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We propose the construction of signal space codes over the quaternion orders from a graph
associated with the arithmetic Fuchsian group Γ8. This Fuchsian group consists of the edge-
pairing isometries of the regular hyperbolic polygon (fundamental region) P8, which tessellates
the hyperbolic plane D

2. Knowing the generators of the quaternion orders which realize the edge
pairings of the polygon, the signal points of the signal constellation (geometrically uniform code)
derived from the graph associated with the quotient ring of the quaternion order are determined.

1. Introduction

In the study of two-dimensional lattice codes, it is known that the lattice Z
2 is associated with

a type of digital modulation known as quadrature amplitude modulation, QAMmodulation,
denoted by xi(t) = αi cosw0t + βi sinw0t, where αi and βi take values on a finite integer set,
whose performance under the (bit) error probability criterion is better than that of the phase-
shift keying modulation, PSK modulation, denoted by yi(t) = A cos(w0t + φi), where φi takes
values on a finite set, for the same average energy. The PSK modulation is associated with
the nth roots of unity. The question that emerges is why a QAM signal constellation achieves
better performance in terms of the error probability? Topologically, the fundamental region
of the PSK signal constellation is a polygon with two edges oriented in the same direction,
whereas the fundamental region of the QAM signal constellation is a square with opposite
edges oriented in the same direction. The edge pairing of each one of these fundamental
regions leads to oriented compact surfaces with genus g = 0 (sphere) and g = 1 (torus),
respectively. We infer that the topological invariant associated with the performance of the
signal constellation is the genus of the surface which is obtained by pairing the edges of the
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fundamental region associated with the signal code. In the quest for the signal code with the
best performance, we construct signal codes associated with surfaces with genus g ≥ 2. Such
surfaces may be obtained by the quotient of Fuchsian groups of the first kind, [1]. Here, we
consider only the case g = 2.

The concept of geometrically uniform codes (GU codes) was proposed in [2] and
generalized in [3]. In [4], these GU codes are summarized for any specific metric space,
and in [5], new metrics are derived from graphs associated with quotient rings. Such
codes have highly desirable symmetry properties, such as the following: every Voronoi
region is congruent; the distance profile is the same for any codeword; the codewords
have the same error probability; the generator group is isomorphic to a permutation group
acting transitively on the codewords. In [6, 7], geometrically uniform codes are constructed
in R

2 from graphs associated with Gaussian and Eisenstein-Jacobi integer rings. For the
Gaussian integer rings, the Voronoi regions of the signal constellation are squares and may
be represented by the lattice Z

2, whereas for the Eisenstein-Jacobi integer ring the Voronoi
regions of the signal constellation are hexagons and may be represented by the lattice A2.

In this paper, we propose the construction of signal space codes over the quaternion
orders from graphs associated with the arithmetic Fuchsian group Γ8. This Fuchsian group
consists of the edge-pairing isometries of the regular hyperbolic polygon (fundamental
region) P8 (8 edges) which tessellates the hyperbolic plane D

2. The tessellation is the self-
dual tessellation {8, 8}, [8], where the first number denotes the number of edges of the regular
hyperbolic polygon, and the second one denotes the number of such polygons which cover
each vertex.

This paper is organized as follows. In Section 2, basic concepts on quaternion orders
and arithmetic Fuchsian groups are presented. In Section 3, the identification of the arithmetic
Fuchsian group derived from the octagon is realized by the associated quaternion order.
In Section 4, quotient ring of the quaternion order is constructed, and we show that the
cardinality of this quotient ring is given by the norm to the fourth power. In Section 5, some
concepts related to graphs and codes over graphs are presented. Finally, in Section 6, an
example of a GU code derived from a graph over the quotient ring of the quaternion order is
established.

2. Preliminary Results

In this section, some basic and important concepts regarding quaternion algebras, quaternion
orders, and arithmetic Fuchsian groups with respect to the development of this paper are
presented. For a detailed description of these concepts, we refer the reader to [9–13].

2.1. Quaternion Algebras

Let K be a field. A quaternion algebra A over K is a K-vector space of dimension 4 with a
K-base B = {1, i, j, k}, where i2 = a, j2 = b, ij = −ji = k, a, b ∈ K − {0}, and denoted by
A = (a, b)

K
.

Let α ∈ A be given by α = a0 + a1i + a2j + a3ij, where a0, a1, a2, a3 ∈ K. The conjugate

of α, denoted by
−
α, is defined by

−
α= a0 − a1i − a2j − a3ij. Thus, the reduced norm of α ∈ A,

denoted by NrdA(α), or simply Nrd(α)when there is no confusion, is defined by

Nrd(α) = α· −
α= a2

0 − aa2
1 − ba2

2 + aba2
3, (2.1)
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and the reduced trace of α by

Trd(α) = α+
−
α= 2a0. (2.2)

Notice that the reduced norm is a quadratic form such that

Nrd : A −→ K,

α �−→ a2
0 − aa2

1 − ba2
2 + aba2

3,
(2.3)

which may also be denoted by its normal form 〈1,−a,−b, ab〉.
Let A = (a, b)

K
be a quaternion algebra over a field K and ϕ : K → F a field

homomorphism. Define

Aϕ =
(
ϕ(a), ϕ(b)

)
ϕ(K), Aϕ ⊗ F =

(
ϕ(a), ϕ(b)

)
F
, (2.4)

where Aϕ ⊗ F denotes the tensor product of the algebra Aϕ by the field F, [9]. Each
homomorphism ϕ in the algebraAϕ = (ϕ(a), ϕ(b))ϕ(K) is called place of the quaternion algebra
A.

Let K be a totally real algebraic number field of degree n. This means that the n
monomorphisms ϕi, i = 1, . . . , n are all real, that is, ϕi(K) ⊂ R. Therefore, the n distinct places
are defined by R-isomorphisms

ρ1 : Aϕ1 ⊗ R −→ M2(R), ρi : Aϕi ⊗ R −→ H, (2.5)

where ϕ1 is the identity, ϕi is an embedding of K on R, for i = 1, . . . , n, and H is a division
subalgebra ofM2(K(

√
a)). Hence,A is not ramified at the place ϕ1 and ramified at the places

ϕi, for 2 ≤ i ≤ n.
Let NrdH and TrdH be the reduced norm and the reduced trace in H, respectively.

Given α ∈ A, it is easy to verify that

NrdH(α) = det
(
ρ1(α)

)
, TrdH(α) = tr

(
ρ1(α)

)
. (2.6)

Now, from the identification of αi with ϕi(αi), for i = 0, 1, 2, 3, it follows that for every
2 ≤ i ≤ n,

ϕi(NrdH(α)) = NrdH
(
ρi(α)

)
, ϕi(TrdH(α)) = TrdH

(
ρi(α)

)
. (2.7)

Furthermore, as the reduced norm of an element is given by the determinant of the
isomorphism ρ1, one may verify that

NrdH
(
α · β) = Nrd(α)H ·NrdH

(
β
)
, (2.8)

for any α, β ∈ A.
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Proposition 2.1 (see [13]). LetA = (a, b)
K
be a quaternion algebra with a basis {1, i, j, k}, r ∈ N

∗,
with r fixed, and let R be the set

R =
{

α

rm
: α ∈ IK and m ∈ N

}
, (2.9)

where IK is the ring of integers of K. Then O = {x = x0 + x1i + x2j + x3k : x0, x1, x2, x3 ∈ R} is an
order inA.

Proof. We have that R is a subring of K containing IK and that O is an R-module. On the
other hand, if β ∈ K, then there exists c ∈ Z − {0} such that c ∈ IK. Therefore, for any
x0, x1, x2, x3 ∈ K, there exists cl ∈ Z − {0} such that clxl = αl ∈ IK, l = 0, 1, 2, 3. Thus, given
x = x0 + x1i + x2j + x3k ∈ A, there exists γ ∈ K such that x = γx′, with x′ ∈ O. Therefore,
A = KO, which shows that O is an order in A.

Example 2.2. Let H = (−1,−1)
R
be the Hamilton quaternion algebra and H1 = {α ∈ H :

NrdR(α) = 1}. Hence, given α = a0 + a1i + a2j + a3k ∈ H1, from (2.1), we have NrdR(α) =
a2
0 − aa2

1 − ba2
2 + aba2

3k = a2
0 + a2

1 + a2
2 + a2

3 = 1, which implies that a2
0 = 1 − a2

1 − a2
2 − a2

3 and
so |a0| ≤ 1. Now, from (2.2), it follows that TrdR(α) = 2a0, and so TrdR(α) = 2a0 ∈ [−2, 2].
Therefore, TrdR(H1) = [−2, 2].

Given A, a quaternion algebra over K, and R, a ring of K, an R-order O in A is a
subring with unity of A which is a finitely generated R-module such that A = KO. Hence, if
A = (a, b)

K
and IK, the integer ring of K, where a, b ∈ IK − {0}, then O = {a0 +a1i+a2j +a3ij :

a0, a1, a2, a3 ∈ IK} is an order in A denoted by O = (a, b)IK
.

Example 2.3. Given H = (−1,−1)
R
the Hamilton quaternion algebra, the integer ring of R is

Z, and the quaternion orderH[Z] = {a0 + a1i + a2j + a3ij : a0, a1, a2, a3 ∈ Z} is called the ring
of integral Hamiltonian quaternions, or the Lipschitz integers.

2.2. Hyperbolic Lattices

Let A = (a, b)
K
be a quaternion algebra over K, let R be a ring of K, and let be O an R-order

in A. We also call O a hyperbolic lattice due to its identification with an arithmetic Fuchsian
group.

The lattices O are used as the basic entity in generating the signals of a signal
constellation in the hyperbolic plane. Since O is an order in A, then there exists a basis {e1,
e2, e3, e4} ofA and R-ideal a such that O = ae1 ⊕Re2 ⊕Re3 ⊕Re4, where ⊕ denotes direct sum.
Note that by definition, given x, y ∈ O, we have x · y ∈ O. Furthermore, since every x ∈ O is
integral over R, [14], it follows that Nrd(x), Trd(x) ∈ R, [15].

An invariant of an order O is its discriminant, d(O). For that, let {x0, x1, x2, x3} be a set
consisting of the generators of O over R. The discriminant of O is defined as the square root

of the R-ideal generated by the set {det(Tr(xi,
−
xj)) : 0 ≤ i, j ≤ 3}.

Example 2.4. LetA = (a, b)
K
, and let IK be the ring of integers of K, where a, b ∈ I∗

K
= IK −{0}.

Then, [16], O = {x0 + x1i + x2j + x3k : x0, x1, x2, x3 ∈ IK} is an order in A denoted by O =

(a, b)IK
. The discriminant of O is the principal ideal R ·det(Tr(xi,

−
xj)), where {x0, x1, x2, x3} =

{1, i, j, k}, [14]. On the other hand, it is not difficult to see that Tr(xi
−
xj) is the following
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diagonal matrix:

⎛

⎜
⎜
⎝

2 0 0 0
0 −2a 0 0
0 0 −2b 0
0 0 0 2ab

⎞

⎟
⎟
⎠. (2.10)

Therefore,

d(O) = 4ab. (2.11)

One of the main objectives of this paper is to identify the arithmetic Fuchsian group
in a quaternion order. Once this identification is realized, then the next step is to show the
codewords of a code over graphs or the signals of a signal constellation (quotient of an order
by a proper ideal). However, for the algebraic labeling to be complete, it is necessary that the
corresponding order be maximal. An order M in a quaternion algebra A is called maximal if
M is not contained in any other order inA, [14].

If M is a maximal order in A containing another order O, then the discriminant
satisfies, [15], d(O) = d(M) · [M : O], d(M) = d(A). Conversely, if d(O) = d(A), then O
is a maximal order in A.

Example 2.5. LetA be an algebraA=(
√
2,−1)

Q(
√
2) with a basis {1, i, j, k} satisfying i = 4

√
2, j =

Im, and k = 4
√
2 Im where Im denotes an imaginary unit, Im2 = −1. Let us also consider the

following order (Proposition 2.1 considers a more general case for O) in A, O = {x = x0 +
x1i + x2j + x3k : x0, x1, x2, x3 ∈ R}, that is, O = (

√
2,−1)R, where R = {x/2n : x ∈ Z[

√
2] and

n ∈ N}. Thus, by (2.11), d(O) = −√2. Furthermore, d(A) = −√2, [15]. Hence, O is a maximal
order in A.

2.3. Arithmetic Fuchsian Groups

Consider the upper-half plane H
2={z ∈ C : Im(z) > 0} endowed with the Riemannian metric

ds =

√
dx2 + dy2

y
, (2.12)

where z = x+y Im.With thismetricH
2 is themodel of the hyperbolic plane or the Lobachevski

plane. Let PSL(2,R) be the set of all the Möbius transformations of C over itself as

{
z −→ az + b

cz + d
: a, b, c, d ∈ R, ad − bc = 1

}
. (2.13)

Consider the group of real matrices g =
(
a b
c d

)
with det(g) = ad − bc = 1, and Tr(g) = a + d is

the trace of the matrix g. This group is called unimodular, and it is denoted by SL(2,R).
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The set of linear fractional Möbius transformations of C over itself as in (2.13) is
a group such that the product of two transformations corresponds to the product of the
corresponding matrices, and the inverse transformation corresponds to the inverse matrix.
Each transformation T is represented by a pair of matrices ±g ∈ SL(2,R). Thus, the group of
all transformations (2.13), called PSL(2,R), is isomorphic to SL(2,R)/{±I2}, where I2 is the
2 × 2 identity matrix, that is,

PSL(2,R) ≈ SL(2,R)
{±I2} . (2.14)

A Fuchsian group Γ is a discrete subgroup of PSL(2,R), that is, Γ consists of the
orientation-preserving isometries T : H

2 → H
2, acting on H

2 by homeomorphisms.
Another Euclidean model of the hyperbolic plane is given by the Poincaré disc D

2 =
{z ∈ C : |z| < 1} endowed with the Riemannian metric

ds2 =
4
(
dx2 + dy2)

[
1 − (x2 + y2

)]2 , (2.15)

where z = x + y Im. Analogously, the discrete group Γp of orientation-preserving isometries
T : D

2 → D
2 is also a Fuchsian group, given by the transformations Tp ∈ Γp < PSL(2,C) such

that

Tp(z) =
az + c
−
c z+

−
a
, a, b ∈ C, |a|2 − |c|2 = 1. (2.16)

Furthermore, we may write Tp = f ◦ T ◦ f−1, where T ∈ PSL(2,R), and f : H
2 → D

2 is an
isometry given by

f(z) =
z Im+1
z + Im

. (2.17)

Therefore, the Euclidean models of the hyperbolic plane such as the Poincaré disc and the
upper-half plane are isomorphic, and they will be used according to the need. Notice that the
Poincaré disc model is useful for the visualization, whereas the upper-half plane is useful for
the algebraic manipulations.

For each order O in A, consider O1 as the set O1 = {α ∈ O : NrdH(α) = 1}. Note that
O1 is a multiplicative group.

Now, note that the Fuchsian groups may be obtained by the isomorphism ρ1 in (2.5).
In fact, from (2.6), we have NrdH(α) = det(ρ1(α)). Furthermore, we know that O1 is a
multiplicative group, and so ρ1(O1) is a subgroup of SL(2,R), that is, ρ1(O1) < SL(2,R).
Therefore, the group derived from a quaternion algebra A = (a, b)

K
and whose order is O,
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denoted by Γ(A,O), is given by

Γ(A,O) =
ρ1
(O1)

{±Id2} <
SL(2,R)
{±Id2}

∼= PSL(2,R). (2.18)

As a consequence, consider the following.

Theorem 2.6 (see [11]). Γ(A,O) is a Fuchsian group.

These previous concepts and results lead to the concept of arithmetic Fuchsian groups.
Since every Fuchsian group may be obtained in this way, we say that a Fuchsian group is
derived from a quaternion algebra if there exists a quaternion algebraA and an order O ⊂ A
such that Γ has finite index in Γ(A,O). The group Γ is called an arithmetic Fuchsian group.

Theorem 2.7 establishes the necessary and sufficient conditions for arithmetic of
Fuchsian groups, and its characterization makes use of the set consisting of the traces of its
elements, that is, Tr(Γ) = {±Tr(T) : T ∈ Γ}.

Theorem 2.7 (see [11, 16]). Let Γ be a Fuchsian group where the fundamental region has finite area,
that is, μ(H2/Γ) < ∞. Then Γ is derived from a quaternion algebra A over a totally real number field
K if and only if the following conditions are satisfied by Γ:

(1) if K1 = Q(Tr(T) : T ∈ Γ), then K1 is an algebraic number field of finite degree, and Tr(Γ)
is contained in IK1 , the ring of integers of K1;

(2) if ϕ is an embedding of K1 in C such that ϕ/= Id, then ϕ(Tr(Γ)) is bounded in C.

3. Identification of Γ8 in Γ(A,O),O ⊂ A
In this section, we identify the arithmetic Fuchsian group Γ8 derived from a quaternion
algebra A over a number field K, for [K : Q] = 2, where [K : Q] denotes the degree of
the field extension, and g = 2 denotes the genus of the surface D

2/Γ8 in a quaternion order.
From [17], if g = 2, the arithmetic Fuchsian group Γ8 is derived from a quaternion

algebraA over a totally real number field K = Q(
√
2). The elements of the Fuchsian group Γ8

are identified, by an isomorphism, with the elements of the order O = (
√
2,−1)IK

, where IK

denotes the integer ring of K.
To verify if a Fuchsian group associated with an order as specified in the previous

paragraph is in fact arithmetic, it suffices to show that the quaternion algebra is not ramified
at ϕ1, and it is ramified at the remaining places.

Consider the Fuchsian group Γ8, given a quaternion algebra A = (
√
2,−1)

K
, and the

elements of T ∈ Γ are given by

T =
1
2s

(
xl + yl

√
2 zl +wl

√
2

−zl +wl

√
2 xl − yl

√
2

)

, (3.1)

where s ∈ N, xl, yl, zl, wl ∈ Z[
√
2]. Since ϕ1 is the identity, it follows that A � M2(K) is

not ramified at ϕ1. Now, observe that
√
2 is square-free for K = Q(

√
2), that is, there is no

t ∈ K − {0} such that t2 =
√
2. Therefore, A is ramified at all places ϕi, except at ϕ1.
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On the other hand, the order O = (
√
2,−1)IK

is not a maximal order in the quaternion
algebra A = (

√
2,−1)

K
for the discriminant is not 4

√
2. Since we are interested in realizing a

complete algebraic labeling, we have to find an order that contains the order O inA and that
it is maximal. From [13], we have that O = (

√
2,−1)R, where R = {α/2m : α ∈ IK,m ∈ N} is

a maximal order that contains O = (
√
2,−1)IK

. Therefore, this is the order we are taking into
consideration in the case of interest.

4. 4. Quotient Rings of the Quaternion Order O = (
√
2,−1)R

Where R = {α/2m : α ∈ IK,m ∈ N}
Consider the self-dual tessellation {8, 8} having an octagon as the fundamental region. We
know from the previous sections that the arithmetic Fuchsian group Γ8 is derived from a
quaternion algebra over K = Q(

√
2), with the identification of the generators by the order

O = (
√
2,−1)IK

. Thus, let K = Q(
√
2) and {1, i, j, k} = {1,

√√
2, Im,

√√
2 Im} be a basis of the

quaternion algebra A = (
√
2,−1)IK

, where i2 =
√
2, j2 = −1, k = ij =

√√
2 Im.

The ring of integers of K = Q(
√
2) is Z[

√
2]; hence, O = {a0 + a1i + a2j + a3k :

a0, a1, a2, a3 ∈ Z[
√
2]} is in fact an order inA. Due to the simplicity of this order, we start with

it and gradually extend it to the order O= (
√
2,−1)R, where R = {α/2m : α ∈ Z[

√
2], m ∈ N}

which realizes the complete labeling.
Observe that O = {a0 + a1i + a2j + a3k : ai ∈ Z[

√
2]} is an extension of Z[

√
2]

of dimension 4, for it has {1, i, j, k} as its basis, and we have that O is a subring of A
containing 1 and which is a finitely generated Z[

√
2]-module. Now, if we look at the order

O as an extension of Z, the dimension increases to 8, and the basis of O over Z is given by
{1,
√√

2, i,
√
2i, j,

√√
2j, k,

√√
2k}. In this case, the order will be denoted by OZ. We may still

verify that according to the definition of order, OZ is a free Z-module with rank 4n = 8,
where n = [K : Q] = [Q(

√
2) : Q] = 2, and in this way, we are not working with the

quaternions anymore, but with the octonions, a set which besides being noncommutative
is also nonassociative.

4.1. Case g = 2

Given the genus g = 2, the arithmetic Fuchsian group Γ8 is derived from a quaternion
algebra A over a totally real number field K = Q(

√
2), and the elements of Γ8 are identified,

via an isomorphism, with the elements of O= (
√
2,−1)

Z[
√
2]. Hence, given K = Q(

√
2) and

O= (
√
2,−1)

Z[
√
2] such that O = {a0 + a1i + a2j + a3k : ai ∈ Z[

√
2], i2 =

√
2, j2 = −1, k2 = −√2},

the reduced norm of an element α = a0 + a1i + a2j + a3k ∈ O is given by

Nrd
Z[

√
2](α) = α

−
α= a2

0 −
√
2a2

1 + a2
2 −

√
2a2

3 ∈ Z

[√
2
]
, (4.1)

and it satisfies Nrd
Z[

√
2](α) ∈ IK = Z[

√
2]. Next, we verify in which cases this norm is an

element belonging to Z.

Proposition 4.1. Given α = a0 + a1i + a2j + a3k ∈ O, where ai = xi + yi

√
2, where xi, yi ∈ Z, then

Nrd
Z[

√
2](α) ∈ Z if and only if 2x0y0 − x2

1 − 2y2
1 + 2x2y2 − x2

3 − 2y2
3 = 0. In this case, the norm is

given by Nrd
Z[

√
2](α) = x2

0 + 2y2
0 − 4x1y1 + x2

2 + 2y2
2 − 4x3y3.
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Proof. From (4.1), we have Nrd
Z[

√
2](α) = α

−
α= a2

0 −
√
2a2

1 +a2
2 −

√
2a2

3. Since ai ∈ Z[
√
2], it may

be written as ai = xi + yi

√
2, where xi, yi ∈ Z. Thus, a2

i = x2
i + 2y2

i + 2
√
2xiyi, and from this, it

follows that

Nrd
Z[

√
2](α) = a2

0 −
√
2a2

1 + a2
2 −

√
2a2

3 = x2
0 + 2y2

0 + 2
√
2x0y0 −

√
2
(
x2
1 + 2y2

1 + 2
√
2x1y1

)

+ x2
2 + 2y2

2 + 2
√
2x2y2 −

√
2
(
x2
3 + 2y2

3 + 2
√
2x3y3

)
= x2

0 + 2y2
0 − 4x1y1 + x2

2

+ 2y2
2 − 4x3y3 +

√
2
(
2x0y0 − x2

1 − 2y2
1 + 2x2y2 − x2

3 − 2y2
3

)
.

(4.2)

Hence, Nrd
Z[

√
2](α) ∈ Z if and only if 2x0y0−x2

1 −2y2
1 +2x2y2−x2

3 −2y2
3 = 0, fromwhich

it follows that

Nrd
Z[

√
2](α) = x2

0 + 2y2
0 − 4x1y1 + x2

2 + 2y2
2 − 4x3y3 ∈ Z. (4.3)

Now, considering the order O as an extension of Z, denoted by OZ, the reduced norm
of an element α = a0 + a1i + a2j + a3k ∈ OZ is given by

NrdZ(α) = α
−
α= a0

−
a0 −

√
2a1

−
a1 +a2

−
a2 −

√
2a3

−
a3∈ Z

[√
2
]
, (4.4)

where
−
ai denotes the conjugate of ai.
Since the proof of the next result is similar to the proof of Proposition 4.1, we omit it.

Proposition 4.2. Given α = a0 + a1i + a2j + a3k ∈ OZ, where ai = xi + yi

√
2, where xi, yi ∈ Z,

then NrdZ(α) ∈ Z if and only if x2
1 + x2

3 − 2(y2
1 + y2

3) = 0. In this case, the norm is given by
NrdZ(α) = x2

0 − 2y2
0 + x2

2 − 2y2
2 ∈ Z.

Remark 4.3. When there is no confusion in the notation being used, we will denote for
simplicity the reduced norm of α by Nrd(α).

Theorem 4.4. Let 0/=α ∈ O. If Nrd(α) ∈ Z, then O/〈α〉 has Nrd(α)4 elements.

Proof. Let 0/=α ∈ O and Nrd(α) = N ∈ Z. First, we show that O/〈N〉 has N8 elements.
As N ∈ Z, let us consider O over Z. However, [O : Z] = 8, and the basis of O over Z is
{1,√2, i, i

√
2, j, j

√
2, k, k

√
2}. Thus, α ∈ O is of the form α = a0 + a1

√
2 + a2i + a3i

√
2 + a4j +

a5
√
2j + a6k + a7k

√
2.

Now, given two elements β, β′ ∈ O,

β = b0 + b1
√
2 + b2i + b3i

√
2 + b4j + b5

√
2j + b6k + b7k

√
2, bi ∈ Z,

β′ = b′0 + b′1
√
2 + b′2i + b′3i

√
2 + b′4j + b′5

√
2j + b′6k + b′7k

√
2, b′i ∈ Z,

(4.5)
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we say that β and β′ are congruent modulo N if there exists

β′′ = b′′0 + b′′1
√
2 + b′′2i + b′′3i

√
2 + b′′4j + b′′5

√
2j + b′′6k + b′′7k

√
2, b′′i ∈ Z, (4.6)

such that β − β′ = β′′N. Thus, bi − b′i = b′′i N, for i = 0, 1, . . . , 7, that is, bi ≡ b′i(modN) which
implies that there exist N possibilities for each bi, and thus, N8 different equivalence classes
modulo N.

Now, since Nrd(α) = α
−
α, we have the following chain of ideals: 〈Nrd(α)〉 = 〈−α

α〉 ⊆ 〈α〉. From the third isomorphism theorem for A-modules, [10], we have the following
sequence of left A-module:

0 −→ 〈α〉
〈α −

α〉
−→ A

〈α −
α〉

−→ A

〈α〉 −→ 0. (4.7)

We denote the number of elements of A/〈α〉 by n and the number of elements of

〈α〉/〈α −
α〉 by m. Then, as a consequence of the Lagrange theorem, [10], we may consider

the previous exact sequence as a sequence of Abelian groups, thus leading to Nrd(α)8 = nm.
If we prove that n = m, we may finally conclude that n = Nrd(α)4. Now, observe that the
function

f :
A

〈−α〉
−→ 〈α〉

〈α −
α〉

, (4.8)

defined by f(β + 〈−α〉) = βα + 〈α −
α〉, is well defined, and it is an isomorphism of the left

A-module. Therefore, m is exactly the number of elements of A/〈−α〉.
Finally, the quaternion conjugation is an antiautomorphism, which implies thatA/〈−α〉

and A/〈α〉 have the same cardinality, that is, n = m.

Example 4.5. Let α = 1+ j ∈ O = (
√
2,−1)

Z[
√
2], then Nrd(α) = 2. From Theorem 4.4, O/〈α〉 has

16 elements, obtained by the quotient of the order O and the ideal 〈1 + j〉, that is, we take the
elements of O and reduce them modulo (1 + j), obtaining

O
〈
1 + j

〉 =
{
0, 1,

√
2, 1 +

√
2, i, 1 + i,

√
2 + i,

√
2i,
(
1 +

√
2 + i

)
, 1 +

√
2i,

√
2 +

√
2i,
(
1 +

√
2
)

+
√
2i,
(
1 +

√
2
)
i, 1 +

(
1 +

√
2
)
i,
√
2 +
(
1 +

√
2
)
i,
(
1 +

√
2
)
+
(
1 +

√
2
)
i
}
.

(4.9)

Example 4.6. Given α = 2 +
√
2 ∈ O = (

√
2,−1)

Z[
√
2], from Proposition 4.1, we have

Nrd
Z[

√
2](α) = 6 + 4

√
2 /∈ Z. However, taking the order as an extension of Z, that is,
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OZ = (
√
2,−1)

Z
from Proposition 4.2, we have NrdZ(α) = 2, and O/〈α〉 has 16 elements,

given by

O
〈
2 +

√
2
〉 =

{
0, 1, i, j, k, 1 + i, 1 + j, 1 + k, i + j, i + k, j + k, 1 + i + j, 1 + i

+ k, 1 + j + k, i + j + k, 1 + i + j + k
}
.

(4.10)

Remark 4.7. We are not interested in orders such as OZ, for when the order O is extended to
the order OZ, it implies working with octonions; hence, some important properties are lost.
Therefore, we consider such an extension when there is no other alternative, that is, when the
norm over IK is not an element in Z.

Corollary 4.8. If β ∈ O = (
√
2,−1)

Z[
√
2] is a right divisor of α and Nrd(β) ∈ Z, then the left ideal

generated by β, 〈β〉 ⊆ O has Nrd(α)4/Nrd(β)4 elements.

Note from Corollary 4.8 that 〈β〉 generates a code with Nrd(α)4/Nrd(β)4 codewords,
therefore, a subcode of O/〈α〉, whose minimum distance Dβ(η, τ) > Dα(η, τ).

Example 4.9. Given α = 1+ 2
√
2j, from Proposition 4.1, we have Nrd

Z[
√
2](α) = (1)2 + (2

√
2)

2
=

9. Now, α = 1 + 2
√
2j may be written as 1 + 2

√
2j = (

√
2 + j)

2
; hence, β is a right divisor of α

and Nrd
Z[

√
2](β) = 3 ∈ Z, then the left ideal generated by β, 〈β〉 ⊆ O has Nrd(α)4/Nrd(β)4 =

94/34 = 81 elements.

As can be seen in Example 2.5, for the proof see [13], the order O = (
√
2,−1)

Z[
√
2] is not

a maximal order. Therefore, we have to consider the order over the ring R = {α/2m : α ∈
Z[

√
2], m ∈ N}, which makes it maximal, hence, given K = Q(

√
2) andO = (

√
2,−1)R, where

R = {α/2m : α ∈ Z[
√
2], m ∈ N} such that

O =
{
a0 +

a1

2
i +

a2

2
j +

a3

2
k : ai ∈ Z

[√
2
]
, i2 =

√
2, j2 = −1, k2 = −

√
2
}
, (4.11)

we have that the reduced norm of an element α ∈ O is given by

NrdR(α) = a2
0 −

1
2

√
2a2

1 +
1
2
a2
2 −

1
4

√
2a2

3 ∈ Z

[√
2
]
. (4.12)

Now, for the maximal order, the cardinality of the quotient ring satisfy the following results:

Theorem 4.10. Let α ∈ O = (
√
2,−1)R, where R = {α/2m : α ∈ Z[

√
2], m ∈ N}. If NrdR(α) = 2n,

then O/〈α〉 has just one element.

Proof. Let γ ∈ O/〈α〉. We have to show that γ ≡ 0(modα). To show that γ ≡ 0(modα) is

equivalent to proving that γ = xα, where x ∈ O. As NrdR(α) = 2n, we have that
−
α α = 2n;
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hence, γ may be written as

γ =
γ

2n
−
α α, (4.13)

that is, γ ≡ 0(modα). In particular, one may verify that 1 ≡ 0(modα), for 1 = (1/2n)
−
α α.

Theorem 4.11. Let α ∈ O = (
√
2,−1)R, where R = {α/2m : α ∈ Z[

√
2], m ∈ N}. IfNrdR(α)/= 2n,

then O/〈α〉 has NrdR(α)
4 elements.

Proof. Let 0/=α ∈ O and NrdR(α)/= 2n, NrdR(α) = N ∈ Z. We have to show that the left O-
module O/〈N〉 has N8 elements. As N ∈ Z, let us take O over Z. However, [O : Z] = 8 and
the basis of O over Z is {1/2n,√2/2n, i/2n, i

√
2/2n, j/2n, j

√
2/2n, k/2n, k

√
2/2n}. Hence, the

proof is analogous to the proof of Theorem 4.4.

Example 4.12. Let α = 2 ∈ OR. Hence, from (4.12), we have that NrdR(α) = 4, and by
Theorem 4.10, it follows that O/〈α〉 has just one element {0}.

Example 4.13. Let α =
√
2 + (

√
2/2)j ∈ OR. Hence, from (4.12), we have that NrdR(α) = 3 and

by Theorem 4.11, it follows that O/〈α〉 has 81 elements.

5. Codes over Graphs

In this section some concepts of graphs and codes over graphs are considered which will be
useful in the next section.

Definition 5.1. Let 0/=α ∈ O = (θ,−1)IK
. The distance inO is the distance induced by the graph

Gα. Hence, if η, τ ∈ O, then the distance is given by

Dα

(
η, τ
)
= min{|x1| + |x2| + 2|x3| + 2|x4| − 2|x2x3|}, (5.1)

such that τ − η ≡ x1 + x2i + x3j + x4k (modα).

Example 5.2. For V = O/〈√2 + j〉. If τ = 1 and η = i, then τ − η = 1 − i. Thus, Dα(η, τ) = 2, if
τ = (

√
2/2)(1 + i) and η = (

√
2/2)(1 − i), then τ − η =

√
2i ≡ k(modα). Thus, Dα(η, τ) = 2.

Given the distance Dα, a graph generated by α ∈ O is defined as follows.

Definition 5.3. Let 0/=α ∈ O = (θ,−1)IK
. The graph generated by α is defined as Gα = (V, E),

where

(1) V = O/〈α〉 denotes the set of vertices;
(2) E = {(η, τ) ∈ V × V : Dα(η, τ) = 1} denotes the set of edges.

Example 5.4. Given α =
√
2 + j ∈ O = (

√
2,−1)

Z[
√
2], from Proposition 4.1, the reduced norm is

Nrd
Z[

√
2](α) = 3. The set of vertices is V = O/〈√2 + j〉, and the set of edges satisfies E.

Remark 5.5. Note that the distance between two signal points η and τ in the graph is the least
number of traversed edges connecting the signal point η to the signal point τ .
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Given a graph Gα with a set of vertices V and distanceDα, a code in Gα is a nonempty
subset C of Gα. The Voronoi region Vη associated with η ∈ C is the subset consisting of the
elements of V for which η is the closest signal point in C, that is, Vη = {τ ∈ V ;D(η, τ) =
D(η,C)}. The number t = max{D(η,C);η ∈ V } is called covering radius of the code. The
covering radius is the least number t such that each ball of radius t centered at the signal
points of C, given by Bt(η) = {τ ∈ V : D(η, τ) ≤ t}, covers V . The number δ = min{D(η, τ) :
η, τ ∈ C, η /= τ} is the minimum distance of C, and δ ≤ 2t + 1; the equality holds when each
ball of radius t centered at the signal points of C forms a partition of V . A code satisfying
this property is called perfect and corrects t errors. A code is called quasiperfect if the code is
capable of correcting every error pattern up to t errors and some patterns with t+1 errors and
no errors greater than t + 1. Perfect codes and quasiperfect codes are part of a more general
class of codes called geometrically uniform codes.

6. Example

A code derived from a graph is defined as geometrically uniform if for any two-code
sequences, there exists an isometry that takes a code sequence into the other, while it leaves
the code invariant. Hence, geometrically uniform codes partition a set of vertices of a graph
by the Voronoi regions.

Given an element α ∈ OR, we may generate a code over a graph by use of the quotient
ring OR/〈α〉 as the vertices of the graph. Thus, by choosing β a divisor of α, we obtain a
geometrically uniform code, and the vertices of the graph are covered by the action of the
isometries on the fundamental region as shown in Section 4.

Example 6.1. For g = 2, given α = 1 + 2
√
2j, such that α ∈ O

Z(
√
2) = (

√
2,−1)

Z(
√
2), the reduced

norm is Nrd
Z[

√
2](α) = 9. Thus, from Theorem 4.4, the cardinality of the set of vertices V is

Nrd
Z[

√
2](α)

4 = 94 = 6561. Note that α may be written as 1 + 2
√
2j = (

√
2 + j)

2
, and so β is a

right divisor of α and Nrd
Z[

√
2](β) = 3 ∈ Z. Therefore, the code generated by β, 〈β〉 ⊆ O has

Nrd
Z[

√
2](α)

4/Nrd
Z[

√
2](β)

4 = 94/34 = 81 codewords. Note that the Voronoi region associated
with each codeword consists of 81 elements. If τ =

√
2 + j and η = 0, then τ − η =

√
2 + j =

(1 + 2
√
2j)

√
2 − 3j ≡ −3j(modα). Thus, Dα(η, τ) = 6. The minimum distance of this code is

Dα(η, τ) = 6.

The procedures considered may be extended to surfaces with any genus once the
associated quaternion order is known. This allows us to construct new geometrically uniform
codes over different signal constellations.
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