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Semientwining structures are proposed as concepts simpler than entwining structures, yet they are shown to have interesting
applications in constructing intertwining operators and braided algebras, liing functors, �nding solutions for Yang-Baxter systems,
and so forth. While for entwining structures one can associate corings, for semientwining structures one can associate comodule
algebra structures where the algebra involved is a bialgebra satisfying certain properties.

1. Introduction and Preliminaries

Quantum groups appeared as symmetries of integrable sys-
tems in quantum and statistical mechanics in the works
of Drinfeld and Jimbo. ey led to intensive studies of
Hopf algebras from a purely algebraic point of view and
to the development of more general categories of Hopf-
type modules (see [1] for a recent review). ese serve
as representations of Hopf algebras and related structures,
such as those described by the solutions to the Yang-Baxter
equations.

Entwining structures were introduced in [2] as gen-
eralized symmetries of noncommutative principal bundles
and provide a unifying framework for various Hopf-type
modules. ey are related to the so-called mixed distributive
laws introduced in [3].

e Yang-Baxter systems emerged as spectral-parameter
independent generalization of the quantum Yang-Baxter
equation related to nonultra-local integrable systems [4, 5].
Interesting links between the entwining structures and Yang-
Baxter systems have been established in [6, 7]. Both topics
have been a focus of recent research (see, e.g., [8–13]).

In this paper, we propose the concepts of semientwining
structures and cosemientwining structures within a generic

framework incorporating results of other authors along-
side ours. e semientwining structures are some kind of
entwining structures between an algebra and amodule which
obey only one-half of their axioms, while cosemientwin-
ing structures are kind of entwining structures between a
coalgebra and a module obeying the other half of their
axioms. e main motivations for this terminology are the
new constructions which require only the axioms selected
by us (constructions of intertwining operators and Yang-
Baxter systems of type II or liings of functors), our new
examples of semientwining structures, simpli�cation of the
work with certain structures (Tambara bialgebras, liing
of functors, braided algebras, and Yang-Baxter systems of
type I), the connections of the category of semientwining
structures with other categories, and so forth. Let us observe
that while for entwining structures one can associate corings,
for semientwining structures one can associate comodule
algebra structures provided the algebra involved is a bialgebra
with certain properties (see eorem 9).

e current paper is organised as follows. Section 2
contains the newly introduced terminology with examples,
new results, and comments. Section 3 is about some of the
applications of these concepts, namely, new constructions of
intertwining operators and braided algebras, liing functors,
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and the presentations of Tambara bialgebras and of (new
families of) Yang-Baxter systems (of types I and II).

e main results of our paper are eorems 19, 22, 24,
40, and 41.eorems 29 and 31 are mentioned in the context
of stating some of our results. eorem 34 is used to prove
eorem 40, while eorem 37 is related toeorem 38.

Unless otherwise stated,wework over a commutative ring
𝑅𝑅. Unadorned tensor products mean tensor products over 𝑅𝑅.

For any 𝑅𝑅-module 𝑉𝑉, 𝑇𝑇𝑇𝑇𝑇𝑇 denotes tensor algebra of 𝑉𝑉.
In section 3.5, we work over a �eld𝕂𝕂. For𝑉𝑉 an𝑅𝑅-module, we
denote by 𝐼𝐼 𝐼 𝐼𝐼 𝐼 𝐼𝐼 the identity map. For any 𝑅𝑅-modules
𝑉𝑉 and𝑊𝑊 we denote by 𝜏𝜏 𝜏 𝜏𝜏𝑉𝑉𝑉𝑉𝑉 ∶ 𝑉𝑉 𝑉 𝑉𝑉𝑉𝑉𝑉   𝑉 𝑉𝑉 the
twistmap, de�ned by 𝜏𝜏𝑉𝑉𝑉𝑉𝑉(𝑣𝑣 𝑣 𝑣𝑣𝑣𝑣  𝑣𝑣 𝑣 𝑣𝑣. Let 𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙   
𝑉𝑉 𝑉 𝑉𝑉 be an 𝑅𝑅-linear map. We use the following notations:
𝜙𝜙12 = 𝜙𝜙 𝜙𝜙𝜙 , 𝜙𝜙23 = 𝐼𝐼 𝐼𝐼𝐼 , 𝜙𝜙13 =( 𝐼𝐼 𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉)(𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙   𝑉𝑉𝑉𝑉𝑉).

�e�nition �. An invertible𝑅𝑅-linear map 𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙  
is called a Yang-Baxter operator if it satis�es

𝜙𝜙12 ∘ 𝜙𝜙23 ∘ 𝜙𝜙12 = 𝜙𝜙23 ∘ 𝜙𝜙12 ∘ 𝜙𝜙23. (1)

Remark 2. Equation (1) is usually called the braid equation. It
is a well-known fact that the operator𝜙𝜙 satis�es (1) if and only
if 𝜙𝜙 𝜙𝜙𝜙 𝑉𝑉𝑉𝑉𝑉 satis�es the quantum Yang-Baxter equation (if and
only if 𝜏𝜏𝑉𝑉𝑉𝑉𝑉 ∘ 𝜙𝜙 satis�es the quantum Yang-Baxter equation):

𝜙𝜙12 ∘ 𝜙𝜙13 ∘ 𝜙𝜙23 = 𝜙𝜙23 ∘ 𝜙𝜙13 ∘ 𝜙𝜙12. (2)

2. Semientwining Structures and
Related Structures

�e�nition � (Semientwining Structures). Let 𝐴𝐴 be an 𝑅𝑅-
algebra, and let 𝐵𝐵 be an 𝑅𝑅-module, then the 𝑅𝑅-linear map
𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓        is called a (right) semientwining
map if it satis�es the following conditions for all 𝑎𝑎𝑎 𝑎𝑎′ ∈ 𝐴𝐴,
𝑏𝑏 𝑏𝑏𝑏  (where we use a Sweedler-like summation notation
𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓    𝛼𝛼 ⊗ 𝑏𝑏

𝛼𝛼):

𝜓𝜓 󶀡󶀡𝑏𝑏 𝑏𝑏 𝐴𝐴󶀱󶀱 = 1𝐴𝐴 ⊗ 𝑏𝑏𝑏

𝜓𝜓 󶀣󶀣𝑏𝑏 𝑏𝑏𝑏𝑏𝑏 ′󶀳󶀳 = 𝑎𝑎𝛼𝛼𝑎𝑎
′
𝛽𝛽 ⊗ 𝑏𝑏

𝛼𝛼𝛼𝛼.
(3)

If 𝐵𝐵 is also an 𝑅𝑅-algebra, and a semientwining map satis�es
additionally

𝜓𝜓 󶀡󶀡1𝐵𝐵 ⊗ 𝑎𝑎󶀱󶀱 = 𝑎𝑎 𝑎𝑎 𝐵𝐵, 𝜓𝜓 󶀣󶀣𝑏𝑏𝑏𝑏′ ⊗ 𝑎𝑎󶀳󶀳 = 𝑎𝑎𝛼𝛼𝛼𝛼 ⊗ 𝑏𝑏
𝛽𝛽𝑏𝑏′

𝛼𝛼
,

∀𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   ′ ∈ 𝐵𝐵𝐵
(4)

then the semientwiningmap is called an algebra factorization
(in the sense of [14]).

If 𝐵𝐵 is a coalgebra and satis�es

𝑎𝑎𝛼𝛼𝜀𝜀 󶀡󶀡𝑏𝑏
𝛼𝛼󶀱󶀱 = 𝑎𝑎𝑎𝑎 (𝑏𝑏) ,

𝑎𝑎𝛼𝛼 ⊗ 𝑏𝑏
𝛼𝛼
(1) ⊗ 𝑏𝑏

𝛼𝛼
(2) = 𝑎𝑎𝛼𝛼𝛼𝛼 ⊗ 𝑏𝑏(1)

𝛽𝛽 ⊗ 𝑏𝑏(2)
𝛼𝛼, ∀𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   

(5)

then 𝜓𝜓 is called a (le-le) entwining map [2].

Remark 4. Let 𝑞𝑞 𝑞𝑞𝑞 . e following are examples of
semientwining structures. Note that they do not have natural
algebra factorization structures in general.

(1) Let𝐴𝐴 be an𝑅𝑅-algebra, then the𝑅𝑅-linear map 𝛾𝛾𝑞𝑞 ∶ 𝐴𝐴𝐴
𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴, 𝛾𝛾𝑞𝑞(𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏     𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏   𝑏 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏  is a
semientwining map. Notice that 𝛾𝛾𝑞𝑞 is a Yang-Baxter
operator (according to [15]).

(2) Let𝐴𝐴 be an𝑅𝑅-algebra, then the𝑅𝑅-linear map 𝜂𝜂𝑞𝑞 ∶ 𝐴𝐴𝐴
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴, 𝜂𝜂𝑞𝑞(𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏   𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏   𝑏 𝑏𝑏𝑏  𝑏𝑏 is a
semientwining map. Notice that 𝜂𝜂𝑞𝑞 is a Yang-Baxter
operator related to Lie algebras (see, e.g., [16]).

(3) Let𝐴𝐴 be an𝑅𝑅-algebra, and let𝑀𝑀 be a right𝐴𝐴-module.
en the 𝑅𝑅-linear map 𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙   , 𝜙𝜙𝜙𝜙𝜙 𝜙
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    𝑎𝑎 is a semientwining map.

e proof of the next lemma is direct; the second
statement is a well-known result.

Lemma 5. If 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓        is a semientwining map,
then

(i) 𝐴𝐴 𝐴𝐴𝐴  becomes a right 𝐴𝐴-module with the operation
(𝑎𝑎 𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎′ = 𝑎𝑎𝑎𝑎′𝛼𝛼 ⊗ 𝑏𝑏

𝛼𝛼;
(ii) moreover, if 𝐵𝐵 is an algebra, we can de�ne a bilinear

operation

⋅ ∶ (𝐴𝐴 𝐴𝐴𝐴 ) ⊗ (𝐴𝐴 𝐴𝐴𝐴 )⟶ (𝐴𝐴 𝐴𝐴𝐴 ) ,

(𝑎𝑎 𝑎𝑎𝑎 ) ⊗ 󶀣󶀣𝑎𝑎′ ⊗ 𝑏𝑏′󶀳󶀳⟼ 𝑎𝑎𝑎𝑎′𝛼𝛼 ⊗ 𝑏𝑏
𝛼𝛼𝑏𝑏′,

(6)

and ⋅ is an associative and unital multiplication on𝐴𝐴𝐴𝐴𝐴 if and
only if 𝜓𝜓 is an algebra factorization.

Remark 6. Some authors call the above map 𝜓𝜓 a twisting
map; see, for example, [17], where a unifying framework for
various twisted algebras is provided.

Remark 7. Suppose that 𝐴𝐴 is a right 𝐻𝐻-comodule algebra
(where𝐻𝐻 is a bialgebra), and 𝐵𝐵 is a right𝐻𝐻-module. en

𝜓𝜓𝐻𝐻 ∶ 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵    (0) ⊗ 𝑏𝑏𝑏𝑏(1) (7)

is a semientwining map. Moreover, if 𝐵𝐵 is an 𝐻𝐻-module
algebra, then 𝜓𝜓𝐻𝐻 thus de�ned is an algebra factorization.
Finally, if𝐵𝐵 is an𝐻𝐻-module coalgebra, then𝜓𝜓 is an entwining
map, and (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  is called a Doi-Koppinen structure (see
[13]).

Remark 8. Let 𝐴𝐴 be an 𝑅𝑅-algebra. We de�ne the category of
semientwining structures over 𝐴𝐴, whose objects are triples
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  , and morphisms 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     ′, 𝐴𝐴𝐴𝐴𝐴 ′) are 𝑅𝑅-
linear maps 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   ′ satisfying the relation (𝐼𝐼𝐴𝐴 ⊗𝑓𝑓𝑓𝑓𝑓𝑓𝑓  
𝜙𝜙′ ∘ (𝑓𝑓 𝑓𝑓𝑓 𝐴𝐴). en, there exist the following functors.

(1) 𝐹𝐹: Mod 𝐴𝐴 𝐴 SemiEntwining Str 𝐴𝐴.
𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , where 𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙    𝜙𝜙𝜙𝜙𝜙𝜙
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    𝑎𝑎;
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(2) 𝐺𝐺: SemiEntwining Str𝐴𝐴 𝐴 Mod 𝐴𝐴.
(𝐵𝐵𝐵 𝐵𝐵𝐵 𝐵𝐵𝐵 𝐵 𝐵𝐵 𝐵 𝐵𝐵, where 𝐴𝐴 𝐴𝐴𝐴  is a right 𝐴𝐴-module
with the operation (𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎′ = 𝑎𝑎𝑎𝑎′𝛼𝛼 ⊗𝑏𝑏

𝛼𝛼.

ese two functors do not form an equivalence of cate-
gories in general, because 𝐹𝐹 𝐹 𝐹𝐹 𝐹 𝐹𝐹𝐹  𝐹 and 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺     .

eorem 9. If 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓       is a semientwining map,
and 𝐴𝐴 is bialgebra, then

(1) 𝐵𝐵 is an 𝐴𝐴-bimodule with the following actions:

𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎 (𝑎𝑎) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      󶀡󶀡𝑎𝑎𝛼𝛼󶀱󶀱 𝑏𝑏
𝛼𝛼, ∀𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎 (8)

(2) 𝐵𝐵𝐵𝐵𝐵 is an algebra with the unit (0, 1) and the product

(𝑏𝑏𝑏𝑏𝑏 ) 󶀣󶀣𝑏𝑏′, 𝑎𝑎′󶀳󶀳 = 󶀣󶀣𝑏𝑏𝑏𝑏𝑏  ′ + 𝑎𝑎 𝑎 𝑎𝑎′, 𝑎𝑎𝑎𝑎′󶀳󶀳 , (9)

and a right𝐴𝐴-comodule with the coaction 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏    
1 + (∑𝑎𝑎1 ⊗ 𝑎𝑎2).

(3) If 𝐴𝐴 has a bilateral integral (i.e.,𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∀𝑎𝑎 𝑎 𝑎𝑎) which is a group-like element (i.e., Δ(𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     ), then 𝐵𝐵 𝐵𝐵𝐵 is an𝐴𝐴-comodule algebra
with the coaction

𝑏𝑏𝑏𝑏𝑏  𝑏 𝑏𝑏𝑏𝑏𝑏𝑏    󶀢󶀢󵠈󵠈󵠈󵠈1 ⊗ 𝑎𝑎2󶀲󶀲 . (10)

Proof. (1) Follows from the linearity of 𝜖𝜖 and 𝜓𝜓.
(2) Follows from the previous statement and from direct

computations as follows: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏        1 ⊗ 𝑎𝑎2) maps
to either 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏       1 ⊗ (𝑎𝑎21 ⊗ 𝑎𝑎22)) (if we apply the
comultiplication of the algebra), or to (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏        
1 + 0 ⊗ 1 + (∑(𝑎𝑎11 ⊗ 𝑎𝑎12)⊗  𝑎𝑎2) (if we apply the coaction).

We observe that the two outputs are equal.
(3) Is a generalisation of (2) and is le to the reader.

Similarly we have the dual notion as follows.

�e�nition 1� (cosemientwining structures). Let 𝐶𝐶 be an 𝑅𝑅-
coalgebra, and let𝐷𝐷 be an𝑅𝑅-module. A𝑅𝑅-linearmap𝜓𝜓 𝜓 𝜓𝜓𝜓
𝐶𝐶 𝐶 𝐶𝐶 𝐶𝐶𝐶  is called a cosemientwining map if it satis�es
the following conditions for all 𝑐𝑐, 𝑐𝑐′ ∈ 𝐶𝐶, 𝑑𝑑 𝑑𝑑𝑑  (where we
use a Sweedler-like summation notation 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓    𝛼𝛼 ⊗ 𝑑𝑑𝛼𝛼):

𝜀𝜀 󶀡󶀡𝑐𝑐𝛼𝛼󶀱󶀱 𝑑𝑑𝛼𝛼 = 𝜀𝜀 (𝑐𝑐) 𝑑𝑑𝑑

𝑐𝑐𝛼𝛼(1) ⊗ 𝑐𝑐
𝛼𝛼
(2) ⊗ 𝑑𝑑𝛼𝛼 = 𝑐𝑐(1)

𝛼𝛼 ⊗ 𝑐𝑐(2)
𝛽𝛽 ⊗ 𝑑𝑑𝛼𝛼𝛼𝛼.

(11)

If𝐷𝐷 is also a coalgebra, and 𝜓𝜓 satis�es additionally

𝑐𝑐𝛼𝛼𝜀𝜀 󶀡󶀡𝑑𝑑𝛼𝛼󶀱󶀱 = 𝑐𝑐𝑐𝑐 (𝑑𝑑) ,

𝑐𝑐𝛼𝛼 ⊗ 𝑑𝑑𝛼𝛼(1) ⊗ 𝑑𝑑𝛼𝛼(2) = 𝑐𝑐
𝛼𝛼𝛼𝛼 ⊗ 𝑑𝑑(1)𝛽𝛽 ⊗ 𝑑𝑑(2)𝛼𝛼

∀𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   

(12)

then 𝜓𝜓 is called a coalgebra factorization.

If, on the other hand, 𝐷𝐷 is an algebra, and 𝜓𝜓 satis�es
additionally

𝜓𝜓 󶀡󶀡1𝐷𝐷 ⊗ 𝑐𝑐󶀱󶀱 = 𝑐𝑐 𝑐𝑐 𝐷𝐷, 𝑐𝑐𝛼𝛼 ⊗ 󶀣󶀣𝑑𝑑𝑑𝑑′󶀳󶀳
𝛼𝛼
= 𝑐𝑐𝛼𝛼𝛼𝛼 ⊗ 𝑑𝑑𝛽𝛽𝑑𝑑

′
𝛼𝛼,

∀𝑑𝑑𝑑 𝑑𝑑′ ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  
(13)

then 𝜓𝜓 is called a (right-right) entwining map.

e next result is dual to Lemma 5.

Lemma 11. Suppose that 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓       is a
cosemientwining map, and𝐷𝐷 is a coalgebra. �e�ne a map

Δ𝐷𝐷𝐷𝐷𝐷 ∶ (𝐷𝐷 𝐷𝐷𝐷 )⟶ (𝐷𝐷 𝐷𝐷𝐷 ) ⊗ (𝐷𝐷 𝐷𝐷𝐷 ) ,

𝑑𝑑 𝑑𝑑𝑑𝑑  󶀢󶀢𝑑𝑑(1) ⊗ 𝑐𝑐(1)
𝛼𝛼󶀲󶀲 ⊗ 󶀢󶀢𝑑𝑑(2)𝛼𝛼 ⊗ 𝑐𝑐(2)󶀲󶀲 .

(14)

en Δmakes𝐷𝐷𝐷𝐷𝐷 a coalgebra if and only if 𝜓𝜓 is a coalgebra
factorization.

Proof. For 𝐷𝐷 𝐷𝐷𝐷  to be a coalgebra it must satisfy the counit
property, that is, (𝜀𝜀𝐷𝐷𝐷𝐷𝐷⊗ id)∘Δ𝐷𝐷𝐷𝐷𝐷 = (id⊗𝜀𝜀𝐷𝐷𝐷𝐷𝐷)∘Δ𝐷𝐷𝐷𝐷𝐷 = id
and the coassociativity property. To check a counit property
note that for all 𝑑𝑑 𝑑𝑑𝑑  and 𝑐𝑐 𝑐𝑐𝑐 :

󶀡󶀡id ⊗ 𝜀𝜀𝐷𝐷𝐷𝐷𝐷󶀱󶀱 ∘ Δ𝐷𝐷𝐷𝐷𝐷 (𝑑𝑑 𝑑𝑑𝑑 ) = 𝑑𝑑(1) ⊗ 𝑐𝑐
𝛼𝛼𝜀𝜀 󶀢󶀢𝑑𝑑(2)𝛼𝛼󶀲󶀲 . (15)

Now, if 𝑑𝑑 𝑑𝑑𝑑𝑑   𝑑𝑑(1) ⊗ 𝑐𝑐𝛼𝛼𝜀𝜀𝜀𝜀𝜀(2)𝛼𝛼), then applying 𝜀𝜀 𝜀 id to
both sides of this equation yields 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑐𝑐𝛼𝛼𝜀𝜀𝜀𝜀𝜀𝛼𝛼). Similarly,
we prove the other half of the counit property. Conversely,
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑐𝑐𝛼𝛼𝜀𝜀𝜀𝜀𝜀𝛼𝛼) implies the counit property.

Using the fact that 𝜓𝜓 is a cosemientwining map, it is easy
to prove that the coassociativity implies that for all 𝑐𝑐 𝑐𝑐𝑐  and
𝑑𝑑 𝑑𝑑𝑑

𝑐𝑐(1)
𝛼𝛼 ⊗ 𝑑𝑑𝛼𝛼(1) ⊗ 𝑐𝑐(2)

𝛽𝛽 ⊗ 𝑑𝑑𝛼𝛼(2)𝛽𝛽 = 𝑐𝑐(1)
𝛼𝛼𝛼𝛼 ⊗ 𝑑𝑑(1)𝛾𝛾 ⊗ 𝑐𝑐(2)

𝛽𝛽 ⊗ 𝑑𝑑(2)𝛼𝛼𝛼𝛼.
(16)

Applying 𝜀𝜀 to the third leg and using the fact that 𝜓𝜓 is a
cosemientwining map yields

𝑐𝑐𝛼𝛼 ⊗ 𝑑𝑑𝛼𝛼(1) ⊗ 𝑑𝑑𝛼𝛼(2) = 𝑐𝑐
𝛼𝛼𝛼𝛼 ⊗ 𝑑𝑑(1)𝛾𝛾 ⊗ 𝑑𝑑(2)𝛼𝛼. (17)

We leave the rest of the proof to the reader.

Remark 12. Suppose that 𝐶𝐶 is a right𝐻𝐻-comodule coalgebra
(where𝐻𝐻 is a bialgebra), and𝐷𝐷 is a right𝐻𝐻-module. en

𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓       (0) ⊗ 𝑑𝑑𝑑𝑑(1) (18)

is a cosemientwiningmap. Furthermore, if𝐷𝐷 is an𝐻𝐻-module
coalgebra, then𝜓𝜓 is a coalgebra factorization. Otherwise, if𝐷𝐷
is an 𝐻𝐻-module algebra, then 𝜓𝜓 is a le-le entwining map.
Moreover, in this last case, (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is called an alternative
Doi-Koppinen structure.

Let 𝑋𝑋, 𝑌𝑌 be any 𝑅𝑅-modules. Any 𝑥𝑥∗ ∈ 𝑋𝑋∗ can be viewed
as the map

𝑥𝑥∗ ∶ 𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋     𝑋𝑋𝑋𝑋𝑋 ∗ (𝑥𝑥) 𝑦𝑦𝑦 (19)
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Also any tensor ∑𝑖𝑖 𝑥𝑥
∗
𝑖𝑖 ⊗ 𝑦𝑦𝑖𝑖 ∈ 𝑋𝑋∗ ⊗ 𝑌𝑌 can be considered as

a map 𝑋𝑋 𝑋 𝑋𝑋 𝑋 𝑋𝑖𝑖 𝑥𝑥
∗
𝑖𝑖 (𝑥𝑥𝑥𝑥𝑥𝑖𝑖 ∈ 𝑌𝑌. Finally, if 𝑋𝑋 is �nitely

generated and projective, then Hom𝑅𝑅(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋 𝑋𝑋∗ ⊗ 𝑌𝑌. For
any 𝑦𝑦 𝑦𝑦𝑦 , an 𝑅𝑅-module map Ψ ∶ 𝑌𝑌 𝑌𝑌𝑌  𝑌 𝑌𝑌𝑌  𝑌𝑌 de�nes a
map

Ψ𝑦𝑦 = Ψ 󶀡󶀡𝑦𝑦 𝑦 𝑦󶀱󶀱 ∶ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑋 (20)

We de�ne a dual of Ψ∗𝑋𝑋 ∶ 𝑌𝑌 𝑌𝑌𝑌 ∗ → 𝑋𝑋∗ ⊗ 𝑌𝑌 with respect
to the 𝑋𝑋-part as Ψ∗𝑋𝑋(𝑦𝑦 𝑦𝑦𝑦 ∗) = Ψ∗

𝑦𝑦(𝑥𝑥
∗), where Ψ∗

𝑦𝑦 ∶ 𝑋𝑋
∗ →

𝑋𝑋∗ ⊗ 𝑌𝑌 is de�ned by

𝑥𝑥∗ 󶀢󶀢Ψ𝑦𝑦 (𝑥𝑥)󶀲󶀲 = 𝜓𝜓
∗
𝑦𝑦 󶀡󶀡𝑥𝑥

∗󶀱󶀱 󶀱𝑥𝑥) , ∀𝑥𝑥 𝑥𝑥𝑥𝑥  𝑥𝑥∗ ∈ 𝑋𝑋∗, 𝑦𝑦 𝑦𝑦𝑦𝑦
(21)

Similarly, one de�nes a dual Ψ∗𝑌𝑌 ∶ 𝑌𝑌∗ ⊗ 𝑋𝑋 𝑋 𝑋𝑋 𝑋𝑋𝑋 ∗ of Ψ
with respect to the 𝑌𝑌-part.

e next lemma is a standard result.

Lemma 13. Suppose that𝐶𝐶 is a �nitely generated pro�ective𝑅𝑅-
coalgebra, and (𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶

∗
𝑖𝑖 ) is a dual basis. Let𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 

𝐷𝐷 be a cosemientwining map. en 𝜓𝜓∗𝐶𝐶 ∶ 𝐷𝐷𝐷𝐷𝐷  ∗ → 𝐶𝐶∗ ⊗𝐷𝐷
is a semientwining map for the convolution algebra 𝐶𝐶∗.

Explicitly,

𝜓𝜓∗𝐶𝐶 󶀡󶀡𝑑𝑑 𝑑𝑑𝑑 ∗󶀱󶀱 = 󵠈󵠈
𝑖𝑖
𝑐𝑐∗𝑖𝑖 ⊗ 𝑐𝑐

∗ 󶀡󶀡𝑐𝑐𝛼𝛼𝑖𝑖 󶀱󶀱 𝑑𝑑𝛼𝛼. (22)

�e�nition 1� (semientwined modules and comodules). Let
𝐴𝐴 be an algebra, and let 𝑉𝑉 be a vector space. Suppose that
𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓        is a semientwining map, and𝑀𝑀 a right
𝐴𝐴module.

(1) Let ◁ ∶ 𝑀𝑀𝑀𝑀𝑀𝑀  𝑀𝑀 be a right measuring, such that
for all𝑚𝑚 𝑚𝑚𝑚 , 𝑎𝑎 𝑎𝑎𝑎 , 𝑣𝑣 𝑣𝑣𝑣 ,

𝑚𝑚𝑚𝑚𝛼𝛼 ◁ 𝑣𝑣𝛼𝛼 = (𝑚𝑚 𝑚𝑚𝑚 ) 𝑎𝑎𝑎 (23)

en𝑀𝑀 is called a (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  semientwined module.
(2) Let 𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌     , 𝑚𝑚 𝑚 𝑚𝑚(0) ⊗ 𝑚𝑚(1) be a right

comeasuring, such that for all𝑚𝑚 𝑚𝑚𝑚 , 𝑎𝑎 𝑎𝑎𝑎 ,

𝜌𝜌 (𝑚𝑚𝑚𝑚) = 𝑚𝑚(0)𝜓𝜓 󶀢󶀢𝑚𝑚(1) ⊗ 𝑎𝑎󶀲󶀲 . (24)

en𝑀𝑀 is called a (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  semientwined comodule.

Remark 15. e following are examples of semientwining
modules related to Remark 4:

(1) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 𝑉
𝐴𝐴, 𝜓𝜓 𝜓 𝜓𝜓𝑞𝑞, and the right measuring the regular action
of 𝐴𝐴 on𝑀𝑀;

(2) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 𝑉
𝐴𝐴, 𝜓𝜓 𝜓 𝜓𝜓1, and the right measuring the regular action
of 𝐴𝐴 on𝑀𝑀.

Remark 16. e following are examples of semientwining
comodules related to Remark 4:

(1) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 𝑉
𝐴𝐴, 𝜓𝜓 𝜓 𝜓𝜓1, and the right comeasuring 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    ;

(2) let𝐴𝐴 be an 𝑅𝑅-algebra, let𝑀𝑀 be a right𝐴𝐴module,𝑉𝑉 𝑉
𝐴𝐴, 𝜓𝜓 𝜓 𝜓𝜓𝑞𝑞, and the right comeasuring 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    .

�e�nition 1� (cosemientwined modules and comodules).
Let 𝐶𝐶 be a coalgebra, and let 𝑉𝑉 be a vector space. Suppose
that 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓        is a cosemientwining map, and
𝑀𝑀 a le 𝐶𝐶-comodule, with a coaction 𝐶𝐶𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌     ,
𝑚𝑚 𝑚 𝑚𝑚(−1) ⊗ 𝑚𝑚(0).

(1) Let ▷ ∶ 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉    be a le measuring, such that
for all𝑚𝑚 𝑚𝑚𝑚 , 𝑣𝑣 𝑣𝑣𝑣 ,

𝐶𝐶𝜌𝜌 (𝑣𝑣 𝑣𝑣𝑣 ) = 𝑚𝑚(−1)𝛼𝛼 ⊗ 𝑣𝑣
𝛼𝛼 ▷ 𝑚𝑚(0). (25)

en 𝑀𝑀 is called a (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  cosemientwined mod-
ule.

(2) Let 𝑉𝑉𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌     , 𝑚𝑚 𝑚 𝑚𝑚−1 ⊗ 𝑚𝑚0 be a le
comeasuring, such that for all𝑚𝑚 𝑚𝑚𝑚 ,

󶀢󶀢id𝐶𝐶 ⊗
𝑉𝑉 𝜌𝜌󶀲󶀲 ∘𝐶𝐶𝜌𝜌 (𝑚𝑚) = 𝑚𝑚0(−1)𝛼𝛼 ⊗ 𝑚𝑚−1

𝛼𝛼 ⊗ 𝑚𝑚0(0). (26)

en 𝑀𝑀 is called a (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  cosemientwined
comodule.

Note that if 𝑉𝑉 is a coalgebra, and 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓      
is an entwining map, then a semientwined module 𝑀𝑀 is an
entwined module.

e following result is standard, but we provide a partial
proof for completeness.

Lemma 18. Suppose that (𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  is an algebra factorization,
and 𝑀𝑀 is a (𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  semientwined module, such that the 𝐵𝐵
measuring is an action. en𝑀𝑀 is a right 𝐴𝐴 𝐴 𝐴𝐴-module, with
an algebra structure on𝐴𝐴𝐴𝐴𝐴 as in Lemma 5, and𝐴𝐴𝐴𝐴𝐴 action
on 𝑀𝑀 given by 𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚𝑚𝑚𝑚  𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚. Conversely, any right
𝐴𝐴 𝐴 𝐴𝐴module is a semientwined (𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 module with 𝐴𝐴 and
𝐵𝐵 actions given by 𝑚𝑚𝑚𝑚𝑚  𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝐵𝐵) and 𝑚𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝐴𝐴 ⊗ 𝑏𝑏𝑏,
respectively.

Proof. It is enough to verify that the de�nition of𝐴𝐴𝐴𝐴𝐴 action
agrees with the algebra relations, that is, that

𝑚𝑚((1 ⊗ 𝑏𝑏) (𝑎𝑎 𝑎𝑎 )) = (𝑚𝑚 (1 ⊗ 𝑏𝑏)) (𝑎𝑎 𝑎𝑎𝑎 ) . (27)

Both sides of the above equation equal 𝑚𝑚𝑚𝑚𝛼𝛼 ◁ 𝑏𝑏𝛼𝛼-le one
because of algebra relations, and the right one because𝑀𝑀 is a
(𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  semientwined module. We prove similarly the rest
of the lemma.

3. Applications

3.1. Intertwining Operators. We give a brief introduction to
the intertwining operators below.

Let𝐴𝐴 be an𝑅𝑅-algebra. Given two algebra representations,
say 𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌      and 𝜌𝜌′ ∶ 𝑉𝑉′ ⊗ 𝐴𝐴 𝐴𝐴𝐴 ′, we de�ne an
intertwining operator 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   ′ to be a linear operator,
such that 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   ′ ∘ (𝑓𝑓 𝑓 𝑓𝑓𝑓.

With this de�nition we can de�ne the category of �nite-
dimensional representations of 𝐴𝐴, in which the morphisms
are intertwining operators (see [18]).
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e following theorem provides a connection between
semientwining structures and intertwining operators.

eorem 19. Let 𝐴𝐴 be an 𝑅𝑅-algebra, let 𝐵𝐵 be an 𝑅𝑅-module,
and let 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 be a semientwining map. en,
the following statements are true:

(i) 𝐵𝐵 𝐵𝐵𝐵  is a right 𝐴𝐴-module in a trivial way, with the
right action 𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌′ ↦
𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ′.

(ii) 𝐴𝐴 𝐴𝐴𝐴  is a right 𝐴𝐴-module in the following way: 𝜌𝜌′ ∶
(𝐴𝐴 𝐴𝐴𝐴𝐴𝐴   𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴      ′ ↦ 𝑎𝑎𝑎𝑎′𝛼𝛼 ⊗𝑏𝑏

𝛼𝛼.

(iii) With the above actions, 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 is an
intertwining operator (i.e., 𝜓𝜓 satis�es the relation 𝜓𝜓 𝜓
𝜌𝜌 𝜌 𝜌𝜌′ ∘( 𝜓𝜓 𝜓 𝜓𝜓𝜓).

Proof. e proof of (i) is direct, and (ii) follows from Lemma
5(i).e relation𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓  ′ ∘(𝜓𝜓𝜓𝜓𝜓𝜓 is equivalent to the second
relation of (3).

3.2. Braided Algebras. Many algebras obtained by quantiza-
tion are commutative braided algebras, and all super-com-
mutative algebras are automatically commutative braided
algebras (see [19]).

�e�nition 2�. An algebra (𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 for which there exists a
Yang-Baxter operator𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓 such that 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓
1⊗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎            𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎          
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼     and 𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓  𝜓𝜓 𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓 𝜓
𝑏𝑏𝑏𝑏𝑏𝑏   for all 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎 𝑎𝑎 is called a braided algebra.

Moreover, if𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀         for all 𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎𝑎,
we call (𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  a commutative braided algebra or an 𝑟𝑟-
commutative algebra (see [20]).

�e�nition 2�. Given braided algebras (𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  and
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  ′), we say that 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓    is a braided algebra
morphism if it is a morphism of algebras and (𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  
𝜓𝜓′ ∘( 𝑓𝑓 𝑓 𝑓𝑓𝑓 (see [20]).

eorem 22. (i) Any algebra (𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 becomes a commuta-
tive braided algebra (𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  with 𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓  𝜓𝜓𝐴𝐴(𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
1⊗𝑎𝑎𝑎𝑎   𝑎 𝑎𝑎𝑎𝑎𝑎𝑎   𝑎 𝑎𝑎𝑎𝑎𝑎  .

(ii) If (A,M, u, 𝜓𝜓A) and (B,M, u, 𝜓𝜓B) are two braided
algebras as in (i), and f ∶ A → B is an algebra morphism,
then it is also a braided algebra morphism.

(iii) If 𝛿𝛿 𝛿 A → A is a derivation (i.e., 𝛿𝛿𝛿ab)=  𝛿𝛿𝛿a)b +
a𝛿𝛿𝛿b) and 𝛿𝛿𝛿𝛿𝛿𝛿  𝛿), then there exists a morphism of braided
algebras f ∶( A,M, u, 𝜓𝜓A)→(  A ⊕ A,m, 𝜂𝜂𝜂𝜂𝜂 A⊕A), a ↦
a ⊕ 𝛿𝛿𝛿a), where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚    ′ ⊕ 𝑏𝑏′))=(𝑎𝑎𝑎𝑎  ′) ⊕ (𝑎𝑎𝑎𝑎′ +
𝑏𝑏𝑏𝑏′) and 1A⊕A =1 A ⊕ 0A.

Proof. (i) Notice that𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓  𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 is a self-
inverse Yang-Baxter operator which was studied in [16, 21].

𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓  𝜓 𝜓 𝜓𝜓, 𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓   𝜓 𝜓 (directly)
𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓  𝜓 𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓 𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓𝜓 (from
Remark 4 (i) with 𝑞𝑞 𝑞𝑞 )
𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓  𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓   𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓  𝜓 𝜓𝜓𝜓
(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼           = (𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
(𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓   𝜓 𝜓𝜓𝜓𝜓 𝜓 𝜓 𝜓𝜓𝜓  𝜓 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓
(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼                
1−𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
1⊗𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎 𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀     

(ii) is follows from Proposition 3.1 of [15]. Also, refer
to [16].

(iii) e proof is direct and is le to the reader.

Remark 23. In the above example 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓; so, the above
algebra is “strong.” All sorts of noncommutative analogs
of manifolds are commutative braided algebras: quantum
groups, noncommutative tori, quantum vector spaces, the
Weyl and Clifford algebras, certain universal enveloping
algebras, super-manifolds, and so forth. It seems that the ones
with direct relevance to quantum theory in 4 dimensions are
“strong,” while the nonstrong ones, like quantum groups, are
primarily relevant to 2- and 3-dimensional physics (see [19]).

3.3. Liings of Functors. e semientwining structures can
be understood as liings of functors from one category to
another. is goes back as far back as [22]. is situation
is reviewed in [11]: the semientwining case is dealt with in
general in item 3.3 (which is transferred from [22]); how
this general case is translated to our situation is clear from
the discussion in item 5.8 of [11]. is is also presented
in Section 3.1 of [23], where the axioms of semientwining
structures are given by formula (3.1).

We give a general de�nition of liings of functors. 𝐹𝐹 is a
liing of 𝐺𝐺 if the following diagram commutes

𝔘

ℭ

𝔅

𝔇

𝑈

𝐹

𝐺

𝑈󳰀 (28)

where𝑈𝑈 and𝑈𝑈′ are forgetful functors.
We now present examples of liings of functors related to

semientwining structures.

eorem24. Let𝐴𝐴 be an𝑅𝑅-algebra, and let𝐵𝐵 be an𝑅𝑅-module.
e functor −⊗  𝐵𝐵 can be lied from the category of 𝑅𝑅-modules
to the category of right 𝐴𝐴-modules ⇔ there exists a 𝑅𝑅-linear
map 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 which is a semientwining map.

Proof. Assume that there exists a semientwining 𝜓𝜓 𝜓 𝜓𝜓 𝜓
𝐴𝐴 𝐴 𝐴𝐴 𝐴𝐴𝐴 , then −⊗  𝐵𝐵 lis to a functor which associates
to a right 𝐴𝐴-module𝑀𝑀 the 𝐴𝐴-module𝑀𝑀𝑀𝑀𝑀  with a right 𝐴𝐴
action given by

(𝑚𝑚 𝑚𝑚𝑚 ) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝛼𝛼 ⊗𝑏𝑏
𝛼𝛼. (29)
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It remains to check that for any right 𝐴𝐴-module function 𝑓𝑓 𝑓
𝑀𝑀 𝑀 𝑀𝑀′, the map 𝑓𝑓 𝑓 id ∶ 𝑀𝑀 𝑀 𝑀𝑀 𝑀 𝑀𝑀′ ⊗𝐵𝐵  is a right
𝐴𝐴 -module map as follows:

󶀡󶀡𝑓𝑓 𝑓 id󶀱󶀱 (𝑚𝑚 𝑚 𝑚𝑚) 𝑎𝑎 𝑎 󶀡󶀡𝑓𝑓 (𝑚𝑚) ⊗𝑏𝑏 󶀱󶀱 𝑎𝑎 𝑎 𝑎𝑎 (𝑚𝑚) 𝑎𝑎𝛼𝛼 ⊗𝑏𝑏
𝛼𝛼

= 𝑓𝑓 󶀡󶀡𝑚𝑚𝑚𝑚𝛼𝛼󶀱󶀱 ⊗𝑏𝑏
𝛼𝛼 = 󶀡󶀡𝑓𝑓 𝑓 id󶀱󶀱 ((𝑚𝑚 𝑚 𝑚𝑚) 𝑎𝑎) .

(30)

On the other hand, suppose that − ⊗𝐵𝐵  lis to a functor in
the category of right 𝐴𝐴-modules. In particular, it follows that
𝐴𝐴 𝐴𝐴𝐴  is a right 𝐴𝐴-module. De�ne the linear map

Ψ ∶𝐵𝐵𝐵𝐵𝐵   𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵  𝐵 𝐵𝐵𝛼𝛼 ⊗𝑏𝑏
𝛼𝛼 (31)

by the formula

Ψ (𝑏𝑏𝑏𝑏𝑏  ) ∶= (1 ⊗𝑏𝑏 ) 𝑎𝑎𝑎 (32)

We shall prove that this is a semientwining map. Indeed, by
de�nition we have

Ψ (𝑏𝑏𝑏𝑏  ) = 1 ⊗𝑏𝑏𝑏  (33)

Any element 𝑎𝑎 𝑎 𝑎𝑎 de�nes a right 𝐴𝐴-module map

𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  ′ ⟼ 𝑎𝑎𝑎𝑎′. (34)

It follows that for any 𝑎𝑎′ ∈ 𝐴𝐴, we have from the𝐴𝐴-linearity of
𝑓𝑓 𝑓 id as follows:

(𝑎𝑎 𝑎𝑎𝑎 ) 𝑎𝑎′ = 󶀡󶀡𝑓𝑓 (1) ⊗𝑏𝑏 󶀱󶀱 𝑎𝑎′ = 󶀡󶀡𝑓𝑓 𝑓 id󶀱󶀱 󶀱󶀱󶀱1 ⊗𝑏𝑏 ) 𝑎𝑎′󶀳󶀳

= 𝑓𝑓 󶀣󶀣𝑎𝑎′𝛼𝛼󶀳󶀳 ⊗𝑏𝑏
𝛼𝛼 = 𝑎𝑎𝑎𝑎′𝛼𝛼 ⊗𝑏𝑏

𝛼𝛼.
(35)

Hence (𝑎𝑎𝑎𝑎′)𝛼𝛼 ⊗𝑏𝑏
𝛼𝛼 = (1 ⊗𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ′) = (𝑎𝑎𝛼𝛼 ⊗𝑏𝑏

𝛼𝛼)𝑎𝑎′ = 𝑎𝑎𝛼𝛼𝑎𝑎
′
𝛽𝛽 ⊗

𝑏𝑏𝛼𝛼𝛼𝛼.

Remark 25. Let𝐴𝐴 be an𝑅𝑅-algebra, and let𝐵𝐵 be an𝑅𝑅-module.
Using our terminology (given in Remark 8) and the results
of [23], we conclude that the category of semientwining
structures over 𝐴𝐴 is isomorphic to the category of liing of
functors from the category of 𝑅𝑅-modules to the category of
right 𝐴𝐴-modules.

Remark 26. We now give a more general de�nition than that
given in Remark 8.

We de�ne the category of semientwining structures,
whose objects are triples (𝐵𝐵𝐵 𝐵𝐵𝐵 𝐵𝐵𝐵, and morphisms are pairs
(𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    ′, 𝐴𝐴′,𝜙𝜙 ′) where 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓  ′ is an
𝑅𝑅-linear map, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    ′ is an algebra morphism, and they
satisfy the relation (𝑔𝑔𝑔𝑔𝑔𝑔   𝑔 𝑔𝑔𝑔𝑔𝑔  ′ ∘ (𝑓𝑓 𝑓 𝑓𝑓𝑓.

In a dual manner, let us de�ne the category of cosemien-
twining structures, whose objects are triples (𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 , and
morphisms are pairs (𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    ′,𝐶𝐶 ′,𝜙𝜙 ′) where
𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓  ′ is an 𝑅𝑅-linear map, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔    ′ is a coalgebra
morphism, and they satisfy the relation (𝑔𝑔𝑔𝑔𝑔𝑔   𝑔 𝑔𝑔𝑔
𝜙𝜙′ ∘ (𝑓𝑓 𝑓 𝑓𝑓𝑓.

e duality functor from the category of coalgebras to
the category of algebras can be lied to a functor from the
category of cosemientwining structures to the category of
semientwining structures (by Lemma 13).

is fact is described in the following diagram:

Cosemientw str Semientwining str

𝑈 𝑈

𝑘-coalg 𝑘-alg

()∗

()∗

(36)

Remark 27. A braided coalgebra is a structure dual to
De�nition 20 (see, e.g. [24]).

e duality between �nite-dimensional algebras and
�nite-dimensional coalgebras can be lied to a duality
between the categories of �nite-dimensional-braided alge-
bras and �nite- dimensional braided coalgebras. is fact is
described in the following diagram:

f.d. braided alg f.d. braided coalg

()
f.d. 𝑘-alg f.d. 𝑘-colag

𝑈𝑈

()∗

()∗

∗

()∗

(37)

3.4. Tambara Bialgebras.

�e�nition 2� (Tambara bialgebra [25]). Let 𝐴𝐴 be a �nitely
generated and projective 𝑅𝑅-algebra (which implies that 𝐴𝐴∗ is
a coalgebra), and let 𝑎𝑎𝑖𝑖, 𝑎𝑎

∗
𝑖𝑖 , 𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖 be a dual basis of 𝐴𝐴.

Let 𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼𝐼∗ ⊗ 𝐴𝐴𝐴 be an ideal generated by elements

𝑎𝑎∗ 󶀡󶀡1𝐴𝐴󶀱󶀱 − 𝑎𝑎
∗ ⊗ 1𝐴𝐴,

𝑎𝑎∗ ⊗ 𝑎𝑎𝑎𝑎′ − 𝑎𝑎∗(1) ⊗ 𝑎𝑎 𝑎 𝑎𝑎
∗
(2) ⊗ 𝑎𝑎

′,
(38)

for all 𝑎𝑎 𝑎 𝑎𝑎, 𝑎𝑎∗ ∈ 𝐴𝐴∗. en𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  ∗ ⊗ 𝐴𝐴𝐴𝐴𝐴𝐴 is called
a Tambara bialgebra. Denoting by [𝑎𝑎∗ ⊗ 𝑎𝑎𝑎 the class of 𝑎𝑎 𝑎 𝑎𝑎∗
in𝐻𝐻𝐻𝐻𝐻𝐻, the comultiplication Δ and counit 𝜀𝜀 is given by

Δ 󶀡󶀡󶀡󶀡𝑎𝑎∗ ⊗ 𝑎𝑎󶁱󶁱󶀱󶀱 = 󶁧󶁧󵠈󵠈
𝑖𝑖
𝑎𝑎∗ ⊗ 𝑎𝑎𝑖𝑖󶁷󶁷 ⊗ 󶁡󶁡𝑎𝑎

∗
𝑖𝑖 ⊗ 𝑎𝑎󶁱󶁱 ,

𝜀𝜀 󶀡󶀡󶁡󶁡𝑎𝑎∗ ⊗ 𝑎𝑎󶁱󶁱󶁱󶁱 = 𝑎𝑎∗ (𝑎𝑎) .

(39)

𝐴𝐴 is a right𝐻𝐻𝐻𝐻𝐻𝐻-comodule algebra with coaction

𝜚𝜚 (𝑎𝑎) = 󵠈󵠈
𝑖𝑖
𝑎𝑎𝑖𝑖 ⊗ 󶁡󶁡𝑎𝑎

∗
𝑖𝑖 ⊗ 𝑎𝑎󶁱󶁱 . (40)

eorem 29 (see [25]). Suppose that 𝐴𝐴 is a �nitely generated
projective 𝑅𝑅-algebra, and 𝐵𝐵 is an 𝑅𝑅-module. en semien-
twining structures 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓        are in one-to-
one correspondence with right 𝐻𝐻𝐻𝐻𝐻𝐻-module structures on 𝐵𝐵.
Similarly, if 𝐵𝐵 is an algebra, then algebra factorizations are in
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one to one correspondence with right 𝐻𝐻𝐻𝐻𝐻𝐻-module algebra
structures on 𝐵𝐵. Finally if 𝐵𝐵 is a coalgebra, then entwining
structures𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓 are in one to one correspondence
with right𝐻𝐻𝐻𝐻𝐻𝐻-module coalgebra structures on 𝐵𝐵. Explicitly,
given right𝐻𝐻𝐻𝐻𝐻𝐻-module structure on 𝐵𝐵, we de�ne 𝜓𝜓 𝜓 𝜓𝜓𝐻𝐻𝐻𝐻𝐻𝐻
(7). Conversely, given a semientwining 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓,
we de�ne a right𝐻𝐻𝐻𝐻𝐻𝐻module action on 𝐵𝐵 by

𝑏𝑏 󶁡󶁡𝑎𝑎∗ ⊗ 𝑎𝑎󶁱󶁱 = 𝑎𝑎∗ 󶀡󶀡𝑎𝑎𝛼𝛼󶀱󶀱 𝑏𝑏
𝛼𝛼. (41)

Remark 30. Let 𝑞𝑞 𝑞 𝑞𝑞. e examples of semientwining
structures presented in Remark 4 generate the following
structures:

(1) a right𝐻𝐻𝐻𝐻𝐻𝐻module action on 𝐴𝐴 by

𝑏𝑏 󶁡󶁡𝑎𝑎∗ ⊗ 𝑎𝑎󶁱󶁱 = 𝑎𝑎∗ (1) 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏∗ (𝑏𝑏𝑏𝑏) 1𝐴𝐴 − 𝑞𝑞𝑞𝑞
∗ (𝑏𝑏) 𝑎𝑎𝑎 (42)

(2) a right𝐻𝐻𝐻𝐻𝐻𝐻module action on 𝐴𝐴 by

𝑏𝑏 󶁡󶁡𝑎𝑎∗ ⊗ 𝑎𝑎󶁱󶁱 = 𝑞𝑞𝑞𝑞∗ (𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏) 1𝐴𝐴 + 𝑞𝑞𝑞𝑞
∗ (𝑎𝑎) 𝑏𝑏𝑏 (43)

(3) a right 𝐻𝐻𝐻𝐻𝐻𝐻 module action on 𝑀𝑀, for any right 𝐴𝐴-
module𝑀𝑀, by

𝑚𝑚󶁡󶁡𝑎𝑎∗ ⊗ 𝑎𝑎󶁱󶁱 = 𝑎𝑎∗ 󶀡󶀡1𝐴𝐴󶀱󶀱𝑚𝑚𝑚𝑚𝑚 (44)

Let 𝐶𝐶 be a �nitely generated and pro�ective 𝑅𝑅 coalgebra.
Let 𝑐𝑐𝑖𝑖, 𝑐𝑐

∗
𝑖𝑖 , 𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖𝑖 be a dual basis of 𝐶𝐶. Note that

𝐻𝐻𝐻𝐻𝐻∗)cop = 𝑇𝑇𝑇𝑇𝑇∗ ⊗ 𝐶𝐶𝐶𝐶𝐶𝐶′ where 𝐼𝐼′ ⊂ 𝑇𝑇𝑇𝑇𝑇∗ ⊗ 𝐶𝐶) is an ideal
generated by elements

𝜀𝜀𝐶𝐶 (𝑐𝑐) − 𝜀𝜀𝐶𝐶 ⊗ 𝐶𝐶𝐶

𝑐𝑐∗ ∗ 𝑑𝑑∗ ⊗ 𝑐𝑐 𝑐 󶀢󶀢𝑐𝑐∗ ⊗ 𝑐𝑐(1)󶀲󶀲 ⊗ 󶀢󶀢𝑑𝑑
∗ ⊗ 𝑐𝑐(2)󶀲󶀲 ,

(45)

for all 𝑐𝑐∗, 𝑑𝑑∗ ∈ 𝐶𝐶∗, 𝑐𝑐 𝑐𝑐𝑐 , with explicit coaction and counit
given by

Δ 󶀡󶀡󶀡󶀡𝑐𝑐∗ ⊗ 𝑐𝑐󶁱󶁱󶀱󶀱 = 󶁧󶁧󵠈󵠈
𝑖𝑖
𝑐𝑐∗ ⊗ 𝑐𝑐𝑖𝑖󶁷󶁷 ⊗ 󶁡󶁡𝑐𝑐

∗
𝑖𝑖 ⊗ 𝑐𝑐󶁱󶁱 ,

𝜀𝜀 󶀡󶀡󶀡󶀡𝑐𝑐∗ ⊗ 𝑐𝑐󶁱󶁱󶀱󶀱 = 𝑐𝑐∗ (𝑐𝑐) .

(46)

eorem 31 (see [25]). Suppose that 𝐶𝐶 is a �nitely gen-
erated projective 𝑅𝑅-coalgebra, and 𝐷𝐷 is an 𝑅𝑅-module. en
cosemientwining structures 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 are
in one-to-one correspondence with right 𝐻𝐻𝐻𝐻𝐻∗)cop module
structures on 𝐷𝐷. Similarly if 𝐷𝐷 is a coalgebra, then coalgebra
factorizations are in one to one correspondence with𝐻𝐻𝐻𝐻𝐻∗)cop-
module coalgebra structures on 𝐷𝐷. Finally, if 𝐷𝐷 is an algebra,
then (right-right) entwining structures 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓 𝜓 𝜓𝜓
are in one to one correspondence with right𝐻𝐻𝐻𝐻𝐻∗)cop-module
algebra structures on 𝐷𝐷. Explicitly, given right 𝐻𝐻𝐻𝐻𝐻∗)cop-
module structures on 𝐷𝐷, we de�ne 𝜓𝜓 𝜓 𝜓𝜓𝐻𝐻𝐻𝐻𝐻

∗)cop (18).
Conversely, given a cosemientwining 𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓𝜓𝜓𝜓, we
de�ne a right𝐻𝐻𝐻𝐻𝐻∗)cop-module structures on𝐷𝐷 by

𝑑𝑑 󶁡󶁡𝑐𝑐∗ ⊗ 𝑐𝑐󶁱󶁱 = 𝑐𝑐∗ 󶀡󶀡𝑑𝑑𝛼𝛼󶀱󶀱 𝑐𝑐
𝛼𝛼. (47)

3.5. Yang-Baxter Systems. From now on we work over a �eld
𝕂𝕂. It is convenient to introduce the constant Yang-Baxter
commutator of the linear maps 𝑅𝑅𝑅  𝑅𝑅 𝑅 𝑅𝑅′ →𝑉𝑉𝑉𝑉𝑉   ′, 𝑆𝑆 𝑆
𝑉𝑉𝑉𝑉𝑉  ′′ →𝑉𝑉𝑉𝑉𝑉   ′′, 𝑇𝑇 𝑇𝑇𝑇 ′ ⊗𝑉𝑉 ′′ →𝑉𝑉 ′ ⊗𝑉𝑉 ′′ by

[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  ] ∶=𝑅𝑅 12𝑆𝑆13𝑇𝑇23 − 𝑇𝑇23𝑆𝑆13𝑅𝑅12. (48)

In this notation, the quantum Yang-Baxter equation reads
[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    𝑅.

�e�nition 3� (Yang-Baxter systems of type I). A system of
linear maps of vector spaces 𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊        𝑊𝑊 𝑊
𝑉𝑉′ ⊗𝑉𝑉′ →𝑉𝑉 ′ ⊗𝑉𝑉′, 𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋 ′ →𝑉𝑉𝑉𝑉𝑉 ′ is called a𝑊𝑊𝑊𝑊𝑊𝑊
system (or a Yang-Baxter system of type I) if

[𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊] =0,  [𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊] =0,  (49)

[𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 ] =0,  [𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋] =0 . (50)

A system of linear maps𝑊𝑊,𝑋𝑋 satisfying (49) is called a semi
Yang-Baxter system. One can associate a 𝑊𝑊𝑊𝑊𝑊𝑊 system to a
semi Yang-Baxter system by setting 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍    .

Remark 33. From a Yang-Baxter system of type I, one can
construct a Yang-Baxter operator on (𝑉𝑉 𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉   𝑉 𝑉𝑉𝑉,
provided that the map𝑋𝑋 is invertible (see [6]).

Let 𝐴𝐴 be an algebra, and the map

𝑊𝑊 𝑊𝑊𝑊 𝐴𝐴𝑟𝑟𝑟𝑟𝑟 ∶𝐴𝐴𝐴𝐴𝐴   𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎   𝑎𝑎𝑎
(51)

for some arbitrary 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    (see [15]). en, [𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  .
e following is an enhanced version of eorem 2.3 of

[6].

eorem 34 (see [6]). Let 𝐴𝐴 be an algebra, let 𝐵𝐵 be a vector
space, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝     .

Let W = RA
r,s, and let X ∶ A ⊗ B → A ⊗ B be a linear map,

such that X(1A ⊗ b)=  1A ⊗ b, for all b ∈ B.

(i) en W,X is a semi Yang-Baxter system if and only if
𝜓𝜓 𝜓 X ∘ 𝜏𝜏B,A is a semientwining map.

(ii) Similarly, if B is an algebra, Z = RB
p,q, and X(a ⊗

1B)=  a ⊗ 1B, for all a ∈ A, then W,X,Z is a Yang-
Baxter system of type I if and only if 𝜓𝜓 is an algebra
factorization.

�e�nition 35 (Yang-Baxter systems of type II). A system of
linear maps of vector spaces𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸 𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸     is
called a Yang-Baxter system of type II if

[𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸] =0,  [𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻] =0,

[𝔸𝔸𝔸𝔸𝔸𝔸] =0,  [𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻 ] =0,

󶁡󶁡𝔸𝔸𝔸𝔸𝔸+,𝔹𝔹 +󶁱󶁱 =0,  󶁡󶁡𝔻𝔻𝔻𝔻+,ℂ +󶁱󶁱 =0,

󶁡󶁡𝔸𝔸𝔸𝔸𝔸𝔸𝔸+󶁱󶁱 =0,  󶁡󶁡𝔻𝔻𝔻𝔻𝔻𝔻𝔻+󶁱󶁱 =0,

(52)

where𝑋𝑋+ = 𝜏𝜏𝜏𝜏𝜏𝜏 (and 𝜏𝜏 is the twist map).
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Remark 36. Yang-Baxter systems of type II are related to the
algebras considered in [4], which include (algebras of func-
tions on) quantum groups, quantum super-groups, braided
groups, quantized braided groups, re�ection algebras, and
others.

e following theorems present solutions for the Yang-
Baxter systems.

eorem 37 (see [9]). Let 𝐴𝐴 be a commutative algebra, and
𝜆𝜆𝜆 𝜆𝜆′ ∈ 𝕂𝕂. en,𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸 𝔸 𝔸𝔸 𝔸 𝔸𝔸 𝔸 𝔸𝔸 𝔸 𝔸𝔸,𝔸𝔸𝔸𝔸𝔸 𝔸 𝔸𝔸𝔸 𝔸
𝜆𝜆𝜆 𝜆𝜆𝜆𝜆𝜆  𝜆 𝜆𝜆𝜆𝜆𝜆  𝜆 𝜆 𝜆𝜆𝜆𝜆𝜆  , 𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹𝔹          
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎       and𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻𝔻    ′1⊗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎           is
a Yang-Baxter system of type II.

eorem 38. Let𝑊𝑊 𝑊𝑊𝑊 , 𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋    𝑋𝑋 𝑋𝑋𝑋  in the above
theorem. It turns out that𝑊𝑊,𝑋𝑋,𝑍𝑍 is also a Yang-Baxter system
of type I.

Proof. First, let us observe that the result holds even for 𝐴𝐴 a
noncommutative algebra. One way to prove the theorem is by
direct computations.

Alternatively, one can observe that

𝜓𝜓 (𝑎𝑎𝑎𝑎𝑎  ) =1⊗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎            (53)

is an algebra factorization, and apply Remark 2.4 of [6].
Also, refer to eorem 5.2 of [8].

Remark 39. One can combine the proof of the eorem 38
with Remark 2.4 and Proposition 2.9 of [6] to obtain a large
class of Yang-Baxter operators de�ned on 𝑉𝑉 𝑉 𝑉𝑉, where 𝑉𝑉 𝑉
𝐴𝐴 𝐴 𝐴𝐴. See also Remark 33.

eorem 40. Let A be an algebra; p, q, s, r ∈ 𝕂𝕂; 𝜓𝜓𝜓 𝜓𝜓′ ∶ A ⊗
A → A ⊗ A semientwining maps; 𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸 𝔸 A ⊗ A →
A⊗A, 𝔸𝔸 𝔸 RA

r,s,𝔹𝔹𝔹𝔹𝔹  𝔹𝔹𝔹,ℂ=  𝜓𝜓′∘𝜏𝜏,𝔻𝔻𝔻  RA
p,q. If𝜓𝜓

′ =𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏 ,
then𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸𝔸 is a Yang-Baxter system of type II.

Proof. Use eorem 34 (i) to check the �rst-four equations.
en, observe that 𝔹𝔹𝔹𝔹  + ⇔ 𝜓𝜓′ =𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏     . e last-four
equations then follow.

eorem 41. Let A be an algebra, and 𝜓𝜓 𝜓 A ⊗ A → A ⊗ A a
semientwining map.

en, there exists a semientwining map 𝜓𝜓′ ∶ A ⊗ A →
A ⊗ A, such that 𝜓𝜓′ =𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏      if and only if 𝜓𝜓, viewed as
𝜓𝜓 𝜓 Aop ⊗ A → A ⊗ Aop, is an algebra factorization.

Proof. Assume that there exists a semientwining map 𝜓𝜓′ =
𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏    . Denote 𝜓𝜓′(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    𝛼𝛼′ ⊗𝑎𝑎

𝛼𝛼𝛼, for all 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   , that is,
𝑎𝑎𝛼𝛼 ⊗𝑏𝑏

𝛼𝛼 =𝑎𝑎 𝛼𝛼𝛼 ⊗𝑏𝑏 𝛼𝛼𝛼. Also denote by ⋅op the multiplication in
𝐴𝐴op, that is, for all 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   , 𝑎𝑎𝑎op𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏. en we must check
conditions (4). For all 𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎 𝑎𝑎𝑎 ,

𝜓𝜓 󶀡󶀡1𝐴𝐴op ⊗𝑐𝑐 󶀱󶀱 =𝜏𝜏𝜏𝜏𝜏   ′ ∘𝜏𝜏  󶀡󶀡1𝐴𝐴op ⊗𝑐𝑐 󶀱󶀱

=𝜏𝜏𝜏𝜏𝜏   ′ 󶀡󶀡𝑐𝑐𝑐𝑐  𝐴𝐴op󶀱󶀱 =𝑐𝑐𝑐𝑐   𝐴𝐴op ,

𝜓𝜓 󶀢󶀢𝑎𝑎𝑎op𝑏𝑏𝑏𝑏𝑏  󶀲󶀲 =𝜏𝜏𝜏𝜏𝜏   ′ ∘𝜏𝜏  (𝑏𝑏𝑏𝑏𝑏𝑏𝑏  )

=𝜏𝜏𝜏𝜏𝜏   ′ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ) =𝜏𝜏  󶀤󶀤𝑏𝑏𝛼𝛼′𝑎𝑎𝛽𝛽′ ⊗𝑐𝑐
𝛼𝛼′𝛽𝛽′󶀴󶀴

=𝑐𝑐 𝛼𝛼
′𝛽𝛽′ ⊗𝑎𝑎 𝛽𝛽′ ⋅ op𝑏𝑏𝛼𝛼′ =𝑐𝑐 𝛼𝛼𝛼𝛼 ⊗𝑎𝑎

𝛽𝛽⋅ op𝑏𝑏
𝛼𝛼.

(54)

Similarly one can prove the converse.

Remark 42 (example of algebra factorization foreorem 41).
We consider the algebra𝐴𝐴 𝐴 𝐴𝐴op = 𝕂𝕂𝕂𝕂𝕂𝕂𝕂𝕂𝕂𝕂2 − 𝑝𝑝𝑝, where 𝑝𝑝
is a scalar.en𝐴𝐴 has the basis {1, 𝑥𝑥𝑥, where 𝑥𝑥 is the image of
𝑋𝑋 in the factor ring, so 𝑥𝑥2 = 𝑝𝑝.

If 𝑞𝑞 is a scalar, then 𝜓𝜓 𝜓𝜓𝜓  op ⊗ 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴 op , de�ned as
follows

𝜓𝜓 (1⊗1  ) =1⊗1,  

𝜓𝜓 (1⊗  𝑥𝑥) = 𝑥𝑥 𝑥𝑥𝑥

𝜓𝜓 (𝑥𝑥 𝑥𝑥 ) =1⊗   𝑥𝑥𝑥

𝜓𝜓 (𝑥𝑥 𝑥 𝑥𝑥) = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞     

(55)

is an algebra factorization.
Notice that if 𝑞𝑞 𝑞𝑞𝑞𝑞 , then 𝜓𝜓 is the same algebra

factorization with (53).

eorem 43. Let 𝐴𝐴 be an algebra, let 𝐵𝐵 and 𝑀𝑀 be vector
spaces, 𝑧𝑧 𝑧𝑧𝑧𝑧  𝑧𝑧 𝑧 𝑧𝑧, 𝜓𝜓 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓        a semientwining,
and let𝑀𝑀 be an (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   semientwined module with the right
measuring 𝜙𝜙. We consider the maps as follows:

X = 𝜓𝜓 𝜓𝜓𝜓 B,A ∶ B ⊗ A ⟶ B ⊗ A,

𝜂𝜂 𝜂 M ⊗ A ⟶ M ⊗ A, m ⊗ a ⟼ ma ⊗1 A,

𝜁𝜁 𝜁 M ⊗ B ⟶ M ⊗ B, m ⊗ b ⟼𝜙𝜙(m ⊗ b) ⊗ z.

(56)

en, the following equation holds

󶁡󶁡𝜁𝜁𝜁𝜁𝜁𝜁 X󶁱󶁱 =0 . (57)

Proof. e proof follows by direct computations.

Remark 44. e relation [𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜁    from the above
theorem is related to Section 3.6 of [23].

References

[1] M. Marcolli and D. Parashar, Quantum Groups and Noncom-
mutative Spaces, Vieweg-Tuebner, 2010.

[2] T. Brzeziński and S. Majid, “Coalgebra bundles,” Communica-
tions inMathematical Physics, vol. 191, no. 2, pp. 467–492, 1998.

[3] J. Beck, “Distributive laws,” in Seminar on Triples and Cate-
gorical Homology eory, B. Eckmann, Ed., vol. 80 of Springer
Lecture Notes in Mathematics, pp. 119–140, Springer, Berlin,
Germany, 1969.

[4] L. Hlavatý, “Algebraic framework for quantization of nonul-
tralocal models,” Journal of Mathematical Physics, vol. 36, no.
9, pp. 4882–4897, 1995.



ISRN Algebra 9

[5] L. Hlavaty and L. Snobl, “Solution of a Yang-Baxter system,”
http://arxiv.org/abs/math/9811016.

[6] T. Brzeziński and F. F. Nichita, “Yang-Baxter systems and
entwining structures,” Communications in Algebra, vol. 33, no.
4, pp. 1083–1093, 2005.

[7] B. R. Berceanu, F. F. Nichita, and C. Popescu, “Algebra
structures arising from Yang-Baxter systems,” http://arxiv
.org/abs/1005.0989.

[8] F. F. Nichita and D. Parashar, “Spectral-parameter dependent
Yang-Baxter operators and Yang-Baxter systems from algebra
structures,” Communications in Algebra, vol. 34, no. 8, pp.
2713–2726, 2006.

[9] F. F. Nichita and D. Parashar, “New constructions of Yang-
Baxter systems,” AMS Contemporary Mathematics, vol. 442, pp.
193–200, 2007.

[10] F. F. Nichita and C. Popescu, “Entwined bicomplexes,” Bulletin
Mathématique de la Société des Sciences Mathématiques de
Roumanie, vol. 52, no. 2, pp. 161–176, 2009.

[11] R. Wisbauer, “Algebras versus coalgebras,” Applied Categorical
Structures, vol. 16, no. 1-2, pp. 255–295, 2008.

[12] S. Caenepeel and K. Janssen, “Partial entwining structures,”
Communications in Algebra, vol. 36, no. 8, pp. 2923–2946, 2008.

[13] P. Schauenburg, “Doi-KoppinenHopfmodules versus entwined
modules,”NewYork Journal ofMathematics, vol. 6, pp. 325–329,
2000.

[14] T. Brzeziński, “Deformation of algebra factorisations,” Commu-
nications in Algebra, vol. 29, no. 2, pp. 737–748, 2001.

[15] S. Dăscălescu and F. Nichita, “Yang-Baxter operators arising
from (co)algebra structures,” Communications in Algebra, vol.
27, no. 12, pp. 5833–5845, 1999.

[16] F. F. Nichita, Non-Linear Equations, Quantum Groups and
Duality eorems: A Primer on the Yang-Baxter Equation,
VDM, 2009.

[17] J. López Peña, F. Panaite, and F. Van Oystaeyen, “General
twisting of algebras,” Advances in Mathematics, vol. 212, no. 1,
pp. 315–337, 2007.

[18] J. C. Baez and A. Lauda, “A prehistory of n-categorical physics,”
in Deep Beauty: Understanding the Quantum World rough
Mathematical Innovation, H. Halvorson, Ed., pp. 13–128, Cam-
bridge University Press, Cambridge, UK, 2011.

[19] J. C. Baez, “Braids and Quantization,” http://math.ucr
.edu/home/baez/braids.

[20] J. C. Baez, “𝑅𝑅-commutative geometry and quantization of
Poisson algebras,” Advances in Mathematics, vol. 95, no. 1, pp.
61–91, 1992.

[21] F.Nichita, “Self-inverse Yang-Baxter operators from (co)algebra
structures,” Journal of Algebra, vol. 218, no. 2, pp. 738–759, 1999.

[22] P. T. Johnstone, “Adjoint liing theorems for categories of
algebras,”e Bulletin of the London Mathematical Society, vol.
7, no. 3, pp. 294–297, 1975.

[23] R. Wisbauer, “Liing theorems for tensor functors on module
categories,” Journal of Algebra and its Applications, vol. 10, no.
1, pp. 129–155, 2011.

[24] M.Gerhold, S. Kietzmann, and S. Lachs, “Additive deformations
of Braided Hopf algebras,” Banach Center Publications, vol. 96,
pp. 175–191, 2011.

[25] D. Tambara, “e coendomorphism bialgebra of an algebra,”
Journal of the Faculty of Science, vol. 37, no. 2, pp. 425–456, 1990.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


