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We prove quadruple fixed point theorems in partially orderedmetric spaces depending on another
function. Also, we state some examples showing that our results are real generalization of known
ones in quadruple fixed point theory.

1. Introduction and Preliminaries

Basic topological properties of an ordered set like convergence were introduced by Wolk [1].
In 1981, Monjardet [2] considered metrics on partially ordered sets. Ran and Reurings [3]
proved an analog of Banach contractionmapping principle in partially orderedmetric spaces.
In their pioneering work, they also provide applications to matrix equations. As an extension,
Nieto and Rodrı́guez-López [4] discovered further fixed point theorems in partially ordered
metric spaces. For some other related results in ordered metric spaces, see, for example, [5–7].

Bhaskar and Lakshmikantham in [8] introduced the concept of coupled fixed point of
a mapping F : X ×X → X and investigated the existence and uniqueness of a coupled fixed
point theorem in partially ordered complete metric spaces. Lakshmikantham and Ćirić in
[9] defined mixed g-monotone property and coupled coincidence point in partially ordered
metric spaces. They also proved related fixed point theorems. Later, various results on
coupled fixed point have been obtained, see, for example, [9–20].

Following this trend, Berinde and Borcut [21] introduced the concept of tripled fixed
point in ordered sets. The following two definitions are from [21].
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Definition 1.1. Let (X,≤) be a partially ordered set and F : X ×X ×X → X. The mapping F is
said to have the mixed monotone property if, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F
(
x1, y, z

) ≤ F(x2, y, z
)
,

y1, y2 ∈ X, y1 ≤ y2 =⇒ F
(
x, y1, z

) ≥ F(x, y2, z
)
,

z1, z2 ∈ X, z1 ≤ z2 =⇒ F
(
x, y, z1

) ≤ F(x, y, z2
)
.

(1.1)

Definition 1.2. Let F : X ×X ×X → X. An element (x, y, z) is called a tripled fixed point of F
if

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (1.2)

Also, Berinde and Borcut [21] proved the following theorem.

Theorem 1.3. Let (X,≤, d) be a partially ordered set and suppose that there is a metric d on X such
that (X, d) is a complete metric space. Suppose also that F : X ×X ×X → X be a mapping such that
it has the mixed monotone property and there exist j, r, l ≥ 0 with j + r + l < 1 such that

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ jd(x, u) + rd(y, v) + ld(z,w), (1.3)

for any x, y, z ∈ X for which x ≤ u, v ≤ y, and z ≤ w. Additionally suppose that either F is
continuous or X has the following properties:

(1) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(2) if a nonincreasing sequence yn → y, then y ≤ yn for all n.
If there exist x0, y0, z0 ∈ X such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, z0), and z0 ≤ F(z0, y0, x0),
then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z, (1.4)

that is, F has a tripled fixed point.

The notion of fixed point of order N ≥ 3 was first introduced by Samet and Vetro
[22]. Very recently, Karapınar used the notion of quadruple fixed point and obtained some
quadruple fixed point theorems [23] in partially ordered metric spaces. This work motivated
the following studies [24–27]which provide further fixed point theorems on quadruple fixed
points.

From now on, we denote X4 = X ×X ×X ×X.

Definition 1.4 (see [24]). Let X be a nonempty set and let F : X4 → X be a given mapping.
An element (x, y, z,w) ∈ X ×X3 is called a quadruple fixed point of F if

F
(
x, y, z,w

)
= x, F

(
y, z,w, x

)
= y, F

(
z,w, x, y

)
= z, F

(
w,x, y, z

)
= w.

(1.5)
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Let (X, d) be a metric space. The mapping d : X4 → X, given by

d
((
x, y, z,w

)
, (u, v, h, l)

)
= d

(
x, y

)
+ d

(
y, v

)
+ d(z, h) + d(w, l), (1.6)

defines a metric on X4, which will be denoted for convenience by d.

Remark 1.5. In [23, 24, 27], the notion of quadruple fixed point is called quartet fixed point.

Definition 1.6 (see [24]). Let (X,≤) be a partially ordered set and F : X4 → X be a mapping.
We say that F has the mixed monotone property if F(x, y, z,w) is monotone nondecreasing
in x and z and is monotone nonincreasing in y and w; that is, for any x, y, z,w ∈ X,

x1, x2 ∈ X, x1 ≤ x2 implies F
(
x1, y, z,w

) ≤ F(x2, y, z,w
)
,

y1, y2 ∈ X, y1 ≤ y2 implies F
(
x, y2, z,w

) ≤ F(x, y1, z,w
)
,

z1, z2 ∈ X, z1 ≤ z2 implies F
(
x, y, z1, w

) ≤ F(x, y, z2, w
)
,

w1, w2 ∈ X, w1 ≤ w2 implies F
(
x, y, z,w2

) ≤ F(x, y, z,w1
)
.

(1.7)

In this paper, we prove some quadruple fixed point theorems in partially ordered
metric spaces depended on another function T : X → X.

2. Main Results

We start with the following definition (see, e.g., [28–31]).

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is said to be ICS if T
is injective, continuous, and it has the property: for every sequence {xn} in X, if {Txn} is
convergent then, {xn} is also convergent.

Let Φ be the set of all functions φ : [0,∞) → [0,∞) such that

(1) φ(t) < t for all t ∈ (0,+∞),

(2) limr→ t+φ(r) < t for all t ∈ (0,+∞).

Our first result is given by the following theorem.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Suppose also that T : X → X is an ICS mapping and F : X4 → X
is such that F has the mixed monotone property. Assume that there exists φ ∈ Φ such that

d
(
TF

(
x, y, z,w

)
, TF(u, v, r, s)

) ≤ φ(max
{
d(Tx, Tu), d

(
Ty, Tv

)
, d(Tz, Tr), d(Tw, Ts)

})

(2.1)



4 ISRN Applied Mathematics

for any x, y, z,w, u, v, r, s ∈ X for which x ≤ u, v ≤ y, z ≤ r, and s ≤ w. Additionally assume that
either

(a) F is continuous, or

(b) X has the following properties:

(i) if nondecreasing sequence xn → x (respectively, zn → z), then xn ≤ x (respectively,
zn ≤ z) for all n,

(ii) if nonincreasing sequence yn → y (respectively, wn → w), then yn ≥ y
(respectively,wn ≥ w) for all n.

If there exist x0, y0, z0, w0 ∈ X such that x0 ≤ F(x0, y0, z0, w0), y0 ≥ F(y0, z0, w0, x0), z0 ≤
F(z0, w0, x0, y0), and w0 ≥ F(w0, x0, y0, z0), then there exist x, y, z,w ∈ X such that

F
(
x, y, z,w

)
= x, F

(
y, z,w, x

)
= y, F

(
z,w, x, y

)
= z, F

(
w,x, y, z

)
= w.

(2.2)

that is, F has a quadruple fixed point.

Proof. Let x0, y0, z0, w0 ∈ X such that

x0 ≤ F
(
x0, y0, z0, w0

)
, y0 ≥ F

(
y0, z0, w0, x0

)
, (2.3)

z0 ≤ F
(
z0, w0, x0, y0

)
, w0 ≥ F

(
w0, x0, y0, z0

)
. (2.4)

Set

x1 = F
(
x0, y0, z0, w0

)
, y1 = F

(
y0, z0, w0, x0

)
,

z1 = F
(
z0, w0, x0, y0

)
, w1 = F

(
w0, x0, y0, z0

)
.

(2.5)

Then, x0 ≤ x1, y0 ≥ y1, z0 ≤ z1, and w0 ≥ w1. Again, define x2 = F(x1, y1, z1, w1),
y2 = F(y1, z1, w1, x1), z2 = F(z1, w1, x1, y1), and w2 = F(w1, x1, y1, z1). Since F has the mixed
monotone property, we have x0 ≤ x1 ≤ x2, y2 ≤ y1 ≤ y0, z0 ≤ z1 ≤ z2, and w2 ≤ w1 ≤ w0.
By continuing this process, we can construct four sequences {xn}, {yn}, {zn}, and {wn} in X
such that

xn+1 = F
(
xn, yn, zn,wn

)
, yn+1 = F

(
yn, zn,wn, xn

)
,

zn+1 = F
(
z1, w1, x1, y1

)
, wn+1 = F

(
wn, xn, yn, zn

)
.

(2.6)

Since F has the mixed monotone property, by using a mathematical induction it is easy to see
that

xn ≤ xn+1, yn+1 ≤ yn, zn ≤ zn+1, wn+1 ≤ wn, for n = 0, 1, 2, . . . , (2.7)

Assume that, for some n ∈ N,

xn = xn+1, yn = yn+1, zn = zn+1, wn = wn+1. (2.8)
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Then, by (2.6), (xn, yn, zn,wn) is a quadruple fixed point of F. Therefore, in the rest of the
proof, for any n ∈ N we will assume that

xn /=xn+1 or yn /=yn+1 or zn /= zn+1 or wn /=wn+1. (2.9)

Since T is injective, for any n ∈ N,

0 < max
{
d(Txn, Txn+1), d

(
Tyn, Tyn+1

)
, d(Tzn, Tzn+1), d(Twn, Twn+1)

}
. (2.10)

Due to (2.1), (2.6), and (2.7), we have

d(Txn, Txn+1) = d
(
TF

(
xn−1, yn−1, zn−1, wn−1

)
, TF

(
xn, yn, zn,wn

))

≤ φ(max
{
d(Txn−1, Txn), d

(
Tyn−1, Tyn

)
, d(Tzn−1, Tzn), d(Twn−1, Twn)

})
,

d
(
Tyn+1, Tyn

)
= d

(
TF

(
yn, zn,wn, xn

)
, TF

(
yn−1, zn−1, wn−1, xn−1

))

≤ φ(max
{
d
(
Tyn−1, Tyn

)
, d(Tzn−1, Tzn), d(Twn−1, Twn), d(Txn−1, Txn)

})
,

d(Tzn, Tzn+1) = d
(
TF

(
zn−1, wn−1, xn−1, yn−1

)
, TF

(
zn,wn, xn,yn

))

≤ φ(max
{
d(Tzn−1, Tzn), d(Twn−1, Twn), d(Txn−1, Tzn), d

(
Tyn−1, Tyn

)})
,

d(Twn+1, Twn) = d
(
TF

(
wn, xn, yn, zn

)
, TF

(
wn−1, xn−1, yn−1, zn−1

))

≤ φ(max
{
d(Twn−1, Twn), d(Txn−1, Txn), d

(
Tyn−1, Tyn

)
, d(Tzn−1, Tzn)

})
.

(2.11)

Using the fact that φ(t) < t for all t > 0 together with (2.11), we obtain that

0 < max
{
d(Txn, Txn+1), d

(
Tyn, Tyn+1

)
, d(Tzn, Tzn+1), d(Twn, Twn+1)

}

≤ φ(max
{
d(Txn−1, Txn), d

(
Tyn−1, Tyn

)
, d(Tzn−1, Tzn), d(Twn−1, Twn)

})

< max
{
d(Txn−1, Txn), d

(
Tyn−1, Tyn

)
, d(Tzn−1, Tzn), d(Twn−1, Twn)

}
.

(2.12)

It follows that

max
{
d(Txn, Txn+1), d

(
Tyn, Tyn+1

)
, d(Tzn, Tzn+1), d(Twn, Twn+1)

}

< max
{
d(Txn−1, Txn), d

(
Tyn−1, Tyn

)
, d(Tzn−1, Tzn), d(Twn−1, Twn)

}
.

(2.13)

Thus, max{d(Txn, Txn+1), d(Tyn, Tyn+1), d(Tzn, Tzn+1), d(Twn, Twn+1)} is a positive decreas-
ing sequence. Hence, there exists r ≥ 0 such that

lim
n→+∞

max
{
d(Txn, Txn+1), d

(
Tyn, Tyn+1

)
, d(Tzn, Tzn+1), d(Twn, Twn+1)

}
= r. (2.14)
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Suppose that r > 0. Letting n → +∞ in (2.12), we obtain that

0 < r ≤ lim
n→+∞

φ
(
max

{
d(Txn, Txn+1), d

(
Tyn, Tyn+1

)
, d(Tzn, Tzn+1), d(Twn, Twn+1)

})

= lim
t→ r+

φ(t) < r,
(2.15)

which is a contradiction. Therefore, we deduce that

lim
n→+∞

max
{
d(Txn, Txn+1), d

(
Tyn, Tyn+1

)
, d(Tzn, Tzn+1), d(Twn, Twn+1)

}
= 0. (2.16)

We will show that {Txn}, {Tyn}, {Tzn}, and {Twn} are Cauchy sequences. Assume
the contrary, that is, either {Txn} or {Tyn} or {Tzn} or {Twn} is not a Cauchy sequence,
consequently,

lim
n,m→+∞

d(Txm, Txn)/= 0 or lim
n,m→+∞

d
(
Tym, Tyn

)
/= 0, (2.17)

or limn,m→+∞ d(Tzm, Tzn)/= 0 or limn,m→+∞ d(Twm, Twn)/= 0. This means that there exists ε >
0 for which we can find subsequences of integers (mk) and (nk)with nk > mk > k such that

max
{
d(Txmk , Txnk), d

(
Tymk , Tynk

)
, d(Tzmk , Tznk), d(Twmk , Twnk)

} ≥ ε. (2.18)

Furthermore, corresponding to mk, we can choose nk in such a way that it is the smallest
integer with nk > mk and satisfying (2.18). Then,

max
{
d(Txmk , Txnk−1), d

(
Tymk , Tynk−1

)
, d(Tzmk , Tznk−1), d(Twmk , Twnk−1)

}
< ε. (2.19)

By the triangle inequality and (2.19), we have

d(Txmk , Txnk) ≤ d(Txmk , Txnk−1) + d(Txnk−1, Txnk)

< ε + d(Txnk−1, Txnk).
(2.20)

Thus, by (2.16), we obtain

lim
k→+∞

d(Txmk , Txnk) ≤ lim
k→+∞

d(Txmk , Txnk−1) ≤ ε. (2.21)

Similarly, we have

lim
k→+∞

d
(
Tymk , Tynk

) ≤ lim
k→+∞

d
(
Tymk , Tynk−1

) ≤ ε,

lim
k→+∞

d(Tzmk , Tznk) ≤ lim
k→+∞

d(Tzmk , Tznk−1) ≤ ε,

lim
k→+∞

d(Twmk , Twnk) ≤ lim
k→+∞

d(Twmk , Twnk−1) ≤ ε.

(2.22)
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Again, by (2.19), we have

d(Txmk , Txnk) ≤ d(Txmk , Txmk−1) + d(Txmk−1, Txnk−1) + d(Txnk−1, Txnk)

≤ d(Txmk , Txmk−1) + d(Txmk−1, Txmk)

+ d(Txmk , Txnk−1) + d(Txnk−1, Txnk)

< d(Txmk , Txmk−1) + d(Txmk−1, Txmk) + ε + d(Txnk−1, Txnk).

(2.23)

Letting k → +∞ and using (2.16), we get

lim
k→+∞

d(Txmk , Txnk) ≤ lim
k→+∞

d(Txmk−1, Txnk−1) ≤ ε,
lim

k→+∞
d
(
Tymk , Tynk

) ≤ lim
k→+∞

d
(
Tymk−1, Tynk−1

) ≤ ε,
lim

k→+∞
d(Tzmk , Tznk) ≤ lim

k→+∞
d(Tzmk−1, Tznk−1) ≤ ε,

lim
k→+∞

d(Twmk , Twnk) ≤ lim
k→+∞

d(Twmk−1, Twnk−1) ≤ ε.

(2.24)

Using (2.18) and (2.24), we have

lim
k→+∞

max
{
d(Txmk , Txnk), d

(
Tymk , Tynk

)
, d(Tzmk , Tznk), d(Twmk , Twnk)

}

= lim
k→+∞

max
{
d(Txmk−1, Txnk−1), d

(
Tymk−1, Tynk−1

)
, d(Tzmk−1, Tznk−1), d(Twmk−1, Twnk−1)

}

= ε.

(2.25)

Now, using inequality (2.1), we obtain

d(Txmk , Txnk)

= d
(
TF

(
xmk−1, ymk−1, zmk−1, wmk−1

)
, TF

(
xnk−1, ynk−1, znk−1, wnk−1

))

≤ φ(max
{
d(Txmk−1, Txnk−1), d

(
Tymk−1, Tynk−1

)
, d(Tzmk−1, Tznk−1), d(Twmk−1, Twnk−1)

})

d
(
Tymk , Tynk

)

= d
(
TF

(
ymk−1, zmk−1, wmk−1, xmk−1

)
, TF

(
ynk−1, znk−1, wnk−1, xnk−1

))

≤ φ(max
{
d
(
Tymk−1, Tynk−1

)
, d(Tzmk−1, Tznk−1), d(Twmk−1, Twnk−1), d(Txmk−1, Txnk−1)

})
,

d
(
Tymk , Tynk

)

= d
(
TF

(
zmk−1, wmk−1, xmk−1, ymk−1

)
, TF

(
znk−1, wnk−1, xnk−1, ynk−1

))

≤ φ(max
{
d(Tzmk−1, Tznk−1), d(Twmk−1, Twnk−1), d(Txmk−1, Txnk−1), d

(
Tymk−1, Tynk−1

)})
,

d
(
Tymk , Tynk

)

= d
(
TF

(
wmk−1, xmk−1, ymk−1, zmk−1

)
, TF

(
wnk−1, xnk−1, ynk−1, znk−1

))

≤ φ(max
{
d(Twmk−1, Twnk−1), d(Txmk−1, Txnk−1), d

(
Tymk−1, Tynk−1

)
, d(Tzmk−1, Tznk−1)

})

(2.26)
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From (2.26), we deduce that

max
{
d(Txmk , Txnk), d

(
Tymk , Tynk

)
, d(Tzmk , Tznk), d(Twmk , Twnk)

}

≤ φ(max
{
d(Txmk−1, Txnk−1), d

(
Tymk−1, Tynk−1

)
, d(Tzmk−1, Tznk−1), d(Twmk−1, Twnk−1)

})
.

(2.27)

Letting k → +∞ in (2.27) and by using (2.25), we get that

0 < ε ≤ lim
t→ ε+

φ(t) < ε, (2.28)

which is a contradiction. Thus, {Txn}, {Tyn}, {Tzn}, and {Twn} are Cauchy sequences in
(X, d). Since X is a complete metric space, {Txn}, {Tyn}, {Tzn}, and {Twn} are convergent
sequences.

Since T is an ICS mapping, there exist x, y, z,w ∈ X such that

lim
n→+∞

xn = x, lim
n→+∞

yn = y, lim
n→+∞

zn = z, lim
n→+∞

wn = w. (2.29)

Since T is continuous, we have

lim
n→+∞

Txn = Tx, lim
n→+∞

Tyn = Ty, lim
n→+∞

Tzn = Tz, lim
n→+∞

Twn = Tw. (2.30)

Suppose now the assumption (a) holds, that is, F is continuous. By (2.6), (2.29), and
(2.30)we obtain

x = lim
n→+∞

xn+1 = lim
n→+∞

F
(
xn, yn, zn,wn

)

= F

(
lim

n→+∞
xn, lim

n→+∞
yn, lim

n→+∞
zn, lim

n→+∞
wn

)
= F

(
x, y, z,w

)
,

y = lim
n→+∞

yn+1 = lim
n→+∞

F
(
yn, zn,wn, xn

)

= F

(
lim

n→+∞
yn, lim

n→+∞
zn, lim

n→+∞
wn, lim

n→+∞
xn

)
= F

(
y, z,w, x

)
,

z = lim
n→+∞

zn+1 = lim
n→+∞

F
(
zn,wn, xn, yn

)

= F

(
lim

n→+∞
zn, lim

n→+∞
wn, lim

n→+∞
xn, lim

n→+∞
yn

)
= F

(
z,w, x, y

)
,

w = lim
n→+∞

wn+1 = lim
n→+∞

F
(
wn, xn, yn, zn

)

= F

(
lim

n→+∞
wn, lim

n→+∞
xn, lim

n→+∞
yn, lim

n→+∞
zn

)
= F

(
w,x, y, z

)
.

(2.31)

We have proved that F has a quadruple fixed point.
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Suppose now the assumption (b) holds. Since {xn} and {zn} are nondecreasing with
xn → x and zn → z and also {yn} and {wn} are nonincreasing, with yn → y and wn → w,
we have

xn ≤ x, yn ≥ y, zn ≤ z, wn ≥ w (2.32)

for all n. Consider now

d
(
Tx, TF

(
x, y, z,w

)) ≤ d(Tx, Txn+1) + d
(
Txn+1, TF

(
x, y, z,w

))

= d(Tx, Txn+1) + d
(
TF

(
xn, yn, zn,wn

)
, TF

(
x, y, z,w

))

≤ d(Tx, Txn+1) + φ
(
max

{
d(Txn, Tx), d

(
Tyn, Ty

)
, d(Tzn, Tz),

d(Twn, Tw)}).

(2.33)

Taking n → ∞ and using (2.30), the right-hand side of (2.33) tends to 0, so we get that
d(Tx, TF(x, y, z,w)) = 0. Thus, Tx = TF(x, y, z,w), and since T is injective, we get that
x = F(x, y, z,w). Analogously, one finds that

F
(
y, z,w, x

)
= y, F

(
z,w, x, y

)
= z, F

(
w,x, y, z

)
= w. (2.34)

Thus, we proved that F has a quadrupled fixed point. This completes the proof of
Theorem 2.2.

Repeating the same proof of Theorem 2.2, we may state the following corollary.

Corollary 2.3. Let (X,≤) be a partially ordered set and suppose that there is a metric d on X such
that (X, d) is a complete metric space. Suppose also T : X → X is an ICS mapping and F : X4 → X
is such that F has the mixed monotone property. Assume that there exists φ ∈ Φ such that

d
(
TF

(
x, y, z,w

)
, TF(u, v, t, s)

) ≤ φ
(
d(Tx, Tu) + d

(
Ty, Tv

)
+ d(Tz, Tt) + d(Tw, Ts)
4

)

(2.35)

for any x, y, z,w, u, v, t, s ∈ X for which x ≤ u, v ≤ y, z ≤ t, and s ≤ w. Additionally suppose that
either

(a) F is continuous, or

(b) X has the following property:

(i) if non-decreasing sequence xn → x (resp., zn → z), then xn ≤ x (resp., zn ≤ z) for
all n,

(ii) if non-increasing sequence yn → y (resp., wn → w), then yn ≥ y (resp., wn ≥ w)
for all n.
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If there exist x0, y0, z0,w0 ∈ X such that x0 ≤ F(x0, y0, z0,w0), y0 ≥ F(y0, z0,w0, x0), z0 ≤
F(z0,w0, x0, y0) and w0 ≥ F(w0,w0, y0, z0), then there exist x, y, z,w ∈ X such that

F
(
x, y, z,w

)
= x, F

(
y, z,w, x

)
= y, F

(
z,w, x, y

)
= z , F

(
w,x, y, z

)
= w,

(2.36)

that is, F has a quadruple fixed point.

Corollary 2.4. Let (X,≤) be a partially ordered set and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Suppose also that T : X → X is an ICS mapping and F : X4 → X
is such that F has the mixed monotone property. Assume that there exists k ∈ [0, 1) such that

d
(
TF

(
x, y, z,w

)
, TF(u, v, t, s)

) ≤ kmax
{
d(Tx, Tu), d

(
Ty, Tv

)
, d(Tz, T t), d(Tw, Ts)

}

(2.37)

for any x, y, z,w, u, v, t, s ∈ X for which x ≤ u, v ≤ y, z ≤ t, and s ≤ w. Suppose that either

(a) F is continuous, or

(b) X has the following property:

(i) if nondecreasing sequence xn → x (resp., zn → z), then xn ≤ x (resp., zn ≤ z) for
all n,

(ii) if nonincreasing sequence yn → y (resp., wn → w), then yn ≥ y (resp., wn ≥ w)
for all n.

If there exist x0, y0, z0, w0 ∈ X such that x0 ≤ F(x0, y0, w0, z0), y0 ≥ F(y0, z0, w0, x0), z0 ≤
F(z0, w0, x0, y0), and w0 ≥ F(w0, w0, y0, z0) then, there exist x, y, z,w ∈ X such that

F
(
x, y, z,w

)
= x, F

(
y, z,w, x

)
= y, F

(
z,w, x, y

)
= z, F

(
w,x, y, z

)
= w,

(2.38)

that is, F has a quadruple fixed point.

Proof. It suffices to remark that φ(t) = kt in Theorem 2.2.

Corollary 2.5. Let (X,≤) be a partially ordered set and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Suppose also that T : X → X is an ICS mapping and F : X4 → X
is such that F has the mixed monotone property. Assume that there exists k ∈ [0, 1) such that

d
(
TF

(
x, y, z,w

)
, TF(u, v, t, s)

) ≤ k

4
(
d(Tx, Tu), d

(
Ty, Tv

)
, d(Tz, T t), d(Tw, Ts)

)
(2.39)

for any x, y, z,w,u, v, t, s ∈ X for which x ≤ u, v ≤ y, z ≤ t and s ≤ w. Suppose that either

(a) F is continuous, or

(b) X has the following property:

(i) if nondecreasing sequence xn → x (resp., zn → z), then xn ≤ x (resp., zn ≤ z) for
all n,
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(ii) if nonincreasing sequence yn → y (resp., wn → w), then yn ≥ y (resp., wn ≥ w)
for all n.

If there exist x0, y0, z0, w0 ∈ X such that x0 ≤ F(x0, y0, w0, z0), y0 ≥ F(y0, z0, w0, x0), z0 ≤
F(z0, w0, x0, y0) and w0 ≥ F(w0, w0, y0, z0) then there exist x, y, z,w ∈ X such that

F
(
x, y, z,w

)
= x, F

(
y, z,w, x

)
= y, F

(
z,w, x, y

)
= z, F

(
w,x, y, z

)
= w
(2.40)

that is, F has a quadruple fixed point.

Proof. It suffices to take φ(t) = kt in Corollary 2.3.

Now, we shall prove the existence and uniqueness of a quadruple fixed point. For a
product X4 of a partial ordered set (X,≤), we define a partial ordering in the following way:
For all (x, y, z,w), (u, v, t, s) ∈ X4,

(
x, y, z,w

) ≤ (u, v, t, s) ⇐⇒ x ≤ u, y ≥ v, z ≤ t, w ≥ s. (2.41)

We say that (x, y, z,w) and (u, v, t, s) are comparable if

(
x, y, z,w

) ≤ (u, v, t, s) or (u, v, s, t) ≤ (
x, y, z,w

)
. (2.42)

Also, we say that (x, y, z,w) is equal to (u, v, t, s) if and only if x = u, y = v, z = t, w = s.

Theorem 2.6. In addition to hypotheses of Theorem 2.2, suppose that that for all (x, y, z,w),
(u, v, t, s) ∈ X4, there exists (a, b, c, d) ∈ X4 such that (F(a, b, c, d), F(b, c, d, a),
F(c, d, a, b), F(d, a, b, c)) is comparable to (F(x, y, z,w), F(y, z,w, x), F(z,w, x, y), F(w,x, y, z))
and (F(u, v, t, s), F(v, t, s, u), F(t, s, u, v), F(s, u, v, t)). Then, F has a unique quadruple fixed point
(x, y, z,w).

Proof. The set of quadruple fixed points of F is not empty due to Theorem 2.2. Assume, now,
(x, y, z,w) and (u, v, t, s) are two quadrupled fixed points of F, that is,

F
(
x, y, z,w

)
= x, F(u, v, t, s) = u,

F
(
y, z,w, x

)
= y, F(v, t, s, u) = v,

F
(
z,w, x, y

)
= z, F(t, s, u, v) = t,

F
(
w,x, y, z

)
= w, F(s, u, v, t) = s.

(2.43)

We shall show that (x, y, z,w) and (u, v, t, s) are equal. By assumption, there exists
(a, b, c, d) ∈ X4 such that (F(a, b, c, d), F(b, c, d, a), F(c, d, a, b), F(d, a, b, c)) is comparable
to (F(x, y, z,w), F(y, z,w, x), F(z,w, x, y), F(w,x, y, z)) and (F(u, v, t, s), F(v, t, s, u),
F(t, s, u, v), F(s, u, v, t)).
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Define sequences {an}, {bn}, {cn}, and {dn} such that

a0 = a, b0 = b, c0 = c, d0 = d, for any n ≥ 1,

an = F(an−1, bn−1, cn−1, dn−1),
bn = F(bn−1, cn−1, dn−1, an−1),
cn = F(cn−1, dn−1, an−1, bn−1),
dn = F(dn−1, an−1, bn−1, cn−1),

(2.44)

for all n. Further, set x0 = x, y0 = y, z0 = z, w0 = w and u0 = u, v0 = v, t0 = t, s0 = s and on
the same way define the sequences {xn}, {yn}, {zn}, and {wn} and {un}, {vn}, {tn}, and {sn}.
Then, it is easy that

xn = F
(
x, y, z,w

)
,

yn = F
(
y, z,w, x,

)
,

zn = F
(
z,w, x, y

)
,

wn = F
(
w,x, y, z

)
,

un = F(u, v, t, s),
vn = F(v, t, s, u),
tn = F(t, s, u, v),
sn = F(s, u, v, t),

(2.45)

for all n ≥ 1. Since (F(x, y, z,w), F(y, z,w, x), F(z,w, x, y), F(w,x, y, z)) = (x1, y1, z1, w1) =
(x, y, z,w) is comparable to (F(a, b, c, d), F(b, c, d, a), F(c, d, a, b)) = (a1, b1, c1, d1), then it is
easy to show (x, y, z,w) ≥ (a1, b1, c1, d1). Recursively, we get that

(
x, y, z,w

) ≥ (an, bn, cn, dn) ∀n. (2.46)

By (2.46) and (2.1), we have

d(Tx, Tan+1) = d
(
TF

(
x, y, z,w

)
, TF(an, bn, cn, dn)

)

≤ φ(max
{
d(Tx, Tan), d

(
Ty, Tbn

)
, d(Tz, Tcn), d(Tw, Tdn)

})
,

d
(
Tbn+1, Ty

)
= d

(
TF(bn, cn, dn, an), TF

(
y, z,w, x

))

≤ φ(max
{
d
(
Ty, Tbn

)
, d(Tz, Tcn), d(Tw, Tdn), d(Tx, Tan)

})
,

d(Tz, Tcn+1) = d
(
TF

(
z,w, x, y

)
, TF(cn, dn, an, bn)

)

≤ φ(max
{
d(Tz, Tcn), d(Tw, Tdn), d(Tx, Tan), d

(
Ty, Tbn

)})
,

d(Tw, Tdn+1) = d
(
TF

(
w,x, y, z

)
, TF(dn, an, bn, cn)

)

≤ φ(max
{
d(Tw, Tdn), d(Tx, Tan), d

(
Ty, Tbn

)
, d(Tz, Tcn)

})
.

(2.47)

It follows from (2.47) that

max
{
d(Tz, Tcn+1), d(Tw, Tdn+1), d(Tx, Tan+1), d

(
Ty, Tbn+1

)}

≤ φ(max
{
d(Tz, Tcn), d(Tw, Tdn), d(Tx, Tan), d

(
Ty, Tbn

)})
.

(2.48)
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Therefore, for each n ≥ 1,

max
{
d(Tz, Tcn), d(Tw, Tdn), d(Tx, Tan), d

(
Ty, Tbn

)}

≤ φn(max
{
d(Tz, Tc0), d(Tw, Td0), d(Tx, Ta0), d

(
Ty, Tb0

)})
.

(2.49)

It is known that φ(t) < t and limr→ t+ φ(r) < t imply limn→∞ φn(t) = 0 for each t > 0. Thus,
from (2.49),

lim
n→∞

max
{
d(Tz, Tcn), d(Tw, Tdn), d(Tx, Tan), d

(
Ty, Tbn

)}
= 0. (2.50)

This yields that

lim
n→∞

d(Tx, Tan) = 0, lim
n→∞

d
(
Ty, Tbn

)
= 0,

lim
n→∞

d(Tz, Tcn) = 0, lim
n→∞

d(Tw, Tdn) = 0.
(2.51)

Analogously, we show that

lim
n→∞

d(Tu, Tan) = 0, lim
n→∞

d(Tv, Tbn) = 0,

lim
n→∞

d(Tt, Tcn) = 0, lim
n→∞

d(Ts, Tdn) = 0.
(2.52)

Combining (2.51) to (2.52) yields that (Tx, Ty, Tz, Tw) and (Tu, Tv, Tt, Ts) are equal. The fact
that T is injective gives us x = u, y = v, z = t, and w = s.

We state some examples showing that our results are effective.

Example 2.7. Let X = [1, 64] with the metric d(x, y) = |x − y|, for all x, y ∈ X and the usual
ordering. Clearly, (X, d) is a complete metric space.

Let T : X → X and F : X4 → X be defined by

Tx = ln(x) + 1, F
(
x, y, z,w

)
= 8

(
x
y

)1/3

, ∀x, y, z,w ∈ X. (2.53)

It is clear that T is an ICS mapping, F has the mixed monotone property and continuous.
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Set φ(t) = 2t/3. Taking x, y, z,w, u, v, s, t ∈ X for which x ≤ u, v ≤ y, z ≤ s, and t ≤ w,
we have

d
(
TF

(
x, y, z,w

)
, TF(u, v, s, t)

)
=

1
3
∣
∣(lnx − lny

) − (lnu − lnv)
∣
∣

≤ 1
3
|lnx − lnu| + 1

3
∣
∣lny − lnv

∣
∣

≤ 1
3
max

{|lnx − lnu|, ∣∣lny − lnv
∣
∣}

= φ
(
max

{
d(Tx, Tu), d

(
Ty, Tv

)
, d(Tz, Ts), d(Tw, Tt)

})
,

(2.54)

which is the contractive condition (2.1). Moreover, taking x0 = y0 = z0 = 8 = w0, we have

x0 ≤ F
(
x0, y0, z0, w0

)
, y0 ≥ F

(
y0, z0, w0, x0

)
,

z0 ≤ F
(
z0, w0, x0, y0

)
, w0 ≥ F

(
w0, x0, y0, z0

)
.

(2.55)

Therefore, all the conditions of Theorem 2.2 hold and (8, 8, 8, 8) is the unique quadruple fixed
point of F, since also the hypotheses of Theorem 2.6 hold.

On the other hand, we can not apply Corollary 15 of Karapınar [27] to this example.
Indeed, for x = 1 = y = v, u = 2, 1 ≤ z = s and 1 ≤ t = w, we have

d
(
F
(
x, y, z,w

)
, F(u, v, s, t)

)
= 8

∣∣∣(2)1/3 − 1
∣∣∣ >

1
4
>
k

4
d(x, u)

=
k

4
[
d(x, u) + d

(
y, v

)
+ d(z, s) + d(w, t)

]
,

(2.56)

for any k ∈ [0, 1).

Example 2.8. Let X = R with d(x, y) = |x − y| and natural ordering. Let T : X → X and
F : X4 → X be defined by Tx = x/12 and F(x, y, z,w) = 2/5(x − y + z −w). It is clear that T
is an ICS mapping and F has the monotone property and continuous. Set φ(t) = 2t/3 ∈ Φ. It
is clear that all conditions of Theorem 2.2 are satisfied and (0, 0, 0, 0) is the desired quadruple
point.

Note that Corollary 15 of Karapınar [27] is not applicable. Indeed, for x = 0, u = 1 and
y = v = z = s = t = w = 0, we have

d
(
F
(
x, y, z,w

)
, F(u, v, s, t)

)
=

2
5
>
k

4
d(x, u) =

k

4
[
d(x, u) + d

(
y, v

)
+ d(z, s) + d(w, t)

]
,

(2.57)

for any k ∈ [0, 1).
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