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We construct the traveling wave solutions involving parameters of modified Liouville equation
by using a new approach, namely the modified simple equation method. The proposed method is
direct, concise, and elementary and can be used for many other nonlinear evolution equations.

1. Introduction

The investigation of the traveling-wave solutions of nonlinear partial differential equations
plays an important role in the study of nonlinear physical phenomena. Several direct
methods for finding the explicit traveling-wave solutions to nonlinear partial differential
equations have been proposed, such as the tanh-function method and its various extension
[1], the Jacobi elliptic function expansion method [2], the homogeneous balance method
[3, 4], the F-expansion method and its extension [5], the variational iteration method [6],
(G′/G)-expansion method [7], and so on. More recently, a new method, named modified
simple equation method [8, 9], has been proposed to construct more explicit traveling-wave
solutions of modified Liouville equation.

2. Description of the Modified Simple Equation Method

Suppose that a nonlinear equation, say in two independent variables x and t is given by

P(u, ut, ux, utt, uxt, uxx, . . .) = 0, (2.1)
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where u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t) and its various
partial derivatives, in which the highest-order derivatives and nonlinear terms are involved.
In the following, the main steps of the modified simple equation method are given.

Step 1. The traveling-wave variable

u(x, t) = u(ξ), where ξ = Ax + Bt (2.2)

permits us reducing (2.1) to an ODE for u = u(ξ) in the form

P
(
u,−Vu′, u′, V 2u′′,−Vu′′, u′′, . . .

)
= 0. (2.3)

Step 2. Suppose that the solution of ODE (2.1) can be expressed by a polynomial in (ψ ′/ψ) as
follows:

u(ξ) =
n∑
i=0

αi

(
ψ ′

ψ

)i

, (2.4)

where αi are arbitrary constants to be determined such that αn /= 0, while ψ(ξ) is an unknown
function to be determined later.

Step 3. Wedetermine the positive integer n by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (2.3).

Step 4. We substitute (2.4) into (2.3), we calculate all the necessary derivatives u′, u′′, . . ., and
then we account the function ψ(ξ). As a result of this substitution, we get a polynomial of
ψ ′/ψ and its derivatives. In this polynomial, we equate with zero all the coefficients of it. This
operation yields a system of equations which can be solved to find αi and ψ(ξ). Consequently,
we can get the exact solution of (2.1).

3. Application of the Method

In this section, we would like to use our method to obtain new and more general exact
traveling wave solutions of the modified Liouville equation

wtt = a2wxx + beβw, (3.1)

where a, b, and β are arbitrary constants.
Suppose eβw = u(x, t), where the traveling-wave transformation is

u(x, t) = u(ξ), ξ = Ax + Bt. (3.2)

By using the traveling-wave variable (3.2), (3.1) is converted into an ODE for u = u(ξ)

uu′′ − u′2 + ku3 = 0, where k =
bβ

a2A2 − B2
. (3.3)
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Suppose that the solution of the ODE (3.3) can be expressed by a polynomial in (ψ ′/ψ) as
follows:

u(ξ) =
n∑
i=0

αi

(
ψ ′

ψ

)i

, (3.4)

where αi are arbitrary constants provided αn /= 0.
Considering the homogeneous balance between the highest order derivatives and the

nonlinear terms in (3.3), we get n = 2 and hence the solution takes the following form:

u(ξ) = α0 + α1
(
ψ ′

ψ

)
+ α2

(
ψ ′

ψ

)2

, (3.5)

where α2 /= 0. On substituting (3.5) into the ODE (3.3) and equating all the coefficients of
ψ−1, ψ−2, ψ−3, ψ−4, ψ−5, ψ−6 to zero, we, respectively, obtain

kα30 = 0, (3.6)

3kα20α1ψ
′ + α0α1ψ ′′′ = 0, (3.7)

2α0α2ψ ′′2 − α21ψ ′′2 − 3α0α1ψ ′′ψ ′ + 3kα20α2ψ
′2 + 3kα0α21ψ

′2

+ 2α0α2ψ ′ψ ′′′ + α21ψ
′ψ ′′′ = 0,

(3.8)

kα31ψ
′3 + 2α0α1ψ ′3 − 2α1α2ψ ′ψ ′′2 − α21ψ ′2ψ ′′ + 3α1α2ψ ′2ψ ′′′

− 10α0α2ψ ′2ψ ′′ + 6kα0α1α2ψ ′3 = 0,
(3.9)

−2α22ψ ′2ψ ′′2 + 2α22ψ
′3ψ ′′′ + α21ψ

′4 + 3kα0α22ψ
′4 + 3kα21α2ψ

′4

+ 6α0α2ψ ′4 − 5α1α2ψ ′3ψ ′′ = 0,
(3.10)

3kα1α22ψ
′5 − 2α22ψ

′4ψ ′′ + 4α1α2ψ ′5 = 0, (3.11)

kα32ψ
′6 + 2α22ψ

′6 = 0. (3.12)

Equations (3.6), (3.8), and (3.12) give α0 = 0, α1 = 0, α2 = −2/k (ψ ′ /= 0, otherwise it is the
trivial case); those satisfy (3.7) and (3.9), and (3.10), (3.11), respectively, yields

ψ ′′2 − ψ ′ψ ′′′ = 0, (3.13)

ψ ′′ = 0. (3.14)

Equation (3.14) gives ψ ′′ = 0. Integrating ψ ′′ = 0 with respect to ξ, we get ψ = C1 +C2ξ and the
solution of ODE (3.3) takes the following form:

u(ξ) =
−2
k

(
C1

C1 + C2ξ

)2

=
2
(
B2 − a2A2)

bβ

(
C

Ax + Bt + C

)2

, where C =
C1

C2
. (3.15)
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And finally the traveling-wave solution of (3.1) is

w =
1
β
ln

[
2
(
B2 − a2A2)

bβ

(
C

Ax + Bt + C

)2
]
. (3.16)

4. Conclusion

On comparing this method with the other methods via the tanh-function method,
homogeneous balance method, and the (G′/G)-expansion method used in [1, 4, 7], we see
that the modified simple equation method is much more simpler than these methods because
these methods have used the computer programs, while the modified simple equation
method has not used these programs. Also we deduce that the modified simple equation
method is effective and standard which allows us to solve complicated nonlinear evolution
equations in the mathematical physics.
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