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An elementary annihilator of a ring𝐴 is an annihilator that has the form (0 : 𝑎)
𝐴
; 𝑎 ∈ 𝑅 \ (0). We define the elementary annihilator

dimension of the ring 𝐴, denoted by EAdim(𝐴), to be the upper bound of the set of all integers 𝑛 such that there is a chain (0 :
𝑎
0
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑎

𝑛
) of annihilators of 𝐴. We use this dimension to characterize some zero-divisors graphs.

1. Introduction

In this paper, all rings are considered to be commutative and
unitary.

Let 𝐴 be a ring and 𝑆 be a nonempty subset of 𝐴. We call
the annihilator of 𝑆 in 𝐴 denoted by (0 : 𝑆)

𝐴
or (0 : 𝑆) the set

{𝑎 ∈ 𝐴/𝑎𝑆 = (0)}. If 𝑆 = {𝑎} is a singleton then (0 : 𝑆) will be
denoted by (0 : 𝑎). If 𝑎 ̸= 0 then (0 : 𝑎) is called an elementary
annihilator. An annihilator is said to be maximal if it is
maximal in the set of all proper annihilators of 𝐴. It is well
known that all maximal annihilators are elementary. For 𝑛 ∈
N an elementary annihilator chain (0 : 𝑎

1
) ⊂ (0 : 𝑎

2
) ⊂ ⋅ ⋅ ⋅ ⊂

(0 : 𝑎
𝑛+1
) is said to be a chain of elementary annihilators with

length 𝑛 ending in (0 : 𝑎
𝑛+1
).The upper bound of the set of all

lengths of elementary annihilator chains ending in (0 : 𝑎) is
called the elementary annihilator height of𝑎

𝑛+1
(or (0 : 𝑎

𝑛+1
)).

In this paper, we introduce a dimension of a ring 𝑅 using
elementary annihilator chains called elementary annihilator
dimension, denoted by EAdim(𝑅).TheEAdim(𝑅) is the upper
bound of the set of elementary annihilator heights. We use
this dimension to study zero-divisor graphs.

We introduce a class of rings called isometric maximal
elementary annihilator rings, in short IMEA-rings.That is the
class of rings with finite EAdimension whose all maximal
annihilators have the same height.

2. Elementary Annihilator
Dimension of a Ring

Definition 1. (1) Let 𝑛 ∈ N and (0 : 𝑎
1
) ⊂ (0 : 𝑎

2
) ⊂ ⋅ ⋅ ⋅ ⊂

(0 : 𝑎
𝑛+1
) be chain of elementary annihilators in the ring 𝐴.

One says that this chain is an elementary annihilator chain of
length 𝑛 ending in (0 : 𝑎

𝑛+1
).

(2) Let 𝑎 be a nonzero element of 𝐴. One defines the
elementary annihilator height of 𝑎, denoted by EAht(𝑎), as
the upper bound of the set of all lengths of elementary
annihilator chains ending in (0 : 𝑎).

(3) One calls elementary annihilator dimension of
𝐴, denoted by EAdim(𝐴), the upper bound of the set
{EAht(𝑎); 𝑎 ∈ 𝐴 \ {0}}.

Example 2. (1) EAdim(Z/4Z) = 1. Indeed, (0 : 1) ⊂ (0 : 2) is
the longest chain of elementary annihilators in Z/4Z.

(2) EAht(1) = 0.
(3) All nonzero zero-divisors 𝑎 satisfy EAht(𝑎) ≥ 1.

Indeed, (0 : 1) ⊂ (0 : 𝑎) is a chain of length one.

It is easy to check the following results.

Remark 3. (1) Let 𝑎 ∈ 𝐴 \ {0}, EAht(𝑎) = 0 if and only if 𝑎 is
regular.

(2) EAdim(𝐴) = 0 if and only if 𝐴 is a domain.
(3) For an ideal 𝐼 of 𝐴, EAdim(𝐴/𝐼) = 0 if and only if 𝐼 is

prime.
(4) If 𝑎 is a nonzero noninvertible element

EAdim(𝐴/(𝑎)) = 0 if and only if 𝑎 is prime.

We denote by nil(𝐴) the set of all nilpotent elements of𝐴.
𝐴 is said to be reduced if it has no nilpotents other then zero.

Theorem 4. Let 𝑎 ∈ nil(𝐴) \ {0} and 𝑛(𝑎) be its index of
nilpotency; one has: EAht(𝑎) + 𝑛(𝑎) ≤ EAdim(𝐴) + 2.
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Proof. If EAht(𝑎) + 𝑛(𝑎) or EAdim(𝐴) is infinite the result
is obvious. Otherwise, there exists a chain whose length is
EAht(𝑎) and it ends in (0 : 𝑎). Let (0 : 1) ⊂ (0 : 𝑎

1
) ⊂ ⋅ ⋅ ⋅ ⊂

(0 : 𝑎
𝑟−1
) ⊂ (0 : 𝑎) be this chain. Moreover, we have

(0 : 𝑎) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑎
𝑛(𝑎)−1
). So we obtain the following

chain: (0 : 1) ⊂ (0 : 𝑎
1
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑎

𝑟−1
) ⊂ (0 : 𝑎) ⊂

(0 : 𝑎
2
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑎

𝑛(𝑎)−1
)whose length is EAht(𝑎)+𝑛(𝑎)−2.

Consequently, EAht(𝑎) + 𝑛(𝑎) − 2 ≤ EAdim(𝐴).

Corollary 5. If 𝑎 ∈ nil (𝐴) \ {0} satisfies EAht (𝑎) =
EAdim (𝐴) is finite then 𝑛(𝑎) = 2. In particular, if
EAdim(𝐴) = 1 then for all 𝑎 ∈ nil (𝐴) \ {0}, 𝑛(𝑎) = 2.

Theorem 6. Let 𝐴
1
and 𝐴

2
be two rings; then;

(1) EAdim(𝐴
1
×𝐴
2
) is finite if and only if EAdim(𝐴

1
) and

EAdim(𝐴
2
) are finite.

(2) EAdim (𝐴
1
×𝐴
2
) = EAdim (𝐴

1
)+ EAdim (𝐴

2
)+1.

Proof. Let (𝑎, 𝑏) ∈ 𝐴
1
×𝐴
2
be a nonzero zero-divisor. If 𝑎 and

𝑏 are nonzero then (0 : (𝑎, 𝑏))
𝐴
1
×𝐴
2

= (0 : 𝑎)
𝐴
1

× (0 : 𝑏)
𝐴
2

.
If one of them is zero, for example, 𝑎 = 0 then (0 :

(𝑎, 𝑏))
𝐴
1
×𝐴
2

= 𝐴
1
× (0 : 𝑏)

𝐴
2

.
(1) “⇒” Let EAdim(𝐴

1
× 𝐴
2
) = 𝑛, suppose that

EAdim(𝐴
1
) or EAdim(𝐴

2
) is infinite; for example,

EAdim(𝐴
1
) is infinite. Then there exists 𝑟 ≥ 𝑛 + 1 and

(0 : 1) ⊂ (0 : 𝑎
1
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑎

𝑟
) a chain in 𝐴

1
; then

(0 : (1, 0)) ⊂ (0 : (𝑎
1
, 0) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : (𝑎

𝑟
, 0)) is a chain of

elementary annihilators in 𝐴
1
× 𝐴
2
whose length is 𝑟 > 𝑛,

contradiction.
“⇐” If we assume that 𝑛 = EAdim(𝐴

1
), then there

is a chain of length 𝑛 in 𝐴
1
; let (0 : 1)

𝐴
1

⊂ (0 :

𝑎
1
)
𝐴
1

⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑎
𝑛
)
𝐴
1

be this chain. In the same
way we put 𝑚 = EAdim(𝐴

2
) and we take (0 : 1)

𝐴
2

⊂

(0 : 𝑏
1
)
𝐴
2

⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑏
𝑚
)
𝐴
2

as a chain of length 𝑚.
Then (0 : (1, 1))

𝐴
1
×𝐴
2

⊂ (0 : (𝑎
1
, 1))
𝐴
1
×𝐴
2

⊂ ⋅ ⋅ ⋅ ⊂

(0 : (𝑎
𝑛
, 1))
𝐴
1
×𝐴
2

⊂ (0 : (𝑎
𝑛
, 𝑏
1
))
𝐴
1
×𝐴
2

⊂ ⋅ ⋅ ⋅ ⊂

(0 : (𝑎
𝑛
, 𝑏
𝑚
))
𝐴
1
×𝐴
2

⊂ (0 : (0, 𝑏
𝑚
))
𝐴
1
×𝐴
2

is an elementary
annihilator chain of 𝐴

1
× 𝐴
2
whose length is 𝑛 + 𝑚 + 1 that

is maximal, because of the inclusion (0 : (𝑎, 𝑏))
𝐴
1
×𝐴
2

⊂ (0 :

(𝑐, 𝑑))
𝐴
1
×𝐴
2

⇔ (0 : 𝑎)
𝐴
1

⊂ (0 : 𝑐)
𝐴
1

or (0 : 𝑏)
𝐴
2

⊂ (0 : 𝑑)
𝐴
2

.
Then EAdim(𝐴

1
× 𝐴
2
) is finite and EAdim(𝐴

1
× 𝐴
2
) =

𝑛 + 𝑚 + 1.
(2) If EAdim(𝐴

1
× 𝐴
2
) is infinite (that is EAdim(𝐴

1
) or

EAdim(𝐴
2
) is infinite, by (1)) then the result is obvious. The

finite case is shown in the proof of (1) “⇐”.

By induction, we have the following result.

Corollary 7. (1) Let 𝐴
1
, . . . , 𝐴

𝑟
be some rings, one has

EAdim (𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑟
) = ∑
𝑟

𝑖=1
EAdim (𝐴

𝑖
) + 𝑟 − 1.

(2) If𝐴 is a domain and 𝑛 ∈ N∗ then EAdim (𝐴𝑛) = 𝑛−1.

3. The EAdimension and
the Zero-Divisor Graph

Let 𝐴 be a ring. The zero-divisor graph of 𝐴 is defined to be
the graph whose vertices are the nonzero zero-divisors of 𝐴
and its edges are the pairs {𝑎, 𝑏} satisfying 𝑎𝑏 = 0. We denote

this graph by Γ(𝐴). For the simplicity ofwritingwe still denote
by Γ(𝐴) the set of nonzero zero-divisors of 𝐴.
Γ(𝐴) is said to be connected if for every two different

vertices 𝑎 and 𝑏 of Γ(𝐴) there is a sequence 𝑎
1
, . . . , 𝑎

𝑛
∈

Γ(𝐴) such as 𝑎 = 𝑎
1
, 𝑏 = 𝑎

𝑛
and {𝑎

𝑖
, 𝑎
𝑖+1
} is an edge,

∀1 ≤ 𝑖 ≤ 𝑛 − 1. This sequence is called a path connecting
𝑎 and 𝑏 with length 𝑛 − 1. Γ(𝐴) is said to be complete if
each two distinct vertices form an edge. We call the distance
between 𝑎 and 𝑏 the least length of a path connecting them,
denoted by 𝑑

𝐴
(𝑎, 𝑏) or 𝑑(𝑎, 𝑏). We call the diameter of Γ(𝐴),

denoted diam(Γ(𝐴)), the supremum of the set {𝑑(𝑎, 𝑏); 𝑎, 𝑏 ∈
Γ(𝐴)}. In [1], Anderson and Livingston showed that Γ(𝐴) is
connected and diam(Γ(𝐴)) ∈ {0, 1, 2, 3}.

For an integer 𝑟 ≥ 2, Anderson and Livingston defined
Γ(𝐴) to be 𝑟-partite complete if Γ(𝑅) = Γ

1
∪ ⋅ ⋅ ⋅ ∪ Γ

𝑟
, where

the Γ
𝑖
s are nonempty disjoined sets and for all 𝑥 ̸= 𝑦 in Γ(𝐴)

satisfy 𝑥𝑦 ̸= 0 if and only if there exists 1 ≤ 𝑖 ≤ 𝑟 such that
𝑥, 𝑦 ∈ Γ

𝑖
. In this paper we extend the definition of r-partite

complete graph to the case when 𝑟 is infinite.

Lemma 8 (see [2], Theorem 6). (1) If (0 : 𝑎) is an elementary
annihilator that is maximal (in the set of proper annihilators of
𝐴) then it is prime.

(2) Let 𝑎, 𝑏 ∈ 𝐴 \ {0}; if (0 : 𝑎) is maximal and (0 : 𝑏) ̸⊆
(0 : 𝑎) then 𝑏 ∈ (0 : 𝑎).

Proposition 9. Let 𝐴 be a reduced ring that is not a domain
and 𝑎 ̸= 𝑏 be two nonzero zero-divisors such that (0 : 𝑎) and
(0 : 𝑏) are maximal; then 𝑎𝑏 ̸= 0 if and only if (0 : 𝑎) = (0 : 𝑏).

Proof. “⇒” Immediately, by Lemma 8 “⇐” If (0 : 𝑎) = (0 : 𝑏),
suppose that 𝑏𝑎 = 0. 𝑏𝑎 = 0 ⇒ 𝑏 ∈ (0 : 𝑎) = (0 : 𝑏) ⇒ 𝑏2 =
0, contradiction. Then 𝑎𝑏 ̸= 0.

Theorem 10. If 𝐴 is a nonreduced ring then EAdim (𝐴) = 1
if and only if Γ(𝐴) is complete.

Proof. “⇐” if Γ(𝐴) is complete then, according to [1,Theorem
2.8], we have for all 𝑥, 𝑦 ∈ 𝑍(𝐴), 𝑥𝑦 = 0. Then𝑍(𝐴) = (0 : 𝑐),
∀𝑐 ∈ 𝑍(𝐴) \ {0}. So all nonzero elementary annihilators are
equal, and then EAdim(𝐴) = 1.

“⇒” Let 𝑎 ∈ nil(𝐴) \ {0}; then 𝑎2 = 0, according
to Corollary 5. If 𝑍(𝐴) = {0, 𝑎} then Γ(𝐴) is complete.
Otherwise, for all 𝑏 ∈ 𝑍(𝐴) \ {0, 𝑎} we have (0 : 𝑎) and
(0 : 𝑏) are maximal. Suppose that (0 : 𝑎) ̸= (0 : 𝑏), according
to Lemma 8(2), 𝑎𝑏 = 0 and there, for example,𝑦 ∈ (0 : 𝑎)\(0 :
𝑏); then (0 : 𝑏) ⊂ (0 : 𝑦𝑏), contradiction to the maximality
of (0 : 𝑏). Then (0 : 𝑎) = (0 : 𝑏) and 𝑎𝑏 = 0. Consequently,
𝑍(𝐴) = nil(𝐴) and all nonzero zero-divisors 𝑏 satisfy 𝑏2 = 0.
It follows that for all 𝑎, 𝑏 ∈ 𝑍(𝐴), 𝑎𝑏 = 0. According to [1,
Theorem 2.8], Γ(𝐴) is complete.

Theorem 11. If Γ(𝐴) = ⋃
𝑖∈𝐼
Γ
𝑖
is 𝑟-partite complete graph with

𝑟 = card (𝐼) ∈ N ∪ {∞}, 𝑟 ≥ 2 then 𝑟 = 2 under one of the
following conditions:

(1) two of the Γ
𝑖
’s contain, each one,more than one element;

(2) 𝐴 is reduced.



ISRN Algebra 3

Proof. Suppose that 𝑟 ≥ 3.

First case: If two among the Γ
𝑖
’s contain, each one,more then one

element. Assume that Γ(𝐴) = Γ
1
∪ Γ
2
∪ Γ
3
∪ ⋅ ⋅ ⋅ , where Γ

1
and

Γ
2
have, each one, at least two elements. Let 𝑎

𝑖
∈ Γ
𝑖
, 1 ≤ 𝑖 ≤ 3

and 𝑎
𝑖
̸= 𝑏
𝑖
∈ Γ
𝑖
, 1 ≤ 𝑖 ≤ 2. We have (𝑎

1
+ 𝑎
2
)𝑎
3
= 0; then

𝑎
1
+𝑎
2
is a divisor of zero in𝐴. Suppose that 𝑎

1
+𝑎
2
= 0; then

𝑏
1
(𝑎
1
+𝑎
2
) = 0 ⇒ 𝑏

1
𝑎
1
= 0, contradiction.Then 𝑎

1
+𝑎
2
∈ Γ(𝐴).

Suppose that 𝑎
1
+𝑎
2
∈ Γ
3
∪⋅ ⋅ ⋅ ; then 𝑏

1
(𝑎
1
+𝑎
2
) = 0 ⇒ 𝑏

1
𝑎
1
= 0,

contradiction; then 𝑎
1
+ 𝑎
2
∈ Γ
1
∪ Γ
2
. If 𝑎
1
+ 𝑎
2
∈ Γ
1
then

𝑏
2
(𝑎
1
+ 𝑎
2
) = 0 ⇒ 𝑏

2
𝑎
2
= 0, contradiction. Then 𝑎

1
+ 𝑎
2
∈ Γ
2

and 𝑏
1
(𝑎
1
+ 𝑎
2
) = 0 ⇒ 𝑏

1
𝑎
1
= 0, contradiction.

Second Case: If 𝐴 Is Reduced. Assume that Γ(𝐴) = Γ
1
∪ Γ
2
∪

Γ
3
∪ ⋅ ⋅ ⋅ . Let 𝑎

𝑖
∈ Γ
𝑖
, 1 ≤ 𝑖 ≤ 3, we have (𝑎

1
+ 𝑎
2
)𝑎
3
= 0 then

𝑎
1
+𝑎
2
is a divisor of zero in𝐴. Suppose that 𝑎

1
+𝑎
2
= 0, then

𝑎
1
(𝑎
1
+𝑎
2
) = 0 ⇒ 𝑎

2

1
= 0, contradiction.Then 𝑎

1
+𝑎
2
∈ Γ(𝐴).

Suppose that 𝑎
1
+𝑎
2
∈ Γ
3
∪ ⋅ ⋅ ⋅ then 𝑎

1
(𝑎
1
+ 𝑎
2
) = 0 ⇒ 𝑎

2

1
= 0,

contradiction. Then 𝑎
1
+ 𝑎
2
∈ Γ
1
∪ Γ
2
. If 𝑎
1
+ 𝑎
2
∈ Γ
1
then

𝑎
2
(𝑎
1
+ 𝑎
2
) = 0 ⇒ 𝑎

2

2
= 0, contradiction.Then 𝑎

1
+𝑎
2
∈ Γ
2
and

then 𝑎
1
(𝑎
1
+ 𝑎
2
) = 0 ⇒ 𝑎

2

1
= 0, contradiction. We conclude

that 𝑟 = 2.

Theorem 12. If 𝐴 is reduced then EAdim(𝐴) = 1 if and only
if Γ(𝐴) is bipartite complete.

Proof. “⇒” In Γ(𝐴), we define the relation “∼” by the
following: 𝑥 ∼ 𝑦 if (0 : 𝑥) = (0 : 𝑦). ∼ is a relation of
equivalence. For all 𝑥 ∈ Γ(𝐴), we denote by Γ

𝑥
its equivalence

class. The different classes Γ
𝑥
form a partition of Γ(𝐴) and we

write Γ(𝐴) = ⋃
𝑖∈𝐼
Γ
𝑥
𝑖

. Since 𝐴 is reduced and not a domain,
then there exist nonzero elements 𝑏 ̸= 𝑎 satisfying 𝑏𝑎 = 0.
Now, EAdim(𝐴) = 1; then (0 : 𝑎) and (0 : 𝑏) are maximal.
According to Proposition 9, (0 : 𝑎) ̸= (0 : 𝑏); then Γ

𝑎
̸= Γ
𝑏
; then

𝑟 = card(𝐼) ≥ 2.
If 𝑦 ̸= 𝑧 ∈ Γ

𝑥
then (0 : 𝑧) = (0 : 𝑦) then 𝑦𝑧 ̸= 0, by

Proposition 9.
Let Γ
𝑥
̸= Γ
𝑦
; then (0 : 𝑥) ̸= (0 : 𝑦); then, by Lemma 8, 𝑥𝑦 =

0. Andwe conclude thatΓ(𝐴) is 𝑟-partite complete. According
toTheorem 11, Γ(𝐴) is bipartite complete.

“⇐” Assume that Γ(𝐴) = Γ
1
∪ Γ
2
is bipartite complete. If

𝑎 ∈ Γ
𝑖
then (0 : 𝑎) = Γ

𝑗
∪ {0}, for 𝑖 ̸= 𝑗 ∈ {1, 2}. Let 𝑎, 𝑏 ∈ Γ(𝐴),

if 𝑎, 𝑏 ∈ Γ
𝑖
then (0 : 𝑎) = (0 : 𝑏) = Γ

𝑗
∪ {0}. Otherwise

(0 : 𝑎) and (0 : 𝑏) are incomparable. Then for all 𝑎 ∈ Γ(𝐴),
EAht(𝑎) = 1. It follows that EAdim(𝐴) = 1.

Theorem 13. Let 𝑅 be a ring.

(1) If EAdim (𝑅) = 1 then diam(𝑅) ≤ 2.
(2) If diam(𝑅) ≤ 1 or diam(𝑅) = 2 and 𝑅 is reduced then

EAdim (𝑅) = 1.
(3) If diam(𝑅) = 2 and 𝑅 is not reduced or diam (𝑅) = 3

then EAdim (𝑅) ≥ 2.

Proof. (1) If𝑅 is reduced then, byTheorem 12, Γ(𝑅) is bipartite
complete; then diam(𝑅) ≤ 2.

If 𝑅 is not reduced then, byTheorem 10, Γ(𝑅) is complete
then, byTheorem 2.8 of [1], for all 𝑥, 𝑦 ∈ 𝑍(𝑅), 𝑥𝑦 = 0. Then,
byTheorem 2.6 of [3], diam(𝑅) ≤ 1.

(2) If diam(𝑅) = 2 and 𝑅 is reduced then, by Theorem
2.6 of [3], 𝑅 is reduced with exactly two minimal primes and
at least three nonzero zero-divisors. Then 𝑍(𝑅) = 𝑃

1
∪ 𝑃
2
,

where 𝑃
1
, 𝑃
2
are the two minimal primes of 𝑅; they satisfy

𝑃
1
∩ 𝑃
2
= (0). Then for all 𝑝

1
∈ 𝑃
1
and 𝑝

2
∈ 𝑃
2
, 𝑝
1
, 𝑝
2
= 0

and for 𝑥 ̸= 𝑦 ∈ 𝑃
𝑖
\ {0}, 𝑥𝑦 ̸= 0. Consequently, Γ(𝑅) = [𝑃

1
\

{0}] ∪ [𝑃
2
\ {0}] is bipartite complete graph. According to

Theorem 12, EAdim(𝑅) = 1.
If diam(𝑅) ≤ 1: if diam(𝑅) = 0, byTheorem 2.6 of [3],𝑅 is

isomorphic to eitherZ
4
orZ
2
[𝑦]/(𝑦

2
) and in both cases𝑅has

a unique nonzero elementary annihilator then EAdim(𝑅) =
1.

Now, if diam(𝑅) = 1, using Theorem 2.6 of [3], 𝑥𝑦 = 0
for each distinct pair of zero-divisors and 𝑅 has at least two
nonzero zero-divisors. According toTheorem 2.8 of [1], Γ(𝑅)
is complete and𝑅 is not reduced. ByTheorem 10, EAdim(𝑅) =
1.

(3) If diam(𝑅) = 3 then, by (1), EAdim(𝑅) ̸= 1. Since
diam(𝑅) = 3 then 𝑅 is not a domain then EAdim(𝑅) ̸= 0.
Consequently, EAdim(𝑅) ≥ 2. If diam(𝑅) = 2 and 𝑅 is
not reduced: diam(𝑅) = 3 then 𝑅 is not a domain then
EAdim(𝑅) ̸= 0. Suppose that EAdim(𝑅) = 1; then by Theo-
rem 10, Γ(𝑅) is complete then diam(𝑅) = 1, contradiction.
Then EAdim(𝑅) ≥ 2.

Lemma 14. Let𝐴 be a ring, and 𝐹 = {𝑃
1
, . . . , 𝑃

𝑟
}, 𝑟 > 1 a set of

distinct prime ideals which are incomparable. For 𝑎 an element
of𝑅we denote𝐸(𝑎) = {𝑃 ∈ 𝐹; 𝑎 ∉ 𝑃}. Let𝑅 = 𝐴/(𝑃

1
∩⋅ ⋅ ⋅∩𝑃

𝑟
).

(1) For all subsets 𝐸 of 𝐹 there is 𝑎 ∈ 𝐴 such that 𝐸(𝑎) = 𝐸.
(2) Let 𝑎 ∈ 𝐴, 𝑎 ∈ 𝑍(𝑅) ⇔ 𝐸(𝑎) ̸= 𝐹. In particular, 𝑎 =
0 ⇔ 𝐸(𝑎) = 0.

(3) Let 𝐸
1
and 𝐸

2
be two nonempty subsets of 𝐹. If

⋂
𝑃∈𝐸
1

𝑃 ⊆ ⋂
𝑃∈𝐸
2

𝑃 then 𝐸
2
⊆ 𝐸
1
.

(4) Let 𝑎, 𝑏 ∈ 𝐴. 𝑏 ∈ (0 : 𝑎) ⇔ 𝑏 ∈ ⋂
𝑃∈𝐸(𝑎)

𝑃.

(5) The map 𝜑 : {(0 : 𝑎), 𝑎 ̸= 0} → P(𝐹) \ {0}, (0 : 𝑎)
󳨃󳨀→ 𝐸(𝑎) is a decreasing bijection, here P(𝐹) denotes
the set of 𝐹 subsets.

Proof. (1) If 𝐸 = 0, take 𝑎 = 0 then 𝑎 ∈ 𝑃, for all 𝑃 ∈ 𝐹 then
𝐸(𝑎) = 0 and the result is true in this case.

If 𝐸 = 𝐹, take 𝑎 = 1 then 𝑎 ∉ 𝑃, for all 𝑃 ∈ 𝐹 then
𝐸(𝑎) = 𝐹.

Now if 𝐸 ∉ {𝐹, 0}: 𝐸(𝑎) = 𝐸 ⇔ 𝑎 ∈ 𝑃, ∀𝑃 ∉ 𝐸 and
𝑎 ∉ 𝑃, ∀𝑃 ∈ 𝐸 ⇔ 𝑎 ∈ (⋂

𝑃∈𝐹\𝐸
𝑃) \ (⋃

𝑃∈𝐸
𝑃). Suppose that

(⋂
𝑃∈𝐹\𝐸

𝑃) \ (⋃
𝑃∈𝐸
𝑃) = 0 ⇒ ⋂

𝑃∈𝐹\𝐸
𝑃 ⊆ ⋃

𝑃∈𝐸
𝑃; then there

exists 𝑃
𝑖
0

∈ 𝐸 such that⋂
𝑃∈𝐹\𝐸

𝑃 ⊆ 𝑃
𝑖
0

; then there exists 𝑃
𝑖
1

∈

𝐹 \ 𝐸 such that 𝑃
𝑖
1

⊆ 𝑃
𝑖
0

. Since the 𝑃’s in 𝐹 are incomparable
under inclusion then 𝑃

𝑖
1

= 𝑃
𝑖
0

, then 𝑃
𝑖
0

∈ (𝐹 \ 𝐸) ∩ 𝐸 =

0, contradiction. Consequently, there exists 𝑎 ∈ 𝐴 such that
𝐸(𝑎) = 𝐸.

(2) Let 𝑎 ∈ 𝐴, 𝑎 ∈ 𝑍(𝑅) ⇔ ∃𝑏 ̸= 0/𝑎𝑏 = 0 ⇔ ∃𝑏 ∈

𝐴/𝑏 ∉ ⋂
𝑃∈𝐹
𝑃 and 𝑏𝑎 ∈ ⋂

𝑃∈𝐹
𝑃 ⇔ ∃𝑏 ∈ 𝐴/𝐸(𝑏) ̸= 0 and

𝑏𝑎 ∈ 𝑃, ∀𝑃 ∈ 𝐸(𝑎) ⇔ ∃𝑏 ∈ 𝐴/𝐸(𝑏) ̸= 0 and 𝑏 ∈ 𝑃, ∀𝑃 ∈
𝐸(𝑎) ⇔ ∃𝑏 ∈ 𝐴/𝐸(𝑏) ̸= 0 and 𝐸(𝑎) ⊆ 𝐹 \ 𝐸(𝑏) ⇔ 𝐸(𝑎) ̸= 𝐹. In
the last equivalence the indirect sense “⇐” is obtained by (1).
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(3) Suppose that 𝐸
1
= {𝑄
1
, . . . , 𝑄

𝑠
} and 𝐸

2
= {𝑅
1
, . . . , 𝑅

𝑡
},

where the𝑄
𝑖
’s (resp.,𝑃

𝑖
’s) are pairwise different.𝑄

1
∩⋅ ⋅ ⋅∩𝑄

𝑠
⊆

𝑅
1
∩ ⋅ ⋅ ⋅ ∩ 𝑅

𝑡
⇒ 𝑄
1
∩ ⋅ ⋅ ⋅ ∩ 𝑄

𝑠
⊆ 𝑅
1
then one of the 𝑄

𝑖
’s is

contained in 𝑅
1
; for example, 𝑄

1
⊆ 𝑅
1
. Since the elements of

𝐹 are incomparable under inclusion then 𝑅
1
= 𝑄
1
.

𝑄
1
∩ ⋅ ⋅ ⋅ ∩ 𝑄

𝑠
⊆ 𝑅
1
∩ ⋅ ⋅ ⋅ ∩ 𝑅

𝑡
⇒ 𝑄
1
∩ ⋅ ⋅ ⋅ ∩ 𝑄

𝑠
⊆ 𝑅
2
then

one of the𝑄
𝑖
’s is contained in 𝑅

2
. Suppose that𝑄

1
⊆ 𝑅
2
; then

𝑄
1
= 𝑅
2
then 𝑅

1
= 𝑅
2
, contradiction. Then there exists 𝑖 ≥ 2

such that 𝑄
𝑖
⊆ 𝑅
2
; for example, 𝑄

2
⊆ 𝑅
2
; then 𝑅

2
= 𝑄
2
.

We repeat this process until reaching the stage number
𝑛 = min(𝑠, 𝑡).

Suppose that 𝑠 < 𝑡; then 𝑄
1
∩ ⋅ ⋅ ⋅ ∩ 𝑄

𝑠
= 𝑅
1
∩ ⋅ ⋅ ⋅ ∩ 𝑅

𝑠
⊆

𝑅
𝑠+1

; then there exists 𝑘 ≤ 𝑠 such that 𝑅
𝑘
⊆ 𝑅
𝑠+1

that is,
𝑅
𝑘
= 𝑅
𝑠+1

, contradiction. Consequently, 𝑠 ≥ 𝑡 and we get
𝐸
1
= {𝑅
1
, . . . , 𝑅

𝑡
,𝑄
𝑡+1
, . . . , 𝑄

𝑠
}; then 𝐸

2
⊆ 𝐸
1
.

(4) Let 𝑎, 𝑏 ∈ 𝐴, 𝑏 ∈ (0 : 𝑎) ⇔ 𝑏𝑎 ∈ ⋂
𝑃∈𝐹
𝑃 ⇔ 𝑏 ∈

⋂
𝑃∈𝐸(𝑎)

𝑃.
(5) We check that 𝜑 is well defined: put (0 : 𝑎) = (0 :

𝑏). According to (4), 𝑥 ∈ (0 : 𝑎) ⇔ 𝑥 ∈ ⋂
𝑃∈𝐸(𝑎)

𝑃. Then
𝑥 ∈ ⋂

𝑃∈𝐸(𝑎)
𝑃 ⇔ 𝑥 ∈ ⋂

𝑃∈𝐸(𝑏)
𝑃; then ⋂

𝑃∈𝐸(𝑏)
𝑃 = ⋂

𝑃∈𝐸(𝑎)
𝑃.

According to (3), 𝐸(𝑏) = 𝐸(𝑎).
For 𝑎 ̸= 0, 𝐸(𝑎) ̸= 0; then 𝐸(𝑎) ∈ P(𝐹) \ {0}. Then 𝜑 is well

defined.
𝜑 is injective, by (4).
We show that𝜑 is surjective: let𝐸 ∈ P(𝐹)\{0}. According

to (1), there exists 𝑎 ∈ 𝐴 such that 𝐸(𝑎) = 𝐸. Since 𝐸 ̸= 0 then
𝑎 ̸= 0 and 𝜑(0 : 𝑎) = 𝐸.
(0 : 𝑎) ⊆ (0 : 𝑏) ⇒ ⋂

𝑃∈𝐸(𝑎)
𝑃 ⊆ ⋂

𝑃∈𝐸(𝑏)
𝑃. Then,

according to (3),𝐸(𝑏) ⊆ 𝐸(𝑎).Thus𝜑 is a decreasing bijection.

Theorem 15. Let 𝐴 be a ring and 𝑃
1
, . . . , 𝑃

𝑟
, 𝑟 ≥ 1 be different

incomparable prime ideals of 𝐴. Then EAdim (𝐴/(𝑃
1
∩ ⋅ ⋅ ⋅ ∩

𝑃
𝑟
)) = 𝑟 − 1.

Proof . If 𝑟 = 1 then 𝐴/𝑃
1
is a domain and the result is

checked.
Now let 𝑟 ≥ 2. {𝑃

1
} ⊂ {𝑃

1
, 𝑃
2
} ⊂ ⋅ ⋅ ⋅ ⊂ {𝑃

1
, . . . ,

𝑃
𝑟−1
} ⊂ {𝑃

1
, . . . , 𝑃

𝑟
} is decreasing sequence inP(𝐹) \ {0} with

maximal length. Using the bijection 𝜑 defined in Lemma 14,
𝜑
−1
({𝑃
1
, . . . , 𝑃

𝑟
}) ⊂ 𝜑

−1
({𝑃
1
, . . . , 𝑃

𝑟−1
}) ⊂ ⋅ ⋅ ⋅ ⊂

𝜑
−1
({𝑃
1
, 𝑃
2
}) ⊂ 𝜑

−1
({𝑃
1
}) is a chain of elementary annihilators

in 𝐴/(𝑃
1
∩ ⋅ ⋅ ⋅ ∩ 𝑃

𝑟
) that has a maximal length. Then

EAdim(𝐴/(𝑃
1
∩ ⋅ ⋅ ⋅ ∩ 𝑃

𝑟
)) = 𝑟 − 1.

Example 16. A ring is said to be semilocal ring if it has a
finite number of maximal ideals. Let 𝐴 be a semilocal ring
with 𝑛maximal ideal; then EAdim (𝐴/𝐽) = 𝑛 − 1, where 𝐽 is
the Jacobson radical of 𝐴. We obtain this result by using the
previous theorem.

A ring is called a noetherian spectrum ring if it satisfies
the ascending chain condition (acc) on radical ideals; equiva-
lently each radical ideal is a radical of finitely generated ideal.
The set of prime ideals of a ring𝐴which are minimal over an
ideal 𝐼, denoted by min

𝐼
(𝐴), is finite in the case when 𝐴 is a

noetherian spectrum ring. If 𝐼 = (0), we denote by min(𝐴)

instead of min
𝐼
(𝐴). For more information about noetherian

spectrum rings see [4, Chapter 2].
Proposition 17. Let 𝐴 be a noetherian spectrum ring, for all
ideals 𝐼, EAdim (𝐴/√𝐼) = |min

𝐼
(𝐴)| − 1.

Proof. Since 𝐴 is a noetherian spectrum ring then min
𝐼
(𝐴)

is finite ([4], Chapter 2, Corollary 2.1.10). Assume that
min
𝐼
(𝐴) = {𝑃

1
, . . . , 𝑃

𝑟
}, 𝑟 = |min

𝐼
(𝐴)| ∈ N∗. The 𝑃

𝑖
’s

are incomparable, then we get the result by using Theo-
rem 15.

Definition 18 (according to [5]). Let 𝑅 be a ring.
(1) One calls the chromatic number of 𝑅 the minimal

number of colors used to color the elements of 𝑅 such
that each two adjacent elements (with zero product)
have different colors, denoted by 𝜒(𝑅).

(2) One says that the ring 𝑅 is a coloring if its chromatic
number is finite.

Theorem 19. If 𝑅 is a reduced coloring then EAdim (𝑅) =
𝜒(𝑅) − 2.

Proof. If 𝑅 is a reduced coloring, according to [5, Theorem
3.8], min(𝑅) is finite. And if |min(𝑅)| = 𝑛 then 𝜒(𝑅) = 𝑛 +
1. Let min(𝑅) = {𝑃

1
, . . . , 𝑃

𝑛
}; then 𝑅 = 𝑅/(𝑃

1
∩ ⋅ ⋅ ⋅ ∩ 𝑃

𝑛
).

According toTheorem 15, EAdim(𝑅) = 𝑛 − 1 = 𝜒(𝑅) − 2.
Let 𝐴 be a ring such that EAdim(𝐴) = 𝑛 ≥ 1. For all

vertices 𝑎 in Γ(𝐴), we denote 𝑖(𝑎) = EAht(𝑎) and 𝑗(𝑎) =
max{EAht(𝑏); (0 : 𝑎) ⊆ (0 : 𝑏)}. For all 𝑖 ≤ 𝑗 ≤ 𝑛, we
denote by Γ

𝑖,𝑗
(𝐴) the subgraph of Γ(𝐴) whose vertices form

the following set {𝑎; 𝑖(𝑎) = 𝑖 et 𝑗(𝑎) = 𝑗}.
Theoretically we can write Γ(𝐴) = ⋃

1≤𝑖≤𝑗≤𝑛
Γ
𝑖,𝑗
(𝐴).

Remark 20. Let 𝐴 be a ring such that EAdim(𝐴) = 𝑛 ≥ 2. If
Γ
1,1
(𝐴) ̸= 0 then diam(Γ(𝐴)) = 2. Indeed, consider 𝑎 ∈ Γ

1,1
(𝐴)

and 𝑏 ∈ Γ(𝐴) \ Γ
1,1
(𝐴). There exists 𝑖 ≥ 1 and 𝑗 ≥ 2 such that

𝑏 ∈ Γ
𝑖,𝑗
(𝐴). Suppose that 𝑎𝑏 ̸= 0 then 𝑏 ∉ (0 : 𝑎). According

to Lemma 8(2) (0 : 𝑏) ⊆ (0 : 𝑎), this contradicts the fact
that 𝑎 ∈ Γ

1,1
(𝐴). Then 𝑎𝑏 = 0 and {𝑎, 𝑏} is an edge. Now take

𝑥 ̸= 𝑦 ∈ Γ(𝐴), three cases are possible. If 𝑥, 𝑦 ∈ Γ
1,1
(𝐴) then

take 𝑏 ∈ Γ(𝐴) \ Γ
1,1
(𝐴) and the chain 𝑥 − 𝑏 − 𝑦 is of length 2

then 𝑑(𝑥, 𝑦) ≤ 2. If only 𝑥 is in Γ
1,1
(𝐴) then 𝑥 − 𝑦 is an edge.

If 𝑥, 𝑦 ∈ Γ(𝐴) \ Γ
1,1
(𝐴) then take 𝑎 ∈ Γ

1,1
(𝐴) and 𝑥 − 𝑎 − 𝑦

is a chain of length 2. Then, in all cases, 𝑑(𝑥, 𝑦) ≤ 2 that is
diam(Γ(𝐴)) ≤ 2. Now EAdim(𝐴) = 𝑛 ≥ 2, then there exists
𝑎, 𝑏 such that (0 : 1) ⊂ (0 : 𝑎) ⊂ (0 : 𝑏). Let 𝑥 ∈ (0 : 𝑏) \ (0 : 𝑎)
then 𝑥𝑎 ̸= 0 then 𝑑(𝑥, 𝑎) ≥ 2. Consequently, diam(Γ(𝐴)) = 2.

4. Isometric Maximal Elementary
Annihilator Rings

Definition 21. Let 𝑅 be a ring with finite EA dimension; one
says that 𝑅 is an isometric maximal elementary annihilator
ring, in short an IMEA-ring if its all maximal elementary
annihilators have the same height.

Example 22. The ring Z/8Z is an IMEA-ring. Indeed, the
elementary annihilators of Z/8Z are (0 : 1), (0 : 2), (0 : 4)
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and (0 : 6). They satisfy (0 : 1) ⊂ (0 : 2) ⊂ (0 : 4) and
(0 : 1) ⊂ (0 : 2) ⊂ (0 : 6).

Theorem 23. Let 𝑅
1
and 𝑅

2
be two rings; then 𝑅

1
× 𝑅
2
is an

IMEA-ring if and only if 𝑅
1
and 𝑅

2
are two IMEA-rings.

Proof. ByTheorem 6(1), EAdim(𝑅
1
× 𝑅
2
) is finite if and only

if EAdim(𝑅
1
) and EAdim(𝑅

2
) are finite.

(0 : (𝑎, 𝑏)) is a maximal elementary annihilator in 𝑅
1
×𝑅
2

if and only if (0 : (𝑎, 𝑏)) = 𝑅
1
×(0 : 𝑏), and (0 : 𝑏) is a maximal

elementary annihilator in 𝑅
2
or (0 : (𝑎, 𝑏)) = (0 : 𝑎) ×𝑅

2
, and

(0 : 𝑎) is a maximal elementary annihilator in 𝑅
1
, then all

maximal elementary annihilators of 𝑅
1
× 𝑅
2
have the same

hight if and only if all maximal elementary annihilators of 𝑅
1

have the same height and also for the maximal elementary
annihilators of 𝑅

2
.We get the following result, inductively.

Corollary 24. Let𝑅
1
, . . . , 𝑅

𝑛
be some rings.We have𝑅

1
×𝑅
2
×

⋅ ⋅ ⋅×𝑅
𝑛
is an IMEA-ring if and only if each 𝑅

𝑖
is an IMEA-ring.

Let𝑅 be a domain, we say that𝑅 is atomic if each nonzero
nonunit element of 𝑅 decomposes into a finite product of
irreducibles, according to [6]. An atomic domain is called a
half factorial domain, in short a HFD if 𝑥

1
⋅ ⋅ ⋅ 𝑥
𝑛
= 𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑚

are two decompositions into irreducibles then 𝑛 = 𝑚. This
concept was introduced by Zaks in [7]. A HFD is called a
unique factorization domain, in short a UFD if 𝑥

1
⋅ ⋅ ⋅ 𝑥
𝑛
=

𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
are two decompositions into irreducibles then the

𝑥
𝑖
’s and the 𝑦

𝑖
’s are associates after reordering them. It is

well known that a UFD is an atomic domain in which each
irreducible is primed by [8, Theorem 1].

Proposition 25. If 𝑅 is a UFD, then for all nonzero nonunit
𝑎 of 𝑅 we have 𝑅/(𝑎) is an IMEA-ring. Moreover if 𝑎 =
𝑝
𝑚
1

1
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟

𝑟
is the decomposition of 𝑎 into prime elements then

EAdim(𝑅/(𝑎)) = 𝑚
1
+ ⋅ ⋅ ⋅ + 𝑚

𝑟
− 1.

Proof. Let 𝑎 = 𝑝𝑚1
1
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟

𝑟
∈ 𝑅. Suppose that 𝑥 ∈ 𝑅; then

𝑥 ∈ 𝑍(𝑅/(𝑎)) \ {0}

⇐⇒

{{

{{

{

𝑥 ̸= 0

∃𝑦 ̸= 0

𝑥𝑦 = 0

⇐⇒

{{{{{{{{{{

{{{{{{{{{{

{

𝑥 = 𝑝
𝛼
1

1
⋅ ⋅ ⋅ 𝑝
𝛼
𝑟

𝑟
𝑥
1
; 𝛼
𝑖
∈ N, 𝑥

1
∉ (𝑝
𝑖
) ,

∀𝑖,
∃𝑖

𝛼
𝑖

< 𝑚
𝑖
,

∃𝑦 = 𝑝
𝛽
1

1
⋅ ⋅ ⋅ 𝑝
𝛽
𝑟

𝑟
𝑦
1
; 𝛽
𝑖
∈ N, 𝑦

1
∉ (𝑝
𝑖
) ,

∀𝑖,
∃𝑖

𝛽
𝑖

< 𝑚
𝑖
,

𝛼
𝑖
+ 𝛽
𝑖
≥ 𝑚
𝑖
, ∀𝑖.

(1)

Then

𝑍(
𝑅

(𝑎)
) = {𝑝

𝛼
1

1
⋅ ⋅ ⋅ 𝑝
𝛼
𝑟

𝑟 𝑥1; (𝛼1, . . . , 𝛼𝑟) ∈ N
𝑟
\ {(0, . . . , 0)} ,

𝑥
1
∈ 𝑅 \⋃

𝑖

(𝑝
𝑖
) } .

(2)

And for 𝑥 = 𝑝𝛼1
1
⋅ ⋅ ⋅ 𝑝
𝛼
𝑟

𝑟 𝑥1 ̸= 0 (one among the 𝛼
𝑖
’s is < 𝑚

𝑖
and

𝑥
1
∈ 𝑅 \ ∪

𝑖
(𝑝
𝑖
)), we have the following:

(0 : 𝑥) = {𝑝
𝛽
1

1
⋅ ⋅ ⋅ 𝑝
𝛽
𝑟

𝑟 𝑦1; (𝛽1, . . . 𝛽𝑟) ∈ N
𝑟
\ {(0, . . . , 0)} /𝛽𝑖

≥ 𝑚
𝑖
− 𝛼
𝑖
, ∀𝑖, 𝑦

1
∈ 𝑅 \⋃

𝑖

(𝑝
𝑖
) } .

(3)

It is easy to check that the set of all elementary annihila-
tors of 𝑅/(𝑎) is

{(0 : 𝑝
𝛼
1

1
⋅ ⋅ ⋅ 𝑝
𝛼
𝑟

𝑟 ) ;

(𝛼
1
, . . . , 𝛼

𝑟
) ∈ [[0,𝑚

1
]] × ⋅ ⋅ ⋅ × [[0,𝑚

𝑟
]] \ (𝑚

1
, . . . , 𝑚

𝑟
) } .

(4)

The maximal ones among them are

(0 : 𝑝
𝑚
1
−1

1
𝑝
𝑚
2

2
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟

𝑟 ) , (0 : 𝑝
𝑚
1

1
𝑝
𝑚
2
−1

2
𝑝
𝑚
3

3
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟

𝑟 ) ,

. . . , (0 : 𝑝
𝑚
1

1
𝑝
𝑚
2

2
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟
−1

𝑟 ) .

(5)

A longest chain ending in one of them, for example, (0 : 1) ⊂
(0 : 𝑝

1
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑝

𝑚
1
−1

1
) ⊂ (0 : 𝑝

𝑚
1
−1

1
𝑝
2
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 :

𝑝
𝑚
1
−1

1
𝑝
𝑚
2

2
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 : 𝑝

𝑚
1

1
𝑝
𝑚
2

2
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟
−1

𝑟−1
𝑝
𝑟
) ⊂ ⋅ ⋅ ⋅ ⊂ (0 :

𝑝
𝑚
1
−1

1
𝑝
𝑚
2

2
⋅ ⋅ ⋅ 𝑝
𝑚
𝑟

𝑟 ), has the length 𝑚1 + ⋅ ⋅ ⋅ + 𝑚𝑟 − 1. Thus all
maximal elementary annihilators have the same height 𝑚

1
+

⋅ ⋅ ⋅ +𝑚
𝑟
−1 then 𝑅/(𝑎) is an IMEA-ring and EAdim(𝑅/(𝑎)) =

𝑚
1
+ ⋅ ⋅ ⋅ + 𝑚

𝑟
− 1.

Proposition 26. Let 𝑅 be a HFD. 𝑅 is a UFD if and only if
EAdim (𝑅/(𝑎)) = 𝜆(𝑎) − 1, for all nonzero nonunit 𝑎. Where
𝜆(𝑎) is the number of factors in a decomposition of 𝑎 into
irreducibles (counted with multiplicities).

Proof. “⇒” is due to the previous proposition.
“⇐” Let 𝑎 be an irreducible of 𝑅 then 𝜆(𝑎) = 1; then

EAdim(𝑅/(𝑎)) = 𝜆(𝑎) − 1 = 0. According to Remark 3, 𝑅/(𝑎)
is a domain; then (𝑎) is prime. According to [8, Theorem 1],
𝑅 is a 𝑈𝐹𝐷.

Question 1. Are all finite EAdimensional rings IMEA-rings?

Question 2. Are all finite rings IMEA-rings?
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