(a∗ • a)1/2 : ρ ∈ S
(
CG0

)}

≤ sup
{(

ρ ◦ θ)(a∗ • a)1/2 : ρ ◦ θ ∈ S(CSr)
}

≤ ‖a‖C∗(Sr).

(2.4)
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Recall that a strongly E∗-unitary inverse semigroup S is an inverse semigroup that
admits a grading ϕ : S → G ∪ {0} such that ϕ−1(e) is equal to the set of nonzero idempotent
of S, where e is the identity of G.

Lemma 2.4. If S is E-unitary, then Sr is strongly E∗-unitary.

Proof. Let ϕ : S → G be the natural epimorphism of S onto its maximal group homomorphic
image. Then, ϕr : Sr → G ∪ {0}with ϕr(0) = 0 is a grading map and ϕ−1

r (e) = E.

Proposition 2.5. Let S be an E-unitary inverse semigroup with the maximal group homomorphic
image G. Then, the natural map θ : CSr → CG0 is an isometry.

Proof. Let π : Sr → B(H) be a representation of the inverse semigroup Sr such that π(0) = 0.
Clearly, π maps the idempotents of S to projections on H. Since Sr is strongly E∗-unitary,
π induces a representation on G0 defined by π̃(ϕ(x)) = [π(x)], for each x ∈ S \ {0} and
π̃(0) = 0, where [π(x)] is the equivalence class of π(x). Therefore, representations of S lift to
representations on the corresponding inverse semigroup G0.

Now, assume that a ∈ CSr is a hermitian element. Then, ‖a‖C∗(Sr) = supπ‖π(a)‖. By
the definition of the quotient norm for π̃(θ(a)) = [π(a)], for each ε > 0, there is a projection
i ∈ B(H) such that ‖π(a) + i‖ ≤ ‖[π(a)]‖ + ε. But i is positive as an element in the C∗-algebra
B(H) thus π(a) ≤ π(a) + i, and therefore ‖π(a)‖ ≤ ‖π(a) + i‖. Hence, ‖π̃(ε(a))‖ = ‖π(a)‖,
and the result follows from Proposition 2.3 and the definition of the C∗-norm.

Proposition 2.6. Let ϕ : S → G be the quotient map of an E-unitary inverse semigroup S onto its
maximal group homomorphic image. Then, there exists an isometric isomorphism φ : B(B) → Br,e(S)
such that, for each f in B(B), φ(f) = f ◦ ϕ, where B is the Fell bundle for C∗

0(G
0).

Proof. Let ϕr : Sr → G0 be the induced homomorphism of ϕ on Sr and θ the natural map
defined in Proposition 2.3. Then, Proposition 2.5 says that the natural map θ : CSr → CG0

extends to an isometric surjection

θ : C∗(Sr) −→ C∗
(
G0

)
(2.5)

which maps zero to zero. Hence, we have the following map, again denoted by θ :

θ :
C∗(Sr)

Cδ0
−→ C∗(G0)

Cδ0
(2.6)

which induces an ∗-homomorphism

θ̃ : C∗
r(S) −→ C∗

0

(
G0

)
(2.7)

and gives the isometric linear isomorphism (C∗(G0)/Cδ0)
∗ ∼= Br,e(S). By the paragraph before

Proposition 2.2, there is an isometric isomorphism of Banach algebras

θ̃∗ : B(B) −→ Br,e(S), (2.8)
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where B is the Fell bundle for C∗
0(G

0). Note that, for each u ∈ C∗(B)∗ and δs ∈ �1(Sr),
θ̃∗(u)(δs) =

∑
u(x)θ(δs)(x) = u ◦ ϕ(s). This means that θ̃∗(u) = u ◦ ϕ. Therefore, φ = θ̃∗

is the required map.

Next, we adapt the notion of weak containment property of inverse semigroups [8] to
the restricted case.

Definition 2.7. The inverse semigroup S has restricted weak containment property if C∗
r(S) ∼=

C∗
λr
(S).

Proposition 2.8. For an inverse semigroup S, Sr has weak containment property if and only if S has
restricted weak containment property.

Proof. The result follows from the following isomorphisms [5]:

C∗
r(S) ∼=

C∗(Sr)
Cδ0

, C∗
λr
(S) ∼= C∗

Λ(Sr)
Cδ0

, (2.9)

where Λ is the left regular representation of Sr and C∗
Λ(Sr) is the completion of �1(Sr) in the

norm ‖f‖Λ := sup ‖Λ(f)‖.

Proposition 2.9. For an inverse semigroup S, the following three conditions are equivalent:

(i) �1r (S) is amenable,

(ii) ES is finite,

(iii) �1r (S) has a bounded approximate identity.

Proof. If ES is finite then so is ESr = ES ∪ {0}, hence �1(Sr) is amenable [2], and so is �1r (S) ∼=
�1(Sr)/Cδ0.

Conversely, if �1r (S) is amenable, then �1(Sr)/Cδ0 and Cδ0 are both amenable. Hence,
�1(Sr) is amenable, therefore ESr and so ES are finite [2].

Let ϕ : S → G be the quotient map of the inverse semigroup S onto its maximal group
homomorphic image and ϕr : Sr → G∪ 0 a grading of Sr by the groupG, letHr = ϕ−1

r (e)∪{0}
and H = ϕ−1(e). There is a conditional expectation

ε : C∗
0(Sr) ∼= C∗(Sr)

Cδ0
∼= C∗

r(S) −→ C∗
0(Hr) ∼= C∗(Hr)

Cδ0
∼= C∗

r(H),

εr : C∗
λ,0(Sr) ∼=

C∗
λ(Sr)
Cδ0

∼= C∗
λr
(S) −→ C0Hr =

�1(Hr)
Cδ0

= �1r (H)
λ
⊆ C∗

λr
(H).

(2.10)

These are extensions of the restriction map �1r (S) → �1r (H), where H ≤ S. By [8,
Theorem 4.2], Sr has weak containment property if and only if ε is faithful and Hr has
weak containment property, that is C∗(Hr) ∼= C∗

λ(Hr). It follows that S has restricted weak
containment property if and only if ε is faithful and H has restricted weak containment
property. Now, most of the results in [8] extend to the restricted version. In particular, we
have the following two results, where, in the latter, the amenability of the Fell bundle is in the
sense of Exel [11].
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Theorem 2.10. Let H = ϕ−1(e) ≤ S where ϕ is the quotient map of S onto its maximal group
homomorphic image. Then, S has restricted weak containment property if and only if ε : C∗

r(S) →
C∗

r(H) is faithful and H has restricted weak containment property.

Corollary 2.11. For an E-unitary inverse semigroup S, the following three conditions are equivalent:

(i) S has restricted weak containment property,

(ii) ε : C∗
r(S) → C∗

r(E) is faithful,

(iii) the Fell bundle of C∗
r(S) is amenable.
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