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We present a staggered approach for the solution of the piston fluid-structure problem in a time-
dependent domain. The one-dimensional fluid flow is modelled using the nonlinear Euler equa-
tions. We investigate the time marching fluid-structure interaction and integrate the fluid and
structure equations alternately using separate solvers. The Euler equations are written in moving
mesh coordinates using the arbitrary Lagrangian-Eulerian (ALE) approach and discretised in
space using the finite element method while the structure is integrated in time using an implicit
finite difference Newmark-Wilson scheme. The influence of the time lag is studied by comparing
two different structural predictors.

1. Introduction

Multiphysics problems involving a coupling between two or more different interacting
physical phenomena encountered in engineering include fluid-structure interactions in
aerodynamics, vibroaeroacoustic problems, the modeling of solidification and melting pro-
cesses, and soft tissue mechanics, see Soulaı̈mani et al. [1]. These problems are particularly
challenging to solve since the coupling calls for the use of different solvers in different parts of
the solution domain, andwith different mesh requirements thereby increasing the complexity
of the computational effort. The problem of fluid-structure interaction (FSI)where fluid flow
induces forces and thermal fluxes on a solid structure is well studied in the literature. The
motion of the two phases modifies not only the fluid domain but also the velocities and the
temperature fields at the fluid-structure interface. There are several practical and challenging
examples of FSI, including, for instance, the interaction between the sail of a boat or a plane
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and the surrounding aerodynamic flow, the interaction between a bridge and the wind, and
the interaction between vessels and blood flow (Guruswamy [2] and Lefrançois and Boufflet
[3]).

The two approaches that are commonly used to solve FSI problems are the staggered
approach (see, e.g., Farhat et al. [4] and Farhat and Lesoinne [5]), where a separate physics
solver is used for each sub-domain, and the monolithic approach (Blom [6]), where the fluid
and structure are integrated in time as a single system. The staggered approach is the most
widely used of the two and was used, for example, by Farhat [7] to study the panel flutter.
Test cases were studied by Farhat and Lin [8], Blom and Leyland [9], Piperno [10, 11],
Prananta [12, 13] and Rausch et al. [14]. Blom and Leyland [15] and Piperno [10] studied the
flutter of airfoils using this method.

In this paper the staggered methodis applied to the piston problem where the fluid
domain is separated from a solid domain by a moving surface. The piston problem has
previously been the subject of several studies. It was studied, for example, by Blom [6] and
by Piperno [10, 16] in his investigation of subcycling techniques on coupling algorithms.

Other studies of the piston problem include Fazio and Leveque [17] who developed
a one-dimensional moving mesh method for the hyperbolic system of conservation laws
based on a high-resolution finite-volumewave propagationmethod, whichwas implemented
using the CLAWPACK software package. They solved the modified system of hyperbolic
conservation laws on a fixed uniform computational grid, with a grid mapping function
computed simultaneously in such a way that in the physical space certain features are tracked
by cell interfaces. The scheme was tested on, among other test problems, a moving piston
whose motion was tracked by the moving mesh. Chertock and Kurganov [18] extended the
interface tracking method and developed a simple Eulerian finite-volume method for com-
pressible fluid in domains with moving boundaries. The scheme was tested on the same
piston problem taken from Fazio and Leveque [17]. Borsche et al. [19] considered a general
system of conservation laws coupled with a system of ordinary differential equations. One
of the test problems they considered is the classical piston problem. They assumed the flow
to be isentropic and described the system by using the Lagrangian formulation. For the fluid
solver they used a local Lax-Friedrichs scheme while using an explicit Euler method for the
structure. The coupling was done after each time step.

Bendiksen [20] used a coupling algorithm in the Runge-Kutta scheme where the
interaction was also at intermediate levels. Prananta and Hounjet [21] used structural as well
as aerodynamical predictors in the algorithm. Van Zuijlen and Bijl [22] investigated the com-
putational efficiency of higher-order partitioned implicit explicit (IMEX) schemes by com-
paring them with the monolithic second-order BDF scheme. They integrated both the fluid
and the structure by the explicit singly diagonal implicit Runge-Kutta (ESDIRK) scheme.

The staggered approach, however, has its limitations, and it was shown in [23] that
using high-order implicit schemes is not sufficient because, as the fluid and the structure
domains are advanced in time successively, there will always be lags between the fluid and
the solid phase solutions. Recently, it was introduced and advocated the staggered schemes
using structural predictor [24]. The prediction techniques can reduce considerably the order
of the energy conservation errors [25]. However, choosing a predictor is not always a straight-
forward prospect since some predictors are designed to work in combination with specific
time integration methods to achieve stable schemes [24, 25]. Blom [6] used a staggered
scheme with a structure predictor for linear acoustic equations. He used the zero- and first-
order predictors for the structural velocity in order to compare their performance. To integrate
the structure he used the Newmark method, and to integrate the fluid modelled by acoustic
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Figure 1: A gas enclosed in a chamber with a moving piston.

equations he used the finite volume method. The results showed that, for linear acoustic
simulations, the first-order predictor performed better than the zero-order predictor.

In order to gain an understanding of the structure predictors we take, in this paper the
zeroth- and first-order structure predictors are used for nonlinear Euler equations. The perfor-
mance of the two structure predictors is compared. In order to combine the predictors with
the time integration scheme for the structure, we use the Newmark method as a structural
solver and the arbitrary Lagrangian Euler (ALE) formulation for the Euler equations com-
bined with the finite element method on a dynamic mesh.

2. The Piston Problem

We consider a gas contained in a one-dimensional chamber, closed on its right side by a
moving piston and on its left by a fixed wall. The configuration is depicted in Figure 1. The
piston has a massm and is attached to an external fixed point with a linear spring stiffness k.
The spring is characterized by three different lengths, namely, the unstretched length Ls0, the
length at rest under pressure Lse, and the length Ls(t) at any given time during the interaction
process.

The displacement, velocity, and acceleration of the piston are given, respectively, by
q(t), q̇(t), and q̈(t)with regard to its position at rest.

For the movement of the piston we use the undamped differential equation of motion
with one degree of freedom, namely, the classical mass-spring system

mq̈(t) + kq(t) = A
(
p
(
x = L0 + q(t)

)
− p0
)
, (2.1)

complemented by initial conditions

q(0) = q0, q̇(0) = 0, (2.2)

whereA is the piston cross-section, p(x = L0 +q(t)) is the fluid pressure applied to the piston,
and p0 is the atmospheric pressure.
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2.1. Modeling the Fluid Phase

The fluid phase ismodelled using the inviscid compressible Euler equations. The fluidmotion
is assumed to vary only in the x-direction and is described by the one-dimensional nonlinear
Euler equations

∂

∂t

⎧
⎨

⎩

ρ
ρu
ρE

⎫
⎬

⎭
+

∂

∂x

⎧
⎨

⎩

ρu
ρu2 + p

u
(
ρE + p

)

⎫
⎬

⎭
= 0, ∀x ∈ [0, L], t ≥ 0, (2.3)

where ρ, u, E and p denote the density, velocity, total energy, and pressure, respectively. The
equations are closed by the equation of state for a perfect gas:

p =
(
γ − 1

)
(
ρE − 1

2
ρu2
)
, (2.4)

where γ is the ratio of the specific heat. These three equations correspond to the conservation
laws of mass, momentum, and total energy, respectively, and are usually combined in a
vectorial form such as

∂

∂t
U +

∂

∂x
F = 0, where U =

⎧
⎨

⎩

ρ
ρu
ρE

⎫
⎬

⎭
, F =

⎧
⎨

⎩

ρu
ρu2 + p

u
(
ρE + p

)

⎫
⎬

⎭
. (2.5)

The flux F(Q) of any quantityQ (e.g., mass, momentum, and energy) is defined as the
quantity flowing through a section S per unit time. For a fixed section, it is regarded as the
local fluid velocity:

F(Q) =
∫

S

Q�u · �ndS, (2.6)

where �n defines the orientation vector of the section (along the x-axis in this case).
The boundary delimiting the fluid domain moves in time, and it is necessary to solve

the flow problem on a dynamic mesh [9, 15, 26]. A popular formulation for solving flow
problems on dynamic meshes is the arbitrary Lagrangian Euler (ALE) [26] method. In this
approach, the numerical scheme for solving the flow equations on moving grids typically
incurs the computation of some geometric quantities involving the grid positions and velo-
cities. The evaluation of these quantities as well as the time integration of fluxes on moving
grids is accomplished using the discrete geometric conservation law (DGCL) [26]. We use
the finite element method to discretize the one-dimensional flow in space. This involves
computing the solution at discrete nodes within the fluid domain, such that two successive
nodes form a finite element. The calculation mesh is shown in Figure 2.

Since the fluid has a moving boundary, a node attached to a movable boundary, such
as the piston at x = L(t), must follow it [3, 6, 22]. In order to prevent nodes impinging or
traversing, interior nodes must be moved, except for the node attached to the fixed boundary
located at x = 0, [3]. However, since (2.3) is not valid for moving nodes, it is necessary to
rewrite these equations such that the flow term Fi takes into account the motion of the nodes.
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Figure 2: Discretization of the one-dimensional flow.
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Figure 3: Moving physical space x(t) representation.

We then consider that any point of the fluid domain is movable with a given velocity ωx,
[6, 22]. This concept of moving coordinates is illustrated in Figure 3, where we consider a
mesh composed of five nodes located at regular intervals along the domain and indexed
from 1 to 5. Here, the bullet symbol (•) depicts the position at time tn and a circle symbol (◦)
depicts the position at time tn+1.

It is essential to be able to move nodes in order to avoid the traversing node effect,
visible in Figure 3 between nodes 4 and 5 wherein if nodes 4 and 5 are fixed, then they will
be outside the problem domain at time tn+1.

2.2. Arbitrary Lagrangian-Euler (ALE) Formulation

A combination of the Eulerian and Lagrangian fluid flow formulations, the arbitrary
Lagrangian-Euler (ALE) formulation, is often preferred for general cases of fluid flow,
[3, 6, 22, 27]. Correctly calculating the flow passing through amoving section is vital to ensure
the conservation of fluid properties. For a sectionmovingwith velocityωx, the flow rate given
by (2.6) is corrected as

F̃(Q) =
∫

S

Q(�u − �ωx) · �ndS, (2.7)

to take into account the section motion. Applying the same corrective strategy, the con-
servative form of (2.5) may be written in arbitrary Lagrangian-Eulerian (ALE) form as

∂

∂t
(JUi) + J

∂

∂x
(Fi −ωxUi) = 0 for i = 1, 2, 3, (2.8)
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where F̃ = (Fi − ωxUi) is the corrected flow with respect to the moving space coordinate,
ωx(x, t) defines the ALE grid velocity, and J(x, t) denotes the Jacobian of the frame transfor-
mation x(t) → ξ, where the substitution rule between x(t) and ξ is defined by

J(x, t) =
dx(ξ, t)
dξ

,

∫

x(t)
f(x, t)dx =

∫

ξ

f(x(ξ, t), t)J dξ. (2.9)

The integration is performed on the fixed space ξ ∈ [0,L0]. The boundary conditions for
this coupled structure problem are given by a zero-flow condition at x = 0 and by ensuring
kinematic compatibility between the fluid flow and piston velocity at x = L(t), that is,

u(0, t) = 0, u(L(t), t) = q̇(t) for t ≥ 0. (2.10)

3. Numerical Schemes

In this section we describe the numerical schemes for the structure and for the fluid flow.

3.1. Structure Solver

We apply an implicit finite difference Newmark-Wilson scheme for time integration of (2.1).
Further information about this method can be found in [3, 6, 28]. This scheme is based on the
time series expansion of q and q̇;

qn+1 = qn + Δtq̇n +
Δt2

4

(
q̈n + q̈n+1

)
, q̇n+1 = q̇n +

Δt
2

(
q̈n + q̈n+1

)
, (3.1)

where n and n+1 correspond to times t and t+Δt, respectively, andΔt is the time step between
two successive solutions. From the first relation in (3.1)we have that

q̈n+1 =
4

Δt2
Δq − 4

Δt
q̇n − q̈n, (3.2)

where the variation between two successive times, Δq = qn+1 − qn, is obtained by substituting
(3.1) and (3.2) into (2.1). The variables are updated at time tn+1:

Δq =
1

4m + kΔt2
[
AΔt2

(
pn − p0

)
+m
(
4Δtq̇n + Δt2q̈n+1

)
−Δt2kqn

]
. (3.3)

This relation allows the new piston position, qn+1, to be computed from qn, q̇n, and q̈n. Thus,
the structural position is updated according to

qn+1 = qn + Δq, (3.4)

and the velocity q̇n+1 and acceleration q̈n+1 are updated according to (3.1) and (3.2), respec-
tively. For the first step q1 of (3.4) the initial conditions are q(0) = q0, q̇(0) = q̇0, and q̈(0) = q̈0.
The first two initial conditions are given in (2.1), and it is easy to show, also from (2.1), that

q̈0 =
1
m

(
−kq0 +A

(
p(0) − p0

))
, (3.5)
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where p(0) is the uniform pressure in the chamber resulting from an adiabatic variation
entailed by the initial change in the piston position q0.

3.2. Fluid Solver

We apply the finite element method [29] for the spatial discretization and a Lax-Wendroff
scheme for the temporal resolution. The finite element method requires a variational form of
(2.8),

∫L0

0

[
∂(JUi)
∂t

+ J
∂F̃i
∂x

]

ψ(ξ)dξ = 0, for i = 1, 2, 3, (3.6)

where ψ(ξ) is any test function of class C1. Equation (3.6)may be written as

∫L0

0
ψ
∂(JUi)
∂t

dξ +
∫L0

0
J
∂

∂x
F̃iψ dξ = 0. (3.7)

In the above equation, the temporary derivative is evaluated at constant ξ. Switching back to
the time-varying elements, (3.7) can be written as

∫L(t)

0
ψ
∂Ui

∂t
dx +

∫L(t)

0

∂

∂x
F̃iψ dx = 0. (3.8)

Integrating by parts the last term yields

∫L(t)

0
ψ
∂Ui

∂t
dx −

∫L(t)

0

∂ψ

∂x
F̃idx +

[
ψF̃i
]L(t)

0
= 0. (3.9)

Finally, switching back again to constant ξ ∈ [0,L0], we have

∫L0

0
ψ
∂JUi

∂t
dξ −

∫L0

0

∂ψ

∂ξ
F̃idξ +

[
ψF̃i
]L0

0
= 0. (3.10)

The time integration between tn and tn+1 gives

∫L0

0
ψ(JUi)n+1dξ −

∫L0

0
(JU)ndξ −Δt

(∫L0

0

∂ψ

∂ξ
F̃n+1/2i dξ +

[
ψF̃n+1/2i

]L0

0

)

= 0. (3.11)

The spatial discretization of the finite elements of themesh followed by an assembling process
gives

[M]n+1{Ui}n+1 − [M]n{Ui}(n) −Δ{Ri}n+1/2 = {0}, for i = 1, 2, 3, (3.12)
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where {Ui} is the (N × 1) global vector of unknowns of the ith equation in (2.8), [M]n and
[M]n+1 are the global mass matrices at times tn+1 and tn, respectively, and {Ri}n+(1/2) is an
(N × 1) global residual vector calculated at the halfway time step. Equation (3.12) is a system
of equations to be solved at each time step. For numerical approximation of the flux, the
explicit two-stage Lax-Wendroff procedure [30]

F̃LW2
i+1/2 = F̃

(
ULW
i+1/2

)
, (3.13)

where the stateULW
i+1/2 is computed from

ULW
i+1/2 =

1
2
(
Un
i+1 +U

n
i

)
+
1
2
Δt
Δx

(
F̃
(
Un
i

)
− F̃
(
Un
i+1

))
, (3.14)

is applied to solve the system (3.12) for each new time step tn+1. The temporal stability criteria
are given by the Courant-Friedrichs-Lewy (CFL) condition as

Δt = CFL ×min
(

Le

|u + c0 +wx|

)
, with CFL < 1, (3.15)

where c0 =
√
γRT is the local speed of sound. The Courant-Fredrichs-Lewy (CFL) condition

ensues convergence of the finite element method.

3.2.1. Fluid Mesh Deformation Technique

In order to ensure kinematic compatibility between the fluid domain and the piston position
and to prevent traversing by fluid nodes near the piston, fluid mesh deformation at each time
step is necessary. Therefore, the mesh velocity is calculated by a linear interpolation of the left
(0) and the right-hand V ∗ velocities. The mesh nodes and mesh velocities for j = 1, . . . ,N are
calculated from

ωxj
n =

j − 1
N − 1

V ∗, xj
n+1 = xjn + Δtωxj

n, (3.16)

where V ∗ is the piston velocity computed by the structure solver [6]. The boundary velocity
in the fluid solver is calculated from (see Blom [6])

V ∗ =
1
2

(
q̇n+1 + q̇n

)
. (3.17)

4. Fluid-Structure Coupling: The Staggered Algorithm

The scheme chosen to couple the fluid and the structure is the staggered algorithm as des-
cribed in Section 1. The staggered algorithm is applied with a structure predictor. At time
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t = tn the state of the fluid, structure, and mesh are known. The next steps are taken to
integrate the fluid-structure system from tn to tn+1, and we proceed as follows (see [3, 6]).

(1) Predict the state of the structure at the end of the current time step (t = tn+1). Here
two different predictions are applied to the problem.

(2) Integrate the fluid to the next time level using the predicted state of the structure.
The fluid is spatially discretized by the finite elementmethod and integrated in time
using the explicit two-stage Lax-Wendroff scheme.

(3) Update the structure to the next time level using the fluid pressures on the bound-
ary. The structure is updated by the scheme described in Section 3.1.

The most important part of this algorithm is the prediction of the structural state at the end of
the current time step t = tn+1 [23]. The velocity in a time step must correspond to the distance
covered by the same time step [6]. The structural velocity is linear in time for the constant
average acceleration method. The distance covered is calculated using the trapezoidal inte-
gration of the velocity.

4.1. Prediction

To predict the state of the structure at the end of the current time t = tn+1 different predictors
are applied to the problem: prediction 1 that is given by the zero-order prediction

{
q̇n+1
}
=
{
q̇n
}

(4.1)

and prediction 2 given by a first-order prediction

{
q̇n+1
}
=
{
q̇n
}
+ Δt

{
q̈n
}
. (4.2)

The velocity q̇n+1 in (3.17) is calculated using the structural prediction (4.1) or (4.2). In the
literature the performance of these predictors has been investigated for linear acoustic equa-
tions. In this paper we investigate their performance when nonlinear Euler equations are
considered.

5. Results and Discussion

In Blom [6] the fluid domain was discretised in space by the finite volume method and
integrated in time using an implicit upwind scheme. It is found that in the case of the
acoustic equations, the predictor 2 algorithm given by (4.2) performed better than the predic-
tion 1 algorithm given by (4.1). We compared the performance of these two predictors by
discretizing the fluid domain using the finite element method and by integrating in time
using the explicit two-stage Lax-Wendroff procedure.

The numerical values for the parameters used are given in Table 1, where k is the
spring rigidity, m is the mass of the piston, L0 is the length of the chamber at rest, q0 is the
initial displacement of the piston, T0 is the initial temperature, R is the universal gas constant
and c0 =

√
γRT0 is the local speed of the sound.

Remark 5.1. The parameters in Table 1 are chosen according to the criteria given in Lefrançois
and Boufflet [3] in order to ensure strong coupling effects.
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Table 1: Numerical values of the parameters for the piston problem.

k m L0 q0 Ls0 A γ p0 T0 R c0

107 N/m 0.8Kg 1m 0.20m 1.2m 1 1.4 105 Pa 300K 287 334.7m/s
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Figure 4: Amplitude of the piston at CFL = 0.80.

We introduce the notion of a characteristic time which is defined as follows [3]:

(i) for the fluid it is the time required for a pressure wave to cross the chamber from one
side to the other, that is,

Tf

char ≈
L(t)
c0

, (5.1)

(ii) for the structure it is the natural period of the piston, that is,

Ts
char = T0. (5.2)

If the two characteristic times are similar, the coupling is strong. In the case where one of the
characteristic times significantly exceeds the other, the dynamics in question (fluid or struc-
ture) can be considered as quasisteady and the coupling is weak [3].

Taking into account the criteria given above and considering that Tf

char ≈ 0.0036 s. We
have that for m = 0.8Kg, f0 = 563Hz, which implies that Ts

char = 0.00177715 s. The charac-

teristic times Tf

char and Ts
char are of the same order; therefore the coupling is strong [3].

In order to test the performance of the two coupling approaches with respect to the
amplitude of the piston, the fluid flow is solved by means of the fluid solver described in
Section 3.2. The fluid is discretised with 100 finite elements and 101 nodes. The initial condi-
tions for the piston are taken as q(0) = 0.2m and q̇(0) = 20m/s.

We compared the amplitude of the piston for the two coupling algorithms and dif-
ferent CFL numbers. Figure 4 shows the amplitude of the piston for the two coupling algo-
rithms at CFL = 0.80. Apparently, there is not too much difference between the solutions, but
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Figure 5: Amplitude of the piston by prediction 1 algorithm.
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Figure 6: Amplitude of the piston by prediction 2 algorithm at CFL = 0.85 and CFL = 0.99999, respectively
(a). Zoom to emphasize the damping (b).
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Figure 7: Density ρ at Tmax = 3 × T0, staggered algorithm, via prediction 1 (a) and prediction 2 (b).
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Figure 8: Pressure p at Tmax = 3 × T0, staggered algorithm, via prediction 1 (a) and prediction 2 (b).

one can see that the second curve, obtained by applying the predictor 2 algorithm, is slightly
more damped than the first one. The difference between the two algorithms becomes more
noticeable as the CFL number increases. Figures 5 and 6 show the amplitude of the piston
computed by predictions 1 and 2 algorithms, respectively, as the CFL number increases. It is
found that as the CFL number increases the curve becomes more damped. The damping is
more pronounced in the curves shown in Figure 6, which are obtained by the prediction 2
algorithm. From the structure solver given in Section 3.1 we find that there is no damping,
so the damping of the signal comes from the fluid solver. As the CFL number increases the
deviation of the solution from the equilibrium position also increases, and this deviation is
larger for the prediction 1 algorithm since it is less accurate.

We could find no discussion in the literature regarding the performance of the above
coupling approaches with respect to the fluid. We, therefore, found it appropriate to test the
performance of the two prediction schemes in this study. In order to do so, the fluid was
discretized with 100 finite elements and then with 200 finite elements, respectively. Figures 7
and 8 show the results for the density and pressure, respectively, obtained via prediction 1,
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left-side, and via prediction 2, right side. It is possible to see that the results obtained by
applying prediction 2 with 100 finite elements compared favorably with the results obtained
by prediction 1 with 200 finite elements, showing the efficiency of prediction 2.

6. Conclusions

An analysis of the time marching fluid-structure interaction algorithm has been presented.
The relatively simple piston problem was chosen in order to gain an understanding of the
coupling algorithms. The one-dimensional fluid is modeled using the Euler equations, which
were presented in moving mesh coordinates using the arbitrary Lagrangian Eulerian (ALE)
approach, discretised in space by the finite element method and integrated in time using
an explicit method. The structure was integrated in time by an implicit finite difference
Newmark-Wilson scheme. The fluid and the structure were integrated in time using separate
solvers. The coupling between the fluid and structure solvers was realized by applying the
staggered approach. Since the staggered approach suffers from a time lag, the influence of the
time lag was studied by comparing two different predictions for the structure. The compu-
tations show that the differences between the two coupling algorithms become noticeable as
the CFL number increases. The prediction 2 algorithm gave a higher accuracy.
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