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We study the limit law of the offspring empirical measure and for Markov chains indexed by
homogeneous tree with almost everywhere convergence. Then we prove a Shannon-McMillan
theorem with the convergence almost everywhere.

1. Introduction

A tree is a graph G = {T, E} which is connected and contains no circuits, where T and E

denote the vertex set and the edge set, respectively. Given any two vertices α/= β ∈ T , let αβ
be the unique path connecting α and β. Define the graph distance d(α, β) to be the number of
edges contained in the path αβ.

Let G be an infinite tree with root 0. The set of all vertices with distance n from the
root is called the nth generation of T , which is denoted by Ln. We denote by T (n) the union
of the first n generations of T . For each vertex t, there is a unique path from 0 to t, and |t|
for the number of edges on this path. We denote the first predecessor of t by 1t, the second
predecessor of t by 2t and denote by nt the nth predecessor of t. The degree of a vertex is
defined to be the number of neighbors of it. If the degree sequence of a tree is uniformly
bounded, we call the tree a uniformly bounded tree. Let d be a positive integer. If every vertex
of the tree has d neighbors in the next generation, we say it Cayley tree, which is denoted by
TC,d. Thus on Cayley tree, every vertex has degree d + 1 except that the root index which has
degree d. For any two vertices s and t of tree T , write s ≤ t if s is on the unique path from
the root 0 to t. We denote by s ∧ t the vertex farthest from 0 satisfying s ∧ t ≤ s and s ∧ t ≤ t.
XA = {Xt, t ∈ A} and denote by |A| the number of vertices of A.
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Definition 1.1 (see [1]). Let G be an infinite Cayley tree TC,d, S a finite state space, and {Xt, t ∈
T} be a collection of S-valued random variables defined on probability space (Ω,F,P). Let

p =
{
p(x), x ∈ S

}
(1.1)

be a distribution on S and

P =
(
P
(
y | x)), x, y ∈ S, (1.2)

be a stochastic matrix on S2. If for any vertex t,

P
(
Xt = y | X1t = x and Xs for t ∧ s ≤1 t

)

= P
(
Xt = y | X1t = x

)
= P

(
y | x) ∀x, y ∈ S,

P(X0 = x) = p(x) ∀x ∈ S,

(1.3)

{Xt, t ∈ T} will be called S-valued Markov chains indexed by an infinite tree G with the initial
distribution (1.1) and transition matrix (1.2) or called tree-indexed Markov chains with state-
space S. Furthermore, if transition matrix P is ergodic, then we call {Xt, t ∈ T} an ergodic
Markov chains indexed by the infinite tree T .

The above definition is the extension of the definitions of Markov chain fields on trees
(see [1, page 456] and [2]). In this paper, we always suppose that the tree-indexed Markov
chain is ergodic.

The subject of tree-indexed processes is rather young. Benjamini and Peres [3] have
given the notion of the tree-indexed Markov chains and studied the recurrence and ray-
recurrence for them. Berger and Ye [4] have studied the existence of entropy rate for some
stationary random fields on a homogeneous tree. Ye and Berger (see [5, 6]), by using
Pemantle’s result [7] and a combinatorial approach, have studied the Shannon-McMillan
theorem with convergence in probability for a PPG-invariant and ergodic random field
on a homogeneous tree. Yang and Liu [8] have studied a strong law of large numbers
for the frequency of occurrence of states for Markov chains fields on a homogeneous
tree (a particular case of tree-indexed Markov chains and PPG-invariant random fields).
Takacs (see [9]) have studied the strong law of large numbers for the univariate functions
of finite Markov chains indexed by an infinite tree with uniformly bounded degree.
Subsequently, Huang and Yang (see [10]) has studied the Shannon-McMillan theorem of
finite homogeneous Markov chains indexed by a uniformly bounded infinite tree. Dembo
et al., (see [11]) has showed the large deviation principle holds for the empirical offspring
measure of Markov chains on random trees and demonstrated the explicit rate function,
which is defined in terms of specific relative entropy (see [12]) and Cramér’s rate function.

In this paper, we study the strong law of large numbers for the offspring empirical
measure and the Shannon-McMillan theorem with a.e. convergence for Markov chain fields
on tree TC,d by using a method similar to that of [10].
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2. Statements of the Results

For every vertex t ∈ T , the random vector of offspring states is defined as

Ct = (X1(t), X2(t), . . . , Xd(t)) ∈ Sd. (2.1)

Let c = (c1, c2, . . . , cd) be a d-dimensional vector on Sd.
Now we also let the distribution (1.1) serve as the initial distribution. Define the

offspring transition kernel Q from S to Sd. We define the law P of a tree-indexed process
X by the following rules.

(i) The state of the root random variable X0 is determined by distribution (1.1).

(ii) For every vertex t ∈ T with state x, the offspring states are given independently of
everything else, by the offspring law Q(· | x) on Sd, where

Q(c | x) := Q(Ct = (c1, c2, . . . , cd) | Xt = x) =
d∏

i=1

P(ci | x). (2.2)

Here the last equation holds because of the property of conditional independence.
For every finite n ∈ N, let {Xt, t ∈ T} be S-valuedMarkov chains indexed by an infinite

tree T . Now we define the offspring empirical measure

Ln(x, c) =
∑

t∈T (n) I{(Xt,Ct) = (x, c)}
∣∣T (n)

∣∣ ∀(x, c) ∈ S × Sd. (2.3)

For any state x ∈ S, Sn(x) is the empirical measure, which is defined as follows:

Sn(x) =
∑

t∈T (n) I{Xt = x}
∣∣T (n)

∣∣ ∀x ∈ S, (2.4)

where I{·} denotes the indicator function as usual and c = (c1, c2, . . . , cd).
In the rest of this paper, we consider the limit law of the random sequence of

{Ln(x, c), n ≥ 1}, which is defined as above.

Theorem 2.1. Let G be a Cayley tree TC,d, S a finite state space, and {Xt, t ∈ T} be tree-indexed
Markov chain with initial distribution (1.1) and ergodic transition matrix P . Let Ln(x, c) be defined
as (2.3). Thus one has

lim
n→∞

Ln(x, c) = π(x)Q(c | x) a.e., (2.5)

where π is the stationary distribution of the ergodic matrix P , that is, π = πP , and Σx∈Sπ(x) = 1.
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Corollary 2.2. Under the condition of Theorem 2.1, suppose that f(x, c) is any function defined on
S × Sd. Denote

Hn(ω) =
∑

t∈T (n)

f(Xt,Ct). (2.6)

Then

lim
n→∞

Hn(ω)
∣
∣T (n)

∣
∣ =

∑

(x,c)∈S×Sd

π(x)Q(c | x)f(x, c). a.e. (2.7)

Proof. Noting that

Hn(ω) =
∑

t∈T (n)

f(Xt,Ct)

=
∑

(x,c)∈S×Sd

∑

t∈T (n)

I{(Xt,Ct) = (x, c)}f(x, c),
(2.8)

thus by using Theorem 2.1 we get

lim
n→∞

Hn(ω)
∣∣T (n)

∣∣ =
∑

(x,c)∈S×Sd

f(x, c) lim
n→∞

Ln(x, c)

=
∑

(x,c)∈S×Sd

π(x)Q(c | x)f(x, c). a.e.
(2.9)

Let G = {T, E} be a tree graph, (Xt)t∈T be a stochastic process indexed by tree G with
state space S. Denote Yt = (Xt,Ct) to be the offspring processes derived by (Xt)t∈T . It is easy
to see that

P
(
yT (n)

)
= P

(
YT(n)

= yT (n)
)

= p(x0)
∏

t∈T (n+1)\{0}
P(xt | x1t)

= p(x0)
∏

t∈T (n)

Q(ct | xt),

(2.10)

where ct ∈ Sd. Let

fn(ω) = − 1
∣∣T (n)

∣∣ lnP
(
YT (n)

)
. (2.11)
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fn(ω) will be called the entropy density of YT (n)
. If (Xt)t∈T is a tree-indexed Markov chain

with state space S defined by Definition 1.1, we have by (2.10)

fn(ω) = − 1
∣
∣T (n)

∣
∣

[

ln p(X0) +
∑

t∈T (n)

lnQ(Ct | Xt)

]

. (2.12)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in
probability, a.e. convergence) is called the Shannon-McMillan theorem or the entropy theorem
or the AEP in information theory. Here from Corollary 2.2, if we let

f(x, c) = − lnQ(c | x), (2.13)

we can easily obtain the Shannon-McMillan theorem with a.e. convergence for Markov chain
fields on tree TC,d.

Corollary 2.3. Under the condition of Corollary 2.2, let fn(ω) be defined as (2.12). Then

lim
n→∞

fn(ω) = −
∑

(x,c)∈S×Sd

π(x)Q(c | x) lnQ(c | x). a.e. (2.14)

3. Proof of Theorem 2.1

Let TC,d be a Cayley tree, S a finite state space, and {Xt, t ∈ T} tree-indexed Markov chain
with any initial distribution (1.1) and ergodic transition matrix P . Let gt(Xt,Ct) be functions
defined on S × Sd. Letting λ be a real number, L0 = {0}, Fn = σ(XT (n)

), now we can define a
nonnegative martingale as follows:

tn(λ,ω) =
eλ

∑
t∈T(n−1) gt(Xt,Ct)

∏
t∈T (n−1)E

[
eλgt(Xt,Ct) | Xt

] . (3.1)

At first we come to prove the above fact.

Theorem 3.1. {tn(λ,ω),Fn, n ≥ 1} is a nonnegative martingale.
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Proof of Theorem 3.1. Note that, by Markov property and the property of conditional
independence, we have

E
[
eλ

∑
t∈Ln gt(Xt,Ct) | Fn

]
=

∑

xLn+1

eλ
∑

t∈Ln gt(Xt,ct)P
(
XLn+1 = xLn+1 | XT (n)

)

=
∑

xLn+1

∏

t∈Ln

eλgt(Xt,ct)Q(ct | Xt)

=
∏

t∈Ln

∑

ct∈Sd

eλgt(Xt,ct)Q(ct | Xt)

=
∏

t∈Ln

E
[
eλgt(Xt,Ct) | Xt

]
a.e.

(3.2)

On the other hand, we also have

tn+1(λ,ω) = tn(λ,ω)
eλ

∑
t∈Ln gt(Xt,Ct)

∏
t∈Ln

E
[
eλgt(Xt,Ct) | Xt

] . (3.3)

Combining (3.2) and (3.3), we get

E[tn+1(λ,ω) | Fn] = tn(λ,ω) a.e. (3.4)

Thus we complete the proof of this theorem.

Theorem 3.2. Let (Xt)t∈T and {gt(x, c), t ∈ T} be defined as above, and denote

Gn(ω) =
∑

t∈T (n)

E
[
gt(Xt,Ct) | Xt

]
. (3.5)

Let α > 0, denote

D(α) =

{

lim sup
n→∞

1
∣∣T (n)

∣∣

∑

t∈T (n)

E
[
g2
t (Xt,Ct)eα|gt(Xt,Ct)| | Xt

]
= M(ω) < ∞

}

, (3.6)

Hn(ω) =
∑

t∈T (n)

gt(Xt,Ct). (3.7)

Then

lim
n→∞

Hn(ω) −Gn(ω)
∣∣T (n)

∣∣ = 0 a.e. on D(α). (3.8)

Proof. By Theorem 3.1, we have known that {tn(λ,ω), Fn, n ≥ 1} is a nonnegative martingale.
According to Doob martingale convergence theorem, we have

lim
n

tn(λ,ω) = t(λ,ω) < ∞ a.e. (3.9)
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so that

lim sup
n→∞

ln tn+1(λ,ω)
∣
∣T (n)

∣
∣ ≤ 0 a.e. (3.10)

Combining (3.1), (3.7), and (3.10), we arrive at

lim sup
n→∞

1
∣
∣T (n)

∣
∣

{

λHn(ω) −
∑

t∈T (n)

ln
[
E
[
eλgt(Xt,Ct) | Xt

]]}

≤ 0 a.e. (3.11)

Let λ > 0. Dividing two sides of above equation by λ, we get

lim sup
n→∞

1
∣∣T (n)

∣∣

{

Hn(ω) −
∑

t∈T (n)

ln
[
E
[
eλgt(Xt,Ct) | Xt

]]

λ

}

≤ 0 a.e. (3.12)

By (3.12) and inequalities lnx ≤ x−1 (x > 0), 0 ≤ ex −1−x ≤ 2−1x2e|x|, as 0 < λ ≤ α, it follows
that

lim sup
n→∞

1
∣∣T (n)

∣∣

[

Hn(ω) −
∑

t∈T (n)

E
[
gt(Xt,Ct) | Xt

]
]

≤ lim sup
n→∞

1
∣∣T (n)

∣∣

∑

t∈T (n)

{
ln
[
E
[
eλgt(Xt,Ct) | Xt

]]

λ
− E

[
gt(Xt,Ct) | Xt

]
}

≤ lim sup
n→∞

1
∣∣T (n)

∣∣

∑

t∈T (n)

{
E
[
eλgt(Xt,Ct) | Xt

] − 1
λ

− E
[
gt(Xt,Ct) | Xt

]
}

≤ λ

2
lim sup
n→∞

1
∣∣T (n)

∣∣

∑

t∈T (n)

E
[
g2
t (Xt,Ct)eλ|gt(Xt,Ct)| | Xt

]

≤ λ

2
lim sup
n→∞

1
∣∣T (n)

∣∣

∑

t∈T (n)

E
[
g2
t (Xt,Ct)eα|gt(Xt,Ct)| | Xt

]

≤ λ

2
M(ω) a.e. ω ∈ D(α).

(3.13)

Letting λ → 0+ in (3.13), by (3.5) we have

lim sup
n→∞

Hn(ω) −Gn(ω)
∣∣T (n)

∣∣ ≤ 0 a.e. ω ∈ D(α). (3.14)

Let −α ≤ λ < 0. Similarly to the analysis of the case 0 < λ ≤ α, it follows from (3.12) that

lim inf
n→∞

Hn(ω) −Gn(ω)
∣∣T (n)

∣∣ ≥ λ

2
M(ω) a.e. ω ∈ D(α). (3.15)
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Letting λ → 0−, we can arrive at

lim inf
n→∞

Hn(ω) −Gn(ω)
∣∣T (n)

∣∣ ≥ 0 a.e. ω ∈ D(α). (3.16)

Combining (3.14) and (3.16), we obtain (3.8) directly.

Corollary 3.3. Under the conditions of Theorem 3.2, one has

lim
n→∞

[Ln(x, c) − Sn(x)Q(c | x)] = 0 a.e., (3.17)

where π is the stationary distribution of the ergodic matrix P , that is, π = πP , and Σx∈Sπ(x) = 1.

Proof. For any t ∈ T , let

gt(Xt,Ct) = I{(Xt,Ct) = (x, c)}
= I{Xt = x} · I{Ct = c}.

(3.18)

Then we have

Gn(ω) =
∑

t∈T (n)

E
[
gt(Xt,Ct) | Xt

]

=
∑

t∈T (n)

∑

ct∈Sd

I{Xt = x} · I{ct = c}Q(ct | Xt)

=
∑

t∈T (n)

I{Xt = x}Q(c | x)

=
∣∣∣T (n)

∣∣∣ · Sn(x)Q(c | x)

(3.19)

Hn(ω) =
∑

t∈T (n)

gt(Xt,Ct)

=
∑

t∈T (n)

I{(Xt,Ct) = (x, c)}

=
∣∣∣T (n)

∣∣∣ · Ln(x, c).

(3.20)

Combing (3.19) and (3.20), we can derive our conclusion by Theorem 3.2.
In our proof, we will use Lemma 3.4.
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Lemma 3.4 (see [10]). Let TC,d be a Cayley tree, S a finite state space, and {Xt, t ∈ T} tree-indexed
Markov chain with any initial distribution (1.1) and ergodic transition matrix P . Let Sn(x) be defined
as (2.4). Thus one has

lim
n→∞

Sn(x) = π(x) a.e. (3.21)

Proof of Theorem 2.1. Combining Corollary 3.3 and Lemma 3.4, we arrive at our conclusion
directly.
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